JPH0996380A - Piping material - Google Patents

Piping material

Info

Publication number
JPH0996380A
JPH0996380A JP7253520A JP25352095A JPH0996380A JP H0996380 A JPH0996380 A JP H0996380A JP 7253520 A JP7253520 A JP 7253520A JP 25352095 A JP25352095 A JP 25352095A JP H0996380 A JPH0996380 A JP H0996380A
Authority
JP
Japan
Prior art keywords
resin
foam
piping
covered
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7253520A
Other languages
Japanese (ja)
Inventor
Eiji Okada
英治 岡田
Hitoshi Shirato
斉 白土
Hiroshi Abe
弘 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7253520A priority Critical patent/JPH0996380A/en
Publication of JPH0996380A publication Critical patent/JPH0996380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an excellent piping workability, and to make unnecessary to form a large piping insert hole on a wall surface even when heat insulating material is necessary, by covering a part of the outer peripheral surface of a piping material main body by a covering material having a delayed form- restoring property made by compressing within the elasticity restoring limit of a specific resin. SOLUTION: A piping 1 is covered with a covering material 3 to cover the outer peripheral surface of a metal pipe 2 as the piping material main body. And the covering material 3 is formed of at least one sort of covering material selected from a group of a resin in which the closed cells compose the foaming body as well as the outer surface of a closed cell resin foaming body is covered by a resin layer; a resin in which the open cells compose the foaming body as well as the outer surface of an open cell resin foaming body is covered by a resin layer; and covering material in which the fiber collection body has a delayed form restoring property being compressed at the elasticity restoring limit, as well as the outer surface of the fiber collection body is covered by a resin layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配管材に関する。TECHNICAL FIELD The present invention relates to a piping material.

【0002】[0002]

【従来の技術】従来、壁等に配管を通す場合、配管外径
より大きい径を有する配管挿通孔を壁に穿設し、配管を
行った後、配管との配管挿通孔との隙間にシール材を充
填し、壁内外の気密性を図るようにしている。
2. Description of the Related Art Conventionally, when a pipe is passed through a wall or the like, a pipe insertion hole having a diameter larger than the outer diameter of the pipe is bored in the wall, and after the pipe is piped, a seal is made in a gap between the pipe and the pipe insertion hole. The material is filled to ensure airtightness inside and outside the wall.

【0003】[0003]

【発明が解決しようとする課題】しかし、シール材を充
填する作業は、非常に手間がかかり、特に壁が多数ある
場合などにおいて、工期を長びかせるとともに、配管コ
ストを押し上げる原因にもなっている。しかも、特開昭
48−67836号公報等に開示されているように、給
湯配管等は、通常配管の周りを断熱材によって被覆して
保温性を高めるようになっていて、配管のみの場合より
大きな配管挿通孔を壁面に穿設しなければならない場合
があるが、建物の場所によっては、大きな孔を穿設でき
ない場合もあり、配管経路を自由に選択できないことが
ある。
However, the work of filling the sealing material is very troublesome, and in particular when there are many walls, the construction period is lengthened and the piping cost is increased. There is. Moreover, as disclosed in Japanese Patent Laid-Open No. 48-67836, hot water supply pipes or the like are usually covered with a heat insulating material around the pipes so as to enhance heat retention. A large pipe insertion hole may have to be formed in the wall surface in some cases, but depending on the location of the building, it may not be possible to form a large hole, and it may not be possible to freely select the piping path.

【0004】本発明は、このような事情に鑑みて、配管
施工性に優れ、断熱材を必要とする場合でも大きな配管
挿通孔を壁面に穿設する必要がない配管材を提供するこ
とを目的としている。
In view of such circumstances, it is an object of the present invention to provide a pipe material which is excellent in pipe workability and does not require a large pipe insertion hole to be formed in a wall surface even when a heat insulating material is required. I am trying.

【0005】[0005]

【課題を解決するための手段】本発明にかかる配管材
は、このような目的を達成するために、独立気泡樹脂発
泡体がその独立気泡を、発泡体を構成する樹脂の弾性回
復限界内で圧縮されてなる遅延された形状回復性を有す
る被覆材(A)と、連続気泡樹脂発泡体の外面が樹脂層
で被覆されているとともに、連続気泡が発泡体を構成す
る樹脂の弾性回復限界内で圧縮されてなる遅延された形
状回復性を有する被覆材(B)と、繊維集成体の外面が
樹脂層で被覆されているとともに、繊維集成体がその弾
性回復限界内で圧縮されてなる遅延された形状回復性を
有する被覆材(C)とからなる群より選ばれた少なくと
もいずれか1種の被覆材によって配管材本体の外周面の
少なくとも一部が被覆されている構成とした。
In order to achieve such an object, in the piping material according to the present invention, the closed cell resin foam has its closed cells within the elastic recovery limit of the resin constituting the foam. The coating material (A) which is compressed and has a delayed shape recovery property, and the outer surface of the open-cell resin foam is covered with a resin layer, and the open cells are within the elastic recovery limit of the resin forming the foam. The coating material (B) having a delayed shape recovery property obtained by being compressed with a resin, the outer surface of the fiber assembly is coated with a resin layer, and the fiber assembly is compressed within its elastic recovery limit. At least a part of the outer peripheral surface of the piping material main body is covered with at least one kind of coating material selected from the group consisting of the coating material (C) having the shape recovery property.

【0006】上記構成において、被覆材(A)とは、以
下のようなものを言う。 炭酸ガスや液化ガス等のガス透過係数Pagent が空
気のガス透過係数Pai r より大きく、常温でガスもしく
は常温で液化するガスを発泡ガスとして用いたものであ
って、気泡内のガス置換、あるいは液化による体積収縮
により自然収縮を起こし、収縮後樹脂の弾性回復力とガ
ス透過により気泡の内外圧力と釣り合いながら徐々にも
との厚さに回復してゆくもの。すなわち、Pagent >P
air となるガスを発泡剤として用いた場合、セル膜を通
して独立気泡(セル)内から外界(大気中)へ逃げる
(透過)ガス量の方が、外界から独立気泡内へ入るガス
量よりも多くなり、独立気泡内圧<外界圧(大気圧)と
なる。この時、発泡体には外界圧で圧縮される力F1
それに抵抗する樹脂の弾性力F2 がかかり、F1 とF 2
が釣り合う状態まで発泡体が収縮する。収縮が進行する
にしたがって独立気泡内から外界へ逃げるガス量が次第
に減少し、しばらくすると独立気泡内から外界へ逃げる
ガス量と外界から独立気泡内に入るガス量が平衡に達し
収縮は停止する。この後、発泡体は膨張を開始する。
In the above structure, the covering material (A) is as follows.
Say something like the one below. Gas permeability coefficient P for carbon dioxide and liquefied gasagentIs empty
Gas gas permeability coefficient Pai rLarger and gas at room temperature
Uses gas that liquefies at room temperature as a foaming gas.
Therefore, volume shrinkage due to gas replacement in gas bubbles or liquefaction
Causes natural shrinkage.
Gradually while balancing with the internal and external pressure of the bubble
The thing that recovers to the thickness. That is, Pagent> P
airWhen a gas that becomes
Escapes from the inside of the closed cell (cell) to the outside (atmosphere)
The amount of (permeated) gas is the gas entering the closed cell from the outside world
And the closed cell internal pressure <external pressure (atmospheric pressure)
Become. At this time, a force F compressed by the external pressure is applied to the foam.1When
The elastic force F of the resin that resists it2, F1And F 2
The foam shrinks until the balance is reached. Contraction progresses
The amount of gas that escapes from the closed cell to the outside world
And after a while, escape from the closed cell to the outside world
The amount of gas and the amount of gas entering the closed cell from the outside reach equilibrium.
The contraction stops. After this, the foam begins to expand.

