JPH09131741A - Manufacture of foamed body - Google Patents

Manufacture of foamed body

Info

Publication number
JPH09131741A
JPH09131741A JP7292687A JP29268795A JPH09131741A JP H09131741 A JPH09131741 A JP H09131741A JP 7292687 A JP7292687 A JP 7292687A JP 29268795 A JP29268795 A JP 29268795A JP H09131741 A JPH09131741 A JP H09131741A
Authority
JP
Japan
Prior art keywords
foam
liquid
decompression chamber
resin
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7292687A
Other languages
Japanese (ja)
Inventor
Takashi Oguchi
貴士 小口
Hitoshi Shirato
斉 白土
Eiji Okada
英治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7292687A priority Critical patent/JPH09131741A/en
Publication of JPH09131741A publication Critical patent/JPH09131741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To consecutively manufacture foam bodies having shape recoverability In an arbitrary direction by successively delivering and then decompression foaming foamable resin material into a decompression chamber with a passage from the main body to the outlet sealed by a desirable liquid, and taking in continuously the material foam body obtained while compressing it by liquid pressure or the like. SOLUTION: In manufacturing a foam body 9, liquid 16 is filled in the intermediate part 33 so as to seal the interstice between the inlet 31 side and the outlet 32 side for forming a decompression chamber 34 at the inlet 31 side. Next, the inner part of the main body 34 is kept in a decompressed state by means of a vacuum device 35, and in accordance with the decompression degree, the liquid level is kept higher in the inlet 31 side than in the outlet 32 side. In this condition, gas to be a foaming agent is poured into resin from a gas supply device 21 and foamable resin material 5a is extruded from the extrusion machine 2 into the main body 34 to subsequently be foamed for making a material foamed body 8a. The material foam body 8a is passed through the liquid 6 and then compressed by compression means for forming a foam body 9, furthermore, the foam body 9 obtained is continuously taken in by means of taking in rollers 4, 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発泡体の製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing a foam.

【0002】[0002]

【従来の技術】特開昭62−13441号公報に開示さ
れている再膨張性プラスチックチップのように、独立気
泡樹脂発泡体からなり、一旦収縮状態になっていて、樹
脂の弾性回復力と、気泡膜(セル膜)を通しての外部か
ら独立気泡(セル)内への空気の透過とによって徐々に
形状が回復するようになっている遅延された形状回復性
を有する発泡体が、既に提案されている。
2. Description of the Related Art Like a re-expandable plastic chip disclosed in Japanese Patent Laid-Open No. 62-13441, it is made of a closed-cell resin foam, is in a contracted state once, and has an elastic recovery force of the resin. A foam having a delayed shape recovery property has been already proposed in which the shape is gradually recovered by the permeation of air from the outside into the closed cell (cell) through the cell film (cell film). There is.

【0003】すなわち、この発泡体は、上述のように、
当初収縮状態になっていて、徐々に形状が三次元方向に
膨らみ、略収縮前の元の独立気泡樹脂発泡体の厚みまで
回復するようになっているため、収縮状態時であれば、
嵩張らず搬送や施工性に優れている。しかも、形状回復
によってシール性や断熱性も備えたものとなり、断熱材
やシール材等として有望視されている。
That is, this foam is, as described above,
Initially in a contracted state, the shape gradually swells in the three-dimensional direction, and is designed to recover to the original thickness of the closed-cell resin foam before the contraction.
It is not bulky and has excellent transportability and workability. In addition, the shape is restored to have a sealing property and a heat insulating property, and is considered to be promising as a heat insulating material or a sealing material.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の上記発
泡体の製造方法は、液化ガスを含浸させたチップ状の樹
脂材料を水蒸気によって加熱発泡させて原料発泡体を得
たのち、この原料発泡体を直ちに大気圧下で冷却し、気
泡を収縮させることによって発泡体を得るようになって
いる。
However, according to the conventional method for producing a foam, the chip-shaped resin material impregnated with a liquefied gas is heated and foamed by steam to obtain a raw foam, and then the raw foam is used. The body is immediately cooled under atmospheric pressure, and the foam is obtained by shrinking the bubbles.

【0005】したがって、連続的に製造することができ
ず、生産性に問題がある。しかも、上述のように三次元
方向にのみ形状回復する発泡体しか得ることができなか
った。
Therefore, it cannot be manufactured continuously, and there is a problem in productivity. Moreover, as described above, only a foam body which can recover the shape only in the three-dimensional direction can be obtained.