【0007】 の発泡ガス以外のガスを発泡ガスと
して用いたものであって、発泡体に弾性領域内の圧縮歪
みを与えた場合、発泡体を構成する独立気泡の内圧が上
昇し、直後に外力を取り除けば発泡体は瞬時に元の形状
に回復するが、所定時間以上その歪みを保持させれば、
樹脂のガス透過性により気泡内のガスが気泡膜から徐々
にぬけてゆき内圧と外圧とが釣り合い、外力を取り除い
ても瞬間的な形状回復は起こらず、その歪みが樹脂の弾
性領域内であれば、圧縮を解除すると樹脂の弾性回復力
により気泡の内外圧力と釣り合いながら徐々にもとの厚
さに回復してゆく性質を持つもの。
When a gas other than the foaming gas of is used as the foaming gas, and the compressive strain in the elastic region is applied to the foam, the internal pressure of the closed cells constituting the foam rises, and immediately after the external force. If you remove the, the foam will instantly recover its original shape, but if you keep the strain for a certain period of time,
Due to the gas permeability of the resin, the gas inside the bubbles gradually escapes from the bubble film, and the internal pressure and external pressure are balanced. For example, when the compression is released, the elastic recovery of the resin balances the internal and external pressures of the bubbles and gradually restores the original thickness.

【0008】 の発泡ガス以外のガスを発泡ガスと
して用いたものであって、減圧下で発泡することにより
気泡中のガス圧力は大気圧以下となった状態で冷却固定
した後大気中に取り出した時、発泡体が大気圧により一
旦圧縮され、樹脂の弾性回復力により気泡の内外圧力と
釣り合いながら徐々にもとの厚さに回復してゆくもの。
A gas other than the bubbling gas was used as a bubbling gas, and the bubbling was carried out under reduced pressure so that the gas pressure in the bubbling was kept below atmospheric pressure, and the gas was cooled and fixed and then taken out into the atmosphere. At this time, the foam is once compressed by atmospheric pressure and gradually recovers its original thickness while balancing the internal and external pressures of the bubbles by the elastic recovery force of the resin.

【0009】 冷却すると液化する発泡剤(熱可塑性
樹脂の場合は沸点が樹脂のガラス転移点温度以上軟化点
温度以下の発泡剤、熱硬化性樹脂の場合は沸点が樹脂の
ガラス転移点温度以上樹脂の分解温度以下)を使用して
発泡体を製造したもの。すなわち、沸点が樹脂のガラス
転移点温度以上軟化点温度以下である発泡剤を用いた場
合、発泡体を発泡剤の沸点まで冷却すると、独立気泡内
の発泡剤も冷却されて気体から液体になる。このとき発
泡剤の体積収縮によって独立気泡内圧<外界圧(大気
圧)となり発泡体が収縮する。その後樹脂の弾性回復力
により気泡の内外圧力と釣り合いながら徐々にもとの厚
さに回復してゆく。
A foaming agent that liquefies when cooled (in the case of a thermoplastic resin, a foaming agent having a boiling point not lower than the glass transition temperature of the resin and not higher than the softening point temperature thereof, and in the case of a thermosetting resin, a boiling point not lower than the glass transition temperature of the resin (Below the decomposition temperature of), a foam was produced. That is, when a foaming agent having a boiling point not lower than the glass transition temperature of the resin and not higher than the softening point temperature is used, when the foam is cooled to the boiling point of the foaming agent, the foaming agent in the closed cells is also cooled and becomes a liquid from a gas. . At this time, due to the volume contraction of the foaming agent, the internal pressure of the closed cells becomes smaller than the external pressure (atmospheric pressure), and the foam contracts. After that, the elastic recovery force of the resin balances the internal and external pressures of the bubbles to gradually restore the original thickness.

【0010】なお、上記の独立気泡樹脂発泡体を圧縮
する場合、圧縮時の温度は、独立気泡樹脂発泡体を構成
する樹脂の軟化点(非晶性樹脂につていはガラス転移
点、結晶性樹脂については融点を軟化点とする)以下で
ある。すなわち、軟化点以上の温度で圧縮を行った場
合、抜重後の発泡体の形状回復能がなくなる恐れがあ
る。被覆材の形状としては、特に限定されないが、たと
えば、筒状、線状あるいは帯状のもの等が挙げられる。
When compressing the above-mentioned closed cell resin foam, the temperature at the time of compression depends on the softening point of the resin constituting the closed cell resin foam (for amorphous resin, the glass transition point, the crystallinity). For resins, the melting point is the softening point) or less. That is, when compression is performed at a temperature equal to or higher than the softening point, there is a possibility that the shape recovery ability of the foam after removal of the weight may be lost. The shape of the covering material is not particularly limited, and examples thereof include a tubular shape, a linear shape, and a strip shape.

【0011】なお、線状とは、たとえば、棒状や紐状の
ものを言い、その断面形状は、とくに限定されないが、
たとえば、円形、楕円形、多角形、星形等が挙げられ
る。被覆材を配管材本体に被覆する方法としては、特に
限定されないが、たとえば、配管材本体に螺旋状に巻回
する方法、帯状の被覆材を用いて配管材本体を完全に覆
う方法、被覆する配管を押出成形機に挿通し、発泡体を
成形と同時に被覆する方法等が挙げられる。
The linear shape means, for example, a rod shape or a string shape, and its cross-sectional shape is not particularly limited,
For example, a circle, an ellipse, a polygon, a star, and the like can be given. The method for coating the pipe material body with the coating material is not particularly limited, but for example, a method of spirally winding the pipe material body, a method of completely covering the pipe material body using a band-shaped coating material, or coating Examples include a method in which the pipe is inserted through an extrusion molding machine and the foam is coated simultaneously with molding.

【0012】独立気泡樹脂発泡体の独立気泡率は、被覆
材自体の必要とする回復量により決まり、60%〜10
0%が好ましい。独立気泡樹脂発泡体を構成する樹脂と
しては、特に限定されないが、圧縮永久歪み(JIS
K 6767に準拠)が20%以下のもの、特に10%
以下のものが形状回復性に優れ好ましい。
The closed cell rate of the closed cell resin foam is determined by the amount of recovery required by the coating material itself, and is 60% to 10%.
0% is preferable. The resin constituting the closed-cell resin foam is not particularly limited, but may be compression set (JIS
20% or less, especially 10%
The following are preferred because of their excellent shape recoverability.

【0013】このような樹脂としては、以下のような熱
可塑性樹脂あるいは熱硬化性樹脂が挙げられる。 〔熱可塑性樹脂〕ポリエチレン,ポリプロピレン,エチ
レン−プロピレン共重合体,エチレン−プロピレン−ジ
エン共重合体,エチレン−酢酸ビニル共重合体等のオレ
フィン系樹脂、ポリメチルアクリレート,ポリメチルメ
タクレート,エチレン−エチルアクリレート共重合体等
のアクリル系樹脂、ブタジエン−スチレン,アクリロニ
トリル−スチレン,スチレン,スチレン−ブタジエン−
スチレン,スチレン−イソプレン−スチレン,スチレン
−アクリル酸等のスチレン系樹脂、アクリロニトリル−
ポリ塩化ビニル,ポリ塩化ビニル−エチレン等の塩化ビ
ニル系樹脂、ポリフッ化ビニル,ポリフッ化ビニリデン
等のフッ化ビニル系樹脂、6−ナイロン,6・6−ナイ
ロン,12−ナイロン等のアミド樹脂、ポリエチレンテ
レフタレート,ポリブチレンテレフタレート等の飽和エ
ステル系樹脂、ポリカーボネート、ポリフェニレンオキ
サイド、ポリアセタール、ポリフェニレンスルフィド、
シリコーン樹脂、熱可塑性ウレタン樹脂、ポリエーテル
エーテルケトン、ポリエーテルイミド、各種エラストマ
ーやこれらの架橋体。
Examples of such resins include the following thermoplastic resins and thermosetting resins. [Thermoplastic resin] Olefin resin such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polymethyl acrylate, polymethylmethacrylate, ethylene-ethyl Acrylic resin such as acrylate copolymer, butadiene-styrene, acrylonitrile-styrene, styrene, styrene-butadiene-
Styrene resins such as styrene, styrene-isoprene-styrene, styrene-acrylic acid, acrylonitrile-
Polyvinyl chloride resins such as polyvinyl chloride and polyvinyl chloride-ethylene; vinyl fluoride resins such as polyvinyl fluoride and polyvinylidene fluoride; amide resins such as 6-nylon, 6.6-nylon and 12-nylon; polyethylene Saturated ester resins such as terephthalate and polybutylene terephthalate, polycarbonate, polyphenylene oxide, polyacetal, polyphenylene sulfide,
Silicone resin, thermoplastic urethane resin, polyetheretherketone, polyetherimide, various elastomers and cross-linked products of these.

【0014】〔熱硬化性樹脂〕エポキシ系樹脂、フェノ
ール系樹脂、メラミン系樹脂、ウレタン系樹脂、イミド
系樹脂、ユリア系樹脂、シリコーン系樹脂、不飽和ポリ
エステル系樹脂の硬化物等。なお、これらの樹脂は単独
で用いても2種以上併用しても良い。
[Thermosetting resin] Epoxy resin, phenolic resin, melamine resin, urethane resin, imide resin, urea resin, silicone resin, and cured product of unsaturated polyester resin. These resins may be used alone or in combination of two or more.

【0015】また、上記樹脂の中でも、特に形状回復性
に優れるものとして、オレフィン樹脂、スチレン系樹
脂、アミド系樹脂、アクリル共重合体、軟質ポリウレタ
ン、軟質塩化ビニル樹脂、ポリアセタール、シリコーン
樹脂、各種エラストマーが特に挙げられる。発泡方法
は、プラスチックフォームハンドブックに記載されてい
る方法を含め公知の方法が挙げられ、いずれの方法を用
いても構わない。
Among the above resins, those having particularly excellent shape recovery properties include olefin resins, styrene resins, amide resins, acrylic copolymers, soft polyurethanes, soft vinyl chloride resins, polyacetals, silicone resins, and various elastomers. Are particularly mentioned. Known foaming methods, including those described in the Plastic Foam Handbook, may be used, and any method may be used.

【0016】本発明で使用される発泡剤としては、特に
限定されないが、たとえば、分解型の発泡剤としてアゾ
ジカルボアミド(ADCA)、アゾビスイソブチロニト
リル(AIBN)、ジニトロソペンタメチレンテトラミ
ン(DPT)、p−トルエンスルホニルヒドラジド(T
SH)、ベンゼンスルホニルヒドラジド(BSH)及
び、重炭酸ナトリウムなどが挙げられ、揮発型の発泡剤
として炭酸ガス、プロパン、メチルエーテル、1,1−
ジククロ−1−フルオロエタンなどの気体およびエーテ
ル、石油エーテル、アセトンなどの揮発性液体が挙げら
れる。
The foaming agent used in the present invention is not particularly limited, but for example, decomposition type foaming agents such as azodicarbonamide (ADCA), azobisisobutyronitrile (AIBN) and dinitrosopentamethylenetetramine. (DPT), p-toluenesulfonyl hydrazide (T
SH), benzenesulfonyl hydrazide (BSH), sodium bicarbonate and the like, and examples of volatile blowing agents include carbon dioxide gas, propane, methyl ether, 1,1-
Included are gases such as dicuclo-1-fluoroethane and volatile liquids such as ethers, petroleum ethers, acetone.

【0017】また、これら発泡剤と共に、発泡速度を調
節する発泡助剤を添加してもよい。因に、発泡速度を速
める発泡助剤として、ステアリン酸亜鉛,ステアリン酸
カルシウム等の金属石けん、亜鉛華,硝酸亜鉛等の無機
塩、アジピン酸,シュウ酸等の酸類が挙げられ、発泡速
度を遅延する発泡助剤として、マレイン酸,フタル酸等
の有機酸、無水マレイン酸,無水フタル酸等の有機酸無
水物、ジブチル錫マレート,塩化錫等の錫化合物が挙げ
られる。
A foaming aid for controlling the foaming rate may be added together with these foaming agents. As foaming aids for increasing the foaming speed, metal soaps such as zinc stearate and calcium stearate, inorganic salts such as zinc white and zinc nitrate, and acids such as adipic acid and oxalic acid are used, and the foaming speed is retarded. Examples of the foaming assistant include organic acids such as maleic acid and phthalic acid, organic acid anhydrides such as maleic anhydride and phthalic anhydride, and tin compounds such as dibutyltin malate and tin chloride.

【0018】発泡助剤は、使用する樹脂,発泡剤,助剤
の種類によって異なるが、通常熱可塑性樹脂100重量
部に対して0.1〜2重量部程度の添加割合で添加され
ることが好ましい。すなわち、添加量が0.1重量部以
下では、効果が小さく、2重量部以上では飽和状態とな
り、それ以上の添加効果がなくなる恐れがある。
The foaming aid varies depending on the type of resin, foaming agent and aid used, but is usually added in an amount of about 0.1 to 2 parts by weight per 100 parts by weight of the thermoplastic resin. preferable. That is, when the amount is 0.1 part by weight or less, the effect is small, and when the amount is 2 parts by weight or more, the state is saturated, and there is a possibility that the effect of further addition may be lost.

【0019】また、上記発泡体には、充填剤、補強繊
維、着色剤、紫外線吸収剤、酸化防止剤、難燃剤等を必
要に応じて混合されていても構わない。充填剤として
は、たとえば、炭酸カルシウム、タルク、クレー、酸化
マグネシウム、酸化亜鉛、カーボンブラック、二酸化ケ
イ素、酸化チタン、ガラス粉、ガラスビーズ等が挙げら
れる。
Further, the above foam may be mixed with a filler, a reinforcing fiber, a colorant, an ultraviolet absorber, an antioxidant, a flame retardant, etc., if necessary. Examples of the filler include calcium carbonate, talc, clay, magnesium oxide, zinc oxide, carbon black, silicon dioxide, titanium oxide, glass powder, glass beads and the like.

【0020】補強繊維としては、たとえば、ガラス繊
維、炭素繊維等が挙げられる。着色剤としては、たとえ
ば、酸化チタン等の顔料が挙げられる。酸化防止剤とし
ては、一般に用いれるものであれば、特に限定されず、
たとえば、テトラキス〔メチレン(3,5−ジ−t−ブ
チル−4−ヒドロキシハイドロシンナメート)〕メタ
ン、チオジプロピオン酸ジラウリル、1,1,3−トリ
ス(2−メチル−4−ヒドロキシ−5−t−ブチルフェ
ニル)ブタン等が挙げられる。
Examples of the reinforcing fiber include glass fiber and carbon fiber. Examples of the coloring agent include pigments such as titanium oxide. The antioxidant is not particularly limited as long as it is a commonly used antioxidant,
For example, tetrakis [methylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate)] methane, dilauryl thiodipropionate, 1,1,3-tris (2-methyl-4-hydroxy-5- t-butylphenyl) butane and the like.

【0021】難燃剤としては、ヘキサブロモフェニルエ
ーテル,デカブロモジフェニルエーテル等の臭素系難燃
剤、ポリリン酸アンモニウム、トリメチルホスフェー
ト、トリエチルホスフェート等の含リン酸系難燃剤、メ
ラミン誘導体、無機系難燃剤等の1種又は2種以上の混
合物が挙げられる。
Examples of the flame retardant include bromine flame retardants such as hexabromophenyl ether and decabromodiphenyl ether, phosphoric acid flame retardants such as ammonium polyphosphate, trimethyl phosphate and triethyl phosphate, melamine derivatives and inorganic flame retardants. Examples include one kind or a mixture of two or more kinds.

【0022】一方、被覆材(B)とは、以下のようなも
のを言う。まず、連続気泡樹脂発泡体としては、特に限
定されないが、連続気泡率が60%〜100%のものが
好ましい。連続気泡樹脂発泡体を構成する樹脂として
は、上記独立気泡樹脂発泡体と同様の樹脂を使用するこ
とができる。
On the other hand, the covering material (B) is as follows. First, the open-cell resin foam is not particularly limited, but preferably has an open-cell rate of 60% to 100%. As the resin constituting the open-cell resin foam, the same resin as the above-mentioned closed-cell resin foam can be used.

【0023】連続気泡樹脂発泡体の製造方法は、特に限
定されないが、たとえば、発泡剤分解法、溶剤気散
法、化学反応法等により独立気泡を有する発泡体を製造
したのち、この発泡体を押圧し、独立気泡を潰す方法、
この発泡体に針状物に突き刺して孔開けし独立気泡を
連通させる方法、気泡倍率を高くして発泡時に連続気
泡率の高い発泡体を製造する方法などが挙げられる。
The method for producing the open-cell resin foam is not particularly limited, but, for example, after producing a foam having closed cells by a foaming agent decomposition method, a solvent vaporization method, a chemical reaction method, etc., this foam is prepared. How to press and collapse the closed cells,
Examples of the method include a method in which a needle-shaped material is pierced into the foam to open a hole to allow the closed cells to communicate with each other, and a method in which a foam ratio is increased to produce a foam having a high open cell rate at the time of foaming.

【0024】樹脂フィルムとしては、連続気泡樹脂発泡
体の体積をVcm3 、連続気泡樹脂発泡体の表面積をScm
2 、フィルムの空気透過量をPcm3 /cm2 ・hr・atm と
したとき、V/(S×P)=1〜1000を満たせば、
樹脂の種類、フィルムの厚さ等は、特に限定されない。
すなわち、V/(S×P)が小さすぎると、連続気泡樹
脂発泡体内へ透過する空気の量が多過ぎて被覆材が配管
前に膨張してしまい、逆に大きすぎると、透過する空気
の量が少な過ぎて膨張に時間がかかりすぎる。
As the resin film, the volume of the open-cell resin foam is Vcm 3 , and the surface area of the open-cell resin foam is Scm.
2. When the air permeability of the film is Pcm 3 / cm 2 · hr · atm, if V / (S × P) = 1 to 1000 is satisfied,
The type of resin and the thickness of the film are not particularly limited.
That is, if V / (S × P) is too small, the amount of air that permeates into the open-cell resin foam will be too large, and the coating material will expand in front of the piping. The amount is too small and it takes too long to expand.

【0025】連続気泡樹脂発泡体を樹脂フィルムで被覆
する方法としては、特に限定されないが、たとえば、以
下のような方法が挙げられる。 連続気泡樹脂発泡体を圧縮して気泡内の気体を排除
した状態で表面にフィルムを熱ラミネートあるいは接着
剤ラミネートする。
The method for coating the open-cell resin foam with a resin film is not particularly limited, but the following methods may be mentioned, for example. The film is heat-laminated or adhesive-laminated on the surface in a state where the open-cell resin foam is compressed to eliminate the gas in the cells.

【0026】 連続気泡樹脂発泡体をフィルムで挟む
か、袋内に収容し、プレス等で圧縮した状態で開口部を
ヒートシールあるいは接着剤で封止する。 連続気泡樹脂発泡体を袋状のフィルム内に充填し、
真空ポンプ内でフィルム内の空気を抜く。
The open-cell resin foam is sandwiched between films or housed in a bag, and the opening is heat-sealed or sealed with an adhesive while being compressed by a press or the like. Fill the open-cell resin foam into a bag-like film,
Vent the air in the film in a vacuum pump.

【0027】連続気泡樹脂発泡体の収縮は、3方向に一
様に収縮させる場合、収縮前の体積の15%以上、1方
向(例えば、シート形状で厚さ方向)のみ収縮させる場
合、収縮前の10%以上が好ましい。また、収縮は、連
続気泡樹脂発泡体に用いられる樹脂の弾性変形領域内で
行われなければならない。弾性変形領域を超え塑性変形
領域内に入る、あるいは破断点を超えると連続気泡樹脂
発泡体の膨張(収縮回復)は起こらない。したがって、
収縮量が小さ過ぎると回復が悪くなる。
The shrinkage of the open-cell resin foam is 15% or more of the volume before shrinkage when uniformly shrinking in three directions, and before shrinking when shrinking only in one direction (for example, the sheet shape and the thickness direction). Is preferably 10% or more. Also, the shrinkage must be performed within the elastic deformation region of the resin used for the open-cell resin foam. The expansion (shrinkage recovery) of the open-cell resin foam does not occur if it exceeds the elastic deformation region and enters the plastic deformation region or exceeds the breaking point. Therefore,
If the amount of shrinkage is too small, recovery will be poor.

【0028】なお、この被覆材(B)の膨張の原理を説
明すると、以下のとおりである。
The principle of expansion of the coating material (B) will be described below.

【0029】すなわち、被覆材(B)は、連続気泡樹脂
発泡体の収縮により発生する圧縮応力(内力)と大気圧
(外力)とがかかっていて、内力と外力とが釣り合った
状態になっている。ここで、空気が樹脂フィムルを通し
て連続気泡樹脂発泡体内に外部から入ってくると、緩衝
材内の圧力が上昇するため、内力>外力となり、連続気
泡樹脂発泡体が膨張する。そして、連続気泡樹脂発泡体
の膨張に伴って緩衝材内の圧力が低下し、再び内力と外
力とが釣り合った平衡状態になる。さらに、樹脂フィム
ルを通して連続気泡樹脂発泡体内に外部から入ってくる
と、再び連続気泡樹脂発泡体が膨張したのち平衡状態に
なる。すなわち、膨張−平衡状態を繰り返し最終的に収
縮前の体積の80〜100%まで回復するようになって
いる。
That is, the coating material (B) is subjected to the compressive stress (internal force) generated by the contraction of the open-cell resin foam and the atmospheric pressure (external force), so that the internal force and the external force are in balance. There is. Here, when air enters the open-cell resin foam through the resin film from the outside, the pressure inside the cushioning material rises, so that the internal force> external force, and the open-cell resin foam expands. Then, the pressure inside the cushioning material decreases as the open-cell resin foam expands, and an equilibrium state in which the internal force and the external force are balanced again is obtained. Further, when the foamed resin body enters from the outside through the resin film into the foamed resin body from the outside, the foamed foamed resin body again expands and becomes in an equilibrium state. That is, the expansion-equilibrium state is repeated to finally recover 80 to 100% of the volume before contraction.

【0030】他方、被覆材(C)とは、被覆材(B)の
連続気泡樹脂発泡体に代えて、繊維集成体を用いた以外
は、被覆材(B)と全く同様になっている。なお、繊維
集成体とは、多数の繊維が互いに絡み合ってシート状、
ボード状に形成されたものを言い、たとえば、ロックウ
ール、グラスウール、セルロースファイバー等の繊維か
ら形成されているものが挙げられる。
On the other hand, the covering material (C) is exactly the same as the covering material (B) except that a fiber assembly is used instead of the open-cell resin foam of the covering material (B). In addition, the fiber assembly is a sheet shape in which many fibers are entangled with each other,
It means that it is formed into a board shape, and examples thereof include those formed from fibers such as rock wool, glass wool and cellulose fiber.

【0031】配管材本体としては、特に限定されず、金
属管、プラスチック管、複合管などの一般に使用されて
いるものが挙げられる。なお、本発明にかかる配管材
は、製造して長期間放置する場合は、できるだけ通気性
のない容器内で保存することが好ましい。
The main body of the piping material is not particularly limited, and examples thereof include commonly used ones such as metal pipes, plastic pipes, and composite pipes. When the piping material according to the present invention is manufactured and left to stand for a long period of time, it is preferable to store the piping material in a container having as little air permeability as possible.

【0032】[0032]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照しつつ詳しく説明する。図1に示すように、配
管材1は、配管材本体としての金属管2の外周面を被覆
するように、被覆材3によって被覆されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 1, the piping material 1 is covered with a coating material 3 so as to cover the outer peripheral surface of the metal pipe 2 as the piping material body.

【0033】また、被覆材3は、独立気泡樹脂発泡体が
その独立気泡を発泡体を構成する樹脂の弾性回復限界内
で圧縮されてなる遅延された形状回復性を有する被覆材
(A)と、連続気泡樹脂発泡体の外面が樹脂層で被覆さ
れているとともに、連続気泡が発泡体を構成する樹脂の
弾性回復限界内で圧縮されてなる遅延された形状回復性
を有する被覆材(B)と、繊維集成体の外面が樹脂層で
被覆されているとともに、繊維集成体がその弾性回復限
界内で圧縮されてなる遅延された形状回復性を有する被
覆材(C)とからなる群より選ばれた少なくともいずれ
か1種の被覆材から形成されている。
The covering material 3 is a covering material (A) having a delayed shape recovering property in which the closed cell resin foam is compressed within the elastic recovery limit of the resin forming the foam. A coating material having a delayed shape recovery property in which the outer surface of the open-cell resin foam is covered with a resin layer and the open cells are compressed within the elastic recovery limit of the resin constituting the foam (B) And a coating material (C) having a delayed shape recovery property in which the outer surface of the fiber assembly is coated with a resin layer and the fiber assembly is compressed within its elastic recovery limit. It is formed of at least one kind of coating material.

【0034】この配管材1は、以上のようになってお
り、建築物の壁などに孔を穿設して配管する場合、図2
に示すように、まず、壁4の配管部分に、配管材1の外
径より少し大きな内径の孔5を穿設したのち、配管材1
を配管する。この時、孔5の内径が配管材1の外径より
大きくなっていて配管材1と孔5との間に隙間6が生じ
るため、配管作業をスムーズに行うことができる。
This piping material 1 is configured as described above, and when piping is formed by forming a hole in a wall of a building or the like, as shown in FIG.
First, a hole 5 having an inner diameter slightly larger than the outer diameter of the piping material 1 is first formed in the piping portion of the wall 4 and then the piping material 1
Plumbing. At this time, since the inner diameter of the hole 5 is larger than the outer diameter of the pipe material 1 and the gap 6 is formed between the pipe material 1 and the hole 5, the piping work can be smoothly performed.

【0035】そして、このように配管された配管材1
は、配管材本体2の周囲が遅延された形状回復性を有す
る被覆材3によって被覆されているから、配管後、除々
に被覆材3が形状回復して膨張し、図3に示すように、
配管当初、配管材1と孔5との間に生じていた隙間6が
膨張した被覆材3´によってうまってしまうようにな
る。
Then, the piping material 1 thus arranged.
Since the periphery of the piping material body 2 is covered with the coating material 3 having a delayed shape recovery property, the coating material 3 gradually recovers its shape and expands after the piping, and as shown in FIG.
At the beginning of the piping, the gap 6 generated between the piping material 1 and the hole 5 becomes filled with the expanded coating material 3 '.

【0036】したがって、配管後、シール材で配管材1
と孔5との間に生じていた隙間6をシールする作業が不
要となる。しかも、被覆材3´が内部に空気層を有して
いるため、断熱材ともなり、断熱材を後で巻き付けると
言った作業も不要となり、作業性が改善され、配管施工
コストも低減できる。
Therefore, after piping, the pipe material 1 is sealed with a sealing material.
The work of sealing the gap 6 generated between the hole 5 and the hole 5 becomes unnecessary. Moreover, since the covering material 3'has an air layer inside, the covering material 3'also serves as a heat insulating material, and the work of winding the heat insulating material later is unnecessary, the workability is improved, and the piping construction cost can be reduced.

【0037】[0037]

【実施例】つぎに、本発明の実施例を詳しく説明する。 (実施例1) ・低密度ポリエチレン(三菱油化社製の三菱ポリエチ−LD LF440B) 100重量部 ・気泡核形成材としてのタルク(日本タルク社製のMS) 0.1重量部 を配合してなる樹脂組成物を、150℃のロールで溶融
混練した後、温度150℃、圧力150kg/cm2 で5分
間プレスして厚さ3mmのシートを作製した。
EXAMPLES Next, examples of the present invention will be described in detail. (Example 1) 100 parts by weight of low-density polyethylene (Mitsubishi Polyethylene-LD LF440B manufactured by Mitsubishi Petrochemical Co., Ltd.) 0.1 part by weight of talc (MS manufactured by Nippon Talc Co., Ltd.) as a bubble nucleating material was added. The resulting resin composition was melt-kneaded with a roll at 150 ° C., and then pressed at a temperature of 150 ° C. and a pressure of 150 kg / cm 2 for 5 minutes to produce a sheet having a thickness of 3 mm.

【0038】このシートを100mm×100mmの小片に
裁断し、この小片を成形用型(オートクレーブ)内に充
填し、樹脂を110℃に加熱して溶融し、これに炭酸ガ
スを100kg/cm2 の圧力で圧入して1時間保持したの
ち、成形用型の圧力を常温まで低下させて、板状に発泡
させた。
This sheet was cut into small pieces of 100 mm × 100 mm, the small pieces were filled in a molding die (autoclave), the resin was heated to 110 ° C. and melted, and carbon dioxide gas of 100 kg / cm 2 was added thereto. After press-fitting with pressure and holding for 1 hour, the pressure of the molding die was lowered to room temperature to foam into a plate shape.

【0039】得られた発泡体は、縦310mm×横310
mm×厚さ10mmの板状をしており、その発泡倍率が2
9.4倍、独立気泡率が90%であった。得られた発泡
体を内径22mmのチューブ状に加工し、配管材本体とし
ての銅管(呼び径15A)の外周に被覆材として被覆し
た。5時間後、発泡倍率が10.5倍(収縮率35%)
まで発泡体が収縮して外径29mmの配管材本体が被覆材
で被覆された配管材が得られた。
The obtained foam has a length of 310 mm and a width of 310 mm.
mm × thickness 10 mm, it has a foaming ratio of 2
It was 9.4 times and the closed cell ratio was 90%. The obtained foam was processed into a tube shape having an inner diameter of 22 mm, and the outer circumference of a copper pipe (nominal diameter 15 A) as a piping material body was coated as a covering material. After 5 hours, the expansion ratio is 10.5 times (shrinkage rate 35%)
As a result, the foam contracted, and a piping material having an outer diameter of 29 mm covered with a coating material was obtained.

【0040】この配管材は、常温常圧下で30日放置す
ると、被覆材が発泡倍率28.5倍(収縮率97%)ま
で形状回復し、外径が41.5mmになった。また、回復
後の被覆材の圧縮永久歪みは、5.2%であった。な
お、発泡倍率、独立気泡率、および、収縮率は、以下の
ようにして求めた。
When this pipe material was left for 30 days under normal temperature and pressure, the shape of the coating material recovered to a foaming ratio of 28.5 times (shrinkage rate of 97%), and the outer diameter became 41.5 mm. The compression set of the coating material after recovery was 5.2%. The expansion ratio, the closed cell rate, and the shrinkage rate were determined as follows.

【0041】〔発泡倍率〕得られた発泡体から縦35mm
×横35mmの小片を切り出し、その小片を、水が入れら
れたメスシリンダー内に静めて、その体積Aを測定する
とともに、電子天秤を用いてその重量を測定する。そし
て、得られた発泡体の重量を、発泡体の小片の体積Aで
除し、発泡体の密度を算出し、発泡倍率=用いた樹脂の
密度/発泡密度の式により求める。
[Expansion ratio] 35 mm in length from the obtained foam
× A small piece of 35 mm in width is cut out, and the small piece is placed in a graduated cylinder containing water to measure its volume A and its weight using an electronic balance. Then, the weight of the obtained foam is divided by the volume A of the small piece of the foam, the density of the foam is calculated, and the expansion ratio = the density of the resin used / the foam density is determined.

【0042】〔独立気泡率〕空気比較式比重計1000
型(東京サイエンス社製)を用い、1〜1/2〜1気圧
法で体積B(独立気泡体積+樹脂体積)を測定する。そ
して、独立気泡率=(体積B−重量/樹脂の密度)/
(体積A−重量/樹脂の密度)の式により求める。
[Independent bubble ratio] Air-comparison specific gravity meter 1000
Using a mold (manufactured by Tokyo Science Co., Ltd.), the volume B (closed cell volume + resin volume) is measured by the 1-1 / 2-1 atmosphere method. And closed cell rate = (volume B-weight / resin density) /
It is determined by the formula (volume A-weight / resin density).

【0043】〔収縮率〕収縮率=収縮(膨張)後の体積
/元の体積の式により求める。
[Shrinkage rate] Shrinkage rate = Volume after shrinkage (expansion) / Original volume.

【0044】(実施例2)実施例1と同様の樹脂組成物
を、ベントタイプのスクリュー式押出機(口径65mm
φ、L/D=35)のホッパーから押出機の原料投入口
に供給するとともに、押出機のベント部より1,1−ジ
ククロ−1−フルオロエタンを1.5kg/hの流量で注
入し、樹脂組成物と1,1−ジククロ−1−フルオロエ
タンとを押出機内で充分溶融混練した。 そして、引き
続き110℃に設定された内径4.5mm×外径7.5mm
の押出口金から混練物を10kg/hの押出量で連続的に
押し出してチューブ状の発泡体を得た。
Example 2 The same resin composition as in Example 1 was mixed with a vent type screw extruder (caliber 65 mm).
φ, L / D = 35) is supplied from the hopper of the extruder to the raw material inlet of the extruder, and 1,1-dichloro-1-fluoroethane is injected from the vent of the extruder at a flow rate of 1.5 kg / h, The resin composition and 1,1-dichloro-1-fluoroethane were sufficiently melt-kneaded in the extruder. Then, the inner diameter is set to 110 ° C, the inner diameter is 4.5 mm, and the outer diameter is 7.5 mm.
The kneaded material was continuously extruded from the extrusion die at an extrusion rate of 10 kg / h to obtain a tubular foam.

【0045】なお、押出機のシリンダー温度は、ホッパ
ーから押出機の先端に向かって135℃、160℃、1
40℃、130℃に設定した。得られた発泡体は、内径
22mm×外径42mmのチューブ状をしていて、発泡倍率
が29.7、独立気泡率が90%であった。
The cylinder temperature of the extruder is 135 ° C., 160 ° C., 1 ° C. from the hopper toward the tip of the extruder.
The temperature was set to 40 ° C and 130 ° C. The obtained foam had a tubular shape with an inner diameter of 22 mm and an outer diameter of 42 mm, and had a foaming ratio of 29.7 and a closed cell ratio of 90%.

【0046】この発泡体を配管材本体としての銅管(呼
び径15A)の外嵌したのち、恒温層中で23℃に冷却
した。冷却によって発泡体が発泡倍率9.7倍(収縮率
33%)まで収縮し、外径28.5mmの配管材本体が被
覆材で被覆された配管材が得られた。この配管材は、常
温常圧下で50日放置すると、被覆材が発泡倍率28.
3倍(収縮率95%)まで形状回復し、外径が41mmに
なった。また、回復後の被覆材の圧縮永久歪みは、5.
0%であった。
This foam was fitted on a copper pipe (nominal diameter 15 A) as a piping material body, and then cooled to 23 ° C. in a constant temperature layer. By cooling, the foam contracted to a foaming ratio of 9.7 times (shrinkage rate of 33%), and a piping material having an outer diameter of 28.5 mm covered with a coating material was obtained. When this pipe material is left for 50 days under normal temperature and pressure, the covering material has a foaming ratio of 28.
The shape recovered to 3 times (shrinkage rate 95%) and the outer diameter became 41 mm. The compression set of the coating material after recovery was 5.
It was 0%.

【0047】(実施例3) .低密度ポリエチレン(住友化学社製 スミカセンG201) 100重量部 ・ジクミルパーオキサイド(1分半減期温度171℃) 1.0重量部 ・アゾジカルボンアミド(分解温度198℃) 15重量部 を配合してなる樹脂組成物をスクリュー押出機(口径5
0mmφ、L/D=30)の原料供給口に供給し、樹脂を
押出機内で溶融混練した。なお、押出機のシリンダーの
温度は、ホッパーから押出機先端に向かって105℃、
115℃、120℃、120℃に設定した。
(Example 3) Low-density polyethylene (Sumikasen G201 manufactured by Sumitomo Chemical Co., Ltd.) 100 parts by weight-Dicumyl peroxide (1 minute half-life temperature 171 ° C) 1.0 parts by weight-Azodicarbonamide (decomposition temperature 198 ° C) 15 parts by weight The resin composition which becomes the screw extruder (caliber 5
0 mmφ, L / D = 30) was supplied to the raw material supply port, and the resin was melt-kneaded in the extruder. The temperature of the cylinder of the extruder is 105 ° C from the hopper to the tip of the extruder,
The temperature was set to 115 ° C, 120 ° C and 120 ° C.

【0048】そして、樹脂組成物の溶融混練物を、温度
120℃に設定された厚さ3mm×幅200mmの賦形金型
から10kg/hの押出量でシート状に連続的に押出成形
した。
Then, the melt-kneaded product of the resin composition was continuously extruded into a sheet form at a rate of 10 kg / h from a shaping mold having a thickness of 3 mm and a width of 200 mm set at a temperature of 120 ° C.

【0049】つぎに、このシート状物を押出機の直後に
設けられた熱風加熱炉で、まず、170℃に加熱して樹
脂を架橋させたのち、つぎに250℃まで加熱して発泡
させた。得られた発泡体は、厚さ10mm×幅610mmの
シート状をしていて、発泡倍率が29.5倍、独立気泡
率が87%であった。
Next, this sheet material was first heated to 170 ° C. in a hot air heating furnace provided immediately after the extruder to crosslink the resin, and then heated to 250 ° C. to foam. . The obtained foam had a sheet shape with a thickness of 10 mm and a width of 610 mm, and had a foaming ratio of 29.5 times and a closed cell ratio of 87%.

【0050】その後、得られた発泡体をプレス板に挟
み、厚さが5mmになるまで圧縮し、この状態で2日間保
持した。2日後、プレス板をはずすと、発泡倍率が1
4.9倍(収縮率51%)、厚さ5mmの被覆材となっ
た。この被覆材を配管材本体としての銅管(呼び径15
A)の外周に被覆し、外径32mmの配管材を得た。
Thereafter, the obtained foam was sandwiched between press plates, compressed to a thickness of 5 mm, and held in this state for 2 days. Two days later, when the press plate is removed, the expansion ratio is 1
The coating material was 4.9 times (shrinkage rate 51%) and had a thickness of 5 mm. A copper pipe (nominal diameter 15
The outer periphery of A) was coated to obtain a piping material having an outer diameter of 32 mm.

【0051】この配管材は、常温常圧下で30日放置す
ると、被覆材が発泡倍率27.9倍(収縮率94%)ま
で形状回復し、外径が41mmになった。また、回復後の
被覆材の圧縮永久歪みは、5.0%であった。
When this pipe material was left for 30 days at room temperature and pressure, the shape of the coating material recovered to an expansion ratio of 27.9 times (shrinkage rate 94%), and the outer diameter became 41 mm. The compression set of the coating material after recovery was 5.0%.

【0052】(実施例4)実施例3で製造した発泡体に
ニードルをさし通して孔をあけることによって独立気泡
を連通させ独立気泡率が5%以下の連続気泡樹脂発泡体
を得た。この連続気泡樹脂発泡体をクリアランスが5mm
に設定されたダブルベルト間に通して圧縮するととも
に、圧縮した状態で厚さ40μmのポリエチレンフィル
ムをその両面に熱ラミネートし、厚さ5mm(収縮率50
%)の被覆材を得た。
(Example 4) A closed cell resin foam having a closed cell ratio of 5% or less was obtained by allowing the foam produced in Example 3 to pass through a needle and making holes to communicate with the foam. This open cell resin foam has a clearance of 5 mm
It is compressed by passing it between the double belts set to the above condition, and a polyethylene film with a thickness of 40 μm is thermally laminated on both sides in a compressed state, and a thickness of 5 mm (shrinkage ratio 50
%) Coating material was obtained.

【0053】この被覆材を配管材本体としての銅管(呼
び径15A)の外周に被覆し、外径32mmの配管材本体
が被覆材で被覆された配管材を得た。この配管材は、常
温常圧下で30日放置すると、被覆材が厚さ9.5mm
(収縮率95%)まで形状回復し、外径が41mmになっ
た。また、回復後の被覆材の連続気泡樹脂発泡体の圧縮
永久歪みは、1.5%であった。
This coating material was coated on the outer periphery of a copper pipe (nominal diameter 15A) as a piping material body to obtain a piping material in which the piping material body having an outer diameter of 32 mm was coated with the coating material. This piping material has a thickness of 9.5 mm when left at room temperature and pressure for 30 days.
The shape recovered to (shrinkage rate 95%) and the outer diameter became 41 mm. The compression set of the open-cell resin foam of the coating material after recovery was 1.5%.

【0054】なお、この実施例の被覆材において、発泡
体の1m当たりの体積Vが6100cm3 (61×100
×1)、発泡体の1m当たりの表面積Sが12522cm
2 〔(61×100)×2+(100×1)×2+(6
1×1)×2〕、フィルムの空気透過量Pが0.01cm
3 /cm2 ・hr・atm であることから、上記被覆材の長さ
1m当たりのV/(S×P)=48.7であった。
In the coating material of this example, the volume V per 1 m of the foam was 6100 cm 3 (61 × 100).
X1), the surface area S per 1 m of the foam is 12522 cm
2 [(61 × 100) × 2 + (100 × 1) × 2 + (6
1 × 1) × 2], the air permeability P of the film is 0.01 cm
Since it was 3 / cm 2 · hr · atm, V / (S × P) per 1 m of the length of the coating material was 48.7.

【0055】(実施例5) ・低密度ポリチレン(住友化学社製 スミカセンG201) 100重量部 ・アゾジカルボンアミド(分解温度198℃) 15重量部 ・α,α´−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン (日本油脂社製 パーブチルP) 2重量部 ・尿素 1重量部 ・酸化亜鉛 1重量部 ・オレフィン変性シリコーン油(信越化学社製 KF−412) 1重量部 を配合してなる樹脂組成物を、表面温度120℃のミキ
シングロールで5分間溶融混練した後、温度120℃、
圧力150kg/cm2 で5分間プレスして厚さ0.65mm
のシートを作製した。
(Example 5) 100 parts by weight of low-density polyethylene (Sumikasen G201 manufactured by Sumitomo Chemical Co., Ltd.) 15 parts by weight of azodicarbonamide (decomposition temperature 198 ° C.) α, α′-bis (t-butylperoxy-) m-Isopropyl) benzene (Nippon Oil & Fats Co., Ltd. perbutyl P) 2 parts by weight-Urea 1 part by weight-Zinc oxide 1 part by weight-Olefin-modified silicone oil (Shin-Etsu Chemical Co., Ltd. KF-412) 1 part by weight The composition was melt-kneaded with a mixing roll having a surface temperature of 120 ° C. for 5 minutes, and then the temperature of 120 ° C.
0.65mm thickness by pressing at 150kg / cm 2 for 5 minutes
The sheet of was produced.

【0056】このシートを縦250mm×横250mmの裁
断片に裁断し、この裁断片を4フッ化エチレン樹脂シー
ト上に置き、温度190℃のオーブン中で5分間加熱し
たところ、発泡倍率27.4倍、独立気泡率4%、縦3
35mm×横335mm×厚さ10mmの連続気泡樹脂発泡体
が得られた。この連続気泡樹脂発泡体を縦335mm×横
70mmに裁断し、この裁断片をポリエチレンフィルム製
の袋(縦360mm×横100mm×厚さ40μm)に入
れ、全体をプレス板で厚さ5mmになるまで圧縮するとと
もに、袋の開口部から真空ポンプで袋内の空気を抜き、
さらに開口部をヒートシールして被覆材を得た。
This sheet was cut into 250 mm long × 250 mm wide cut pieces, which were placed on a tetrafluoroethylene resin sheet and heated in an oven at a temperature of 190 ° C. for 5 minutes to give a foaming ratio of 27.4. Double, closed cell ratio 4%, length 3
An open-cell resin foam having a size of 35 mm × width 335 mm × thickness 10 mm was obtained. This open-cell resin foam is cut into a length of 335 mm × width of 70 mm, and the cut pieces are put in a polyethylene film bag (length of 360 mm × width of 100 mm × thickness of 40 μm), and the whole is pressed with a press plate to a thickness of 5 mm. While compressing, the air in the bag is evacuated from the opening of the bag with a vacuum pump,
Further, the opening was heat-sealed to obtain a covering material.

【0057】この被覆材を配管材本体としての銅管(呼
び径15A)の外周に被覆し、外径32mmの配管材本体
が被覆材で被覆された配管材を得た。この配管材は、常
温常圧下で30日放置すると、被覆材が厚さ9.5mm
(収縮率95%)まで形状回復し、外径が41mmになっ
た。また、回復後の被覆材の連続気泡樹脂発泡体の圧縮
永久歪みは、1.5%であった。
This coating material was coated on the outer periphery of a copper pipe (nominal diameter 15A) as a piping material body to obtain a piping material in which the piping material body having an outer diameter of 32 mm was coated with the coating material. This piping material has a thickness of 9.5 mm when left at room temperature and pressure for 30 days.
The shape recovered to (shrinkage rate 95%) and the outer diameter became 41 mm. The compression set of the open-cell resin foam of the coating material after recovery was 1.5%.

【0058】なお、この実施例の被覆材において、発泡
体の体積Vが234.5cm3 (33.5×7×1)、発
泡体の表面積Sが550cm2 〔(33.5×7)×2+
(7×1)×2+(33.5×1)×2〕、フィルムの
空気透過量Pが0.01cm3/cm2 ・hr・atm であるこ
とから、上記被覆材のV/(S×P)=42.6であっ
た。
In the coating material of this example, the volume V of the foam was 234.5 cm 3 (33.5 × 7 × 1) and the surface area S of the foam was 550 cm 2 [(33.5 × 7) × 2+
(7 × 1) × 2 + (33.5 × 1) × 2], and since the air permeation amount P of the film is 0.01 cm 3 / cm 2 · hr · atm, V / (S × P) = 42.6.

【0059】(実施例6)図3に示すような繊維集成体
としてのグラスウール製保温筒(「GWP」、密度45
kg/cm2 、内径22mm、厚さ20mm、長さ1000mm)
7を図示していないが、ポリエチレンフィルム製の袋
(縦310mm×横1100mm×厚さ40μm)に入れた
状態で、切れ目部分71を押し広げながら配管材本体と
しての銅管(呼び径15A)の外周に装着した。
Example 6 A glass wool heat insulating tube (“GWP”, density 45) as a fiber assembly as shown in FIG.
kg / cm 2 , inner diameter 22mm, thickness 20mm, length 1000mm)
Although not shown in FIG. 7, a copper pipe (nominal diameter of 15 A) as a pipe material body is pushed while expanding the cut portion 71 in a state where the bag is made of a polyethylene film (310 mm in length × 1100 mm in width × 40 μm in thickness). Attached to the outer circumference.

【0060】その後、袋の開口部より真空ポンプで袋内
の空気を抜き、さらに開口部をヒートシールして図4に
示すような銅管81が厚さ10mm(収縮率50%)の被
覆材82で被覆された外径42mmの配管材8を得た。
Thereafter, the air inside the bag is evacuated from the opening of the bag with a vacuum pump, and the opening is heat-sealed to form a copper pipe 81 having a thickness of 10 mm (shrinkage rate of 50%) as shown in FIG. A piping material 8 having an outer diameter of 42 mm and covered with 82 was obtained.

【0061】この配管材8は、常温常圧下で30日放置
すると、被覆材82が厚さ20mm(収縮率99%)まで
形状回復し、外径が62mmになった。なお、この実施例
の被覆材において、グラスウール製保温筒の体積Vが2
6376cm3 、グラスウール製保温筒の表面積Sが22
975cm2 、フィルムの空気透過量Pが0.01cm3
cm2 ・hr・atm であることから、上記被覆材のV/(S
×P)=97.47であった。
When this piping material 8 was left for 30 days under normal temperature and pressure, the coating material 82 recovered its shape to a thickness of 20 mm (shrinkage rate 99%) and had an outer diameter of 62 mm. In the coating material of this example, the volume V of the glass wool heat insulating tube was 2
6376 cm 3 , the surface area S of the glass wool insulation tube is 22
975 cm 2 , the air permeability P of the film is 0.01 cm 3 /
Since it is cm 2 · hr · atm, V / (S
× P) = 97.47.

【0062】(比較例1)発泡体をプレス板に挟んで圧
縮しなかったこと以外は、実施例3と同様にして配管材
を得た。このように実施例1〜6および比較例1で得た
配管材について、断熱性、施工性、気密性をそれぞれ調
べ、その結果を表1に示した。
(Comparative Example 1) A pipe material was obtained in the same manner as in Example 3 except that the foamed body was sandwiched between press plates and was not compressed. Thus, the piping materials obtained in Examples 1 to 6 and Comparative Example 1 were examined for heat insulation, workability, and airtightness, and the results are shown in Table 1.

【0063】なお、断熱性、施工性および気密性の評価
方法は、以下のとおりである。 〔断熱性〕JIS A 1412の保温材の熱伝導率測
定法に準拠 〔施工性〕厚さ10mmのベニヤ板に孔を開け、配管材を
通す時の施工性を官能評価し、施工容易を〇、施工困難
を×とした。
The evaluation methods for heat insulation, workability and airtightness are as follows. [Adiabatic property] In accordance with JIS A 1412 thermal conductivity measurement method for heat insulating materials [Workability] A 10 mm thick plywood board is perforated and sensory evaluated for workability when the piping material is passed through. Construction difficulty was rated as x.

【0064】〔気密性〕ベニヤ板の片側から風を送り、
反対側でベニヤ板と配管との間の隙間風を官能評価し、
隙間風なしを〇、隙間風ありを×とした。
[Airtightness] Air is blown from one side of the plywood plate,
Sensory evaluation of drafts between the plywood and piping on the other side,
There was no draft, and there was draft.

【0065】[0065]

【表1】 [Table 1]

【0066】表1に示すように、実施例1〜実施例6の
配管材は、施工性にも気密性にも優れているが、比較例
1の配管材の場合、配管材の外径と同じ径の孔の場合、
施工後の気密性に問題がなかったが、配管を通すのに時
間を要するとともに、被覆材が一部で破れた。また、配
管材より大きい径の孔の場合、施工性は良好であった
が、隙間風が確認された。
As shown in Table 1, the piping materials of Examples 1 to 6 are excellent in workability and airtightness. For holes of the same diameter,
There was no problem with the airtightness after construction, but it took time to pass the pipes and the coating material was partially torn. Further, in the case of a hole having a diameter larger than that of the piping material, workability was good, but drafts were confirmed.

【0067】なお、本発明にかかる配管材は、上記の実
施例に限定されない。たとえば、上記の実施例では、配
管材本体が全長にわたって被覆材によって被覆されてい
るが、配管材本体の壁の孔の部分にあたる部分のみ被覆
材で被覆されているものでも構わない。
The piping material according to the present invention is not limited to the above embodiment. For example, in the above embodiment, the piping material main body is covered with the covering material over the entire length, but only the portion corresponding to the hole portion of the wall of the piping material main body may be covered with the covering material.

【0068】[0068]

【発明の効果】本発明にかかる配管材は、以上のよう
に、施工時は、被覆材が収縮しているため、施工性に優
れ、施工後に空気を発泡体あるいは繊維集成体内に取り
込んで体積が膨張するので、シール材を使用しなくても
壁に穿設した孔の隙間を完全にシールすることができ
る。
As described above, the piping material according to the present invention is excellent in workability because the covering material is contracted during the construction, and after the construction, air is taken into the foam or the fiber assembly and the volume is increased. Expands, it is possible to completely seal the gap between the holes formed in the wall without using a sealing material.

【0069】したがって、配管コストを低減できる。Therefore, the piping cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる配管材の断面図である。FIG. 1 is a sectional view of a piping material according to the present invention.

【図2】図1の配管材の施工時の状態をあらわす一部切
欠断面斜視図である。
FIG. 2 is a partially cutaway perspective view showing a state of the piping material of FIG. 1 during construction.

【図3】実施例6の被覆材の原料であるグラスウール製
保温筒の斜視図である。
FIG. 3 is a perspective view of a glass wool heat insulating tube which is a raw material of a coating material of Example 6.

【図4】実施例6の配管材の断面図である。FIG. 4 is a cross-sectional view of the piping material of Example 6.

【符号の説明】[Explanation of symbols]

1 配管材 2 金属管(配管材本体) 3 被覆材(膨張前) 3´ 被覆材(膨張後) 8 配管材 81 銅管(配管材本体) 82 被覆材 1 Piping Material 2 Metal Pipe (Piping Material Main Body) 3 Coating Material (Before Expansion) 3'Coating Material (After Expansion) 8 Piping Material 81 Copper Pipe (Piping Material Main Body) 82 Coating Material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】独立気泡樹脂発泡体がその独立気泡を、発
泡体を構成する樹脂の弾性回復限界内で圧縮されてなる
遅延された形状回復性を有する被覆材(A)と、連続気
泡樹脂発泡体の外面が樹脂層で被覆されているととも
に、連続気泡が発泡体を構成する樹脂の弾性回復限界内
で圧縮されてなる遅延された形状回復性を有する被覆材
(B)と、繊維集成体の外面が樹脂層で被覆されている
とともに、繊維集成体がその弾性回復限界内で圧縮され
てなる遅延された形状回復性を有する被覆材(C)とか
らなる群より選ばれた少なくともいずれか1種の被覆材
によって配管材本体の外周面の少なくとも一部が被覆さ
れている配管材。
1. A coating material (A) having a delayed shape recovery property obtained by compressing the closed-cell resin foam within the elastic recovery limit of the resin constituting the foam, and an open-cell resin. The outer surface of the foam is covered with a resin layer, and the open cell is compressed within the elastic recovery limit of the resin forming the foam and has a delayed shape recovery property (B), and a fiber assembly. The outer surface of the body is coated with a resin layer, and at least one selected from the group consisting of a coating material (C) having a delayed shape recovery property in which the fiber assembly is compressed within its elastic recovery limit. A piping material in which at least a part of the outer peripheral surface of the piping material body is covered with one kind of coating material.
JP7253520A 1995-09-29 1995-09-29 Piping material Pending JPH0996380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7253520A JPH0996380A (en) 1995-09-29 1995-09-29 Piping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7253520A JPH0996380A (en) 1995-09-29 1995-09-29 Piping material

Publications (1)

Publication Number Publication Date
JPH0996380A true JPH0996380A (en) 1997-04-08

Family

ID=17252517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7253520A Pending JPH0996380A (en) 1995-09-29 1995-09-29 Piping material

Country Status (1)

Country Link
JP (1) JPH0996380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266246A (en) * 1999-03-15 2000-09-26 Sekisui Chem Co Ltd Sound absorbing pipe and its manufacture
KR100556149B1 (en) * 2004-01-20 2006-03-03 (주) 씨. 피코리아 assemble piping materials and manufacturing method of the same
JP2007224665A (en) * 2006-02-24 2007-09-06 Inoac Corp Fireproofing implement for through-part, and fireproofing structure of through-part in building
JP2016532829A (en) * 2013-06-06 2016-10-20 スリーエム イノベイティブ プロパティズ カンパニー Article and method for winding a polymer structure around a substrate
JP2018033272A (en) * 2016-08-26 2018-03-01 積水化学工業株式会社 Fire protection structure of compartment penetration part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266246A (en) * 1999-03-15 2000-09-26 Sekisui Chem Co Ltd Sound absorbing pipe and its manufacture
KR100556149B1 (en) * 2004-01-20 2006-03-03 (주) 씨. 피코리아 assemble piping materials and manufacturing method of the same
JP2007224665A (en) * 2006-02-24 2007-09-06 Inoac Corp Fireproofing implement for through-part, and fireproofing structure of through-part in building
JP2016532829A (en) * 2013-06-06 2016-10-20 スリーエム イノベイティブ プロパティズ カンパニー Article and method for winding a polymer structure around a substrate
US10030791B2 (en) 2013-06-06 2018-07-24 3M Innovative Properties Company Articles and methods of wrapping a substrate with a polymeric structure
JP2018033272A (en) * 2016-08-26 2018-03-01 積水化学工業株式会社 Fire protection structure of compartment penetration part

Similar Documents

Publication Publication Date Title
US6090479A (en) Shape-recoverable resin foamed product
US4101467A (en) Soft ethylenic polymer foams
JP4276489B2 (en) Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles
US6623674B1 (en) Reduced density foam articles and process for making
JPH0996380A (en) Piping material
JPH0996186A (en) Packer device
US4129530A (en) Soft ethylenic polymer foams
JP2007083717A (en) Multilayer foam molded body and its manufacturing method
EP0750973A2 (en) A resin foamed product, production method and laminated structure thereof
JPH0979437A (en) Piping method for fluid pipe and shock absorbing material used for the piping method
JPH0971675A (en) Foam and its production
JPH0931235A (en) Foam made of resin
JPH09118366A (en) Cushioning material for medicine, and medicine container
JPH10109372A (en) Moisture-proof sealing material
KR920011709A (en) Polyolefin Barrier Film to Prevent Solvent Attack on Plastic Resin
JPH09136986A (en) Foam
JP2001090217A (en) Joint execution method
JPH09132668A (en) Production of foam
JPH0911377A (en) Laminate
JPH10109373A (en) Foamed laminate
JPH09131741A (en) Manufacture of foamed body
JPH0939138A (en) Manufacture of laminate
JPH10110058A (en) Shape recovery foam and its production
JPH10292060A (en) Foam
JPH11221871A (en) Moistureproof seal material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050406