【0006】本発明は、このような事情に鑑みて、任意
の方向に形状回復性を有する発泡体を連続的に製造する
ことができる発泡体の製造方法を提供することを目的と
している。
In view of such circumstances, an object of the present invention is to provide a method for producing a foam capable of continuously producing a foam having a shape recovering property in an arbitrary direction.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために、本発明にかかる発泡体の製造方法は、入口側
に設けられた減圧室本体から出口に到る経路が所望の液
体によって封止された減圧室の、前記減圧室本体に発泡
性樹脂材料を連続的に送り込み、減圧室本体内でこの発
泡性樹脂材料を減圧発泡させて原料発泡体を得たのち、
この原料発泡体を、前記液体内に通して液体中で液圧お
よび/または所望の圧縮手段を介して任意の方向から圧
縮し、出口側から所望速度で連続的に引き取るようにし
た。
In order to achieve such an object, in the method for producing a foam according to the present invention, the path from the decompression chamber main body provided on the inlet side to the outlet is formed by a desired liquid. In the sealed decompression chamber, a foaming resin material is continuously fed to the decompression chamber body, and after foaming the foaming resin material in the decompression chamber body to obtain a raw material foam,
This raw material foam was passed through the liquid, compressed in the liquid from any direction via hydraulic pressure and / or desired compression means, and continuously drawn from the outlet side at a desired speed.

【0008】上記構成において、発泡体を構成する樹脂
としては、特に限定されないが、圧縮永久歪み(JIS
K 6767に準拠)が20%以下のもの、特に10
%以下のものが形状回復性に優れ好ましい。このような
樹脂としては、以下のような熱可塑性樹脂あるいは熱硬
化性樹脂等が挙げれる。
In the above structure, the resin constituting the foam is not particularly limited, but the compression set (JIS
20% or less, especially 10
% Or less is preferable because of excellent shape recoverability. Examples of such a resin include the following thermoplastic resins and thermosetting resins.

【0009】〔熱可塑性樹脂〕ポリエチレン,ポリプロ
ピレン,エチレン−プロピレン共重合体,エチレン−プ
ロピレン−ジエン共重合体,エチレン−酢酸ビニル共重
合体等のオレフィン系樹脂、ポリメチルアクリレート,
ポリメチルメタクレート,エチレン−エチルアクリレー
ト共重合体等のアクリル系樹脂、ブタジエン−スチレ
ン,アクリロニトリル−スチレン,スチレン,スチレン
−ブタジエン−スチレン,スチレン−イソプレン−スチ
レン,スチレン−アクリル酸等のスチレン系樹脂、アク
リロニトリル−ポリ塩化ビニル,ポリ塩化ビニル−エチ
レン等の塩化ビニル系樹脂、ポリフッ化ビニル,ポリフ
ッ化ビニリデン等のフッ化ビニル系樹脂、6−ナイロ
ン,6・6−ナイロン,12−ナイロン等のアミド樹
脂、ポリエチレンテレフタレート,ポリブチレンテレフ
タレート等の飽和エステル系樹脂、ポリカーボネート、
ポリフェニレンオキサイド、ポリアセタール、ポリフェ
ニレンスルフィド、シリコーン樹脂、熱可塑性ウレタン
樹脂、ポリエーテルエーテルケトン、ポリエーテルイミ
ド、各種エラストマーやこれらの架橋体。
[Thermoplastic Resin] Olefin resin such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-vinyl acetate copolymer, polymethyl acrylate,
Acrylic resins such as polymethylmethacrylate and ethylene-ethyl acrylate copolymers, styrene-based resins such as butadiene-styrene, acrylonitrile-styrene, styrene, styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-acrylic acid, etc. Vinyl chloride resins such as acrylonitrile-polyvinyl chloride, polyvinyl chloride-ethylene, vinyl fluoride resins such as polyvinyl fluoride and polyvinylidene fluoride, amide resins such as 6-nylon, 6,6-nylon, 12-nylon Saturated polyethylene resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate,
Polyphenylene oxide, polyacetal, polyphenylene sulfide, silicone resin, thermoplastic urethane resin, polyether ether ketone, polyether imide, various elastomers and cross-linked products thereof.

【0010】〔熱硬化性樹脂〕エポキシ系樹脂、フェノ
ール系樹脂、メラミン系樹脂、ウレタン系樹脂、イミド
系樹脂、ユリア系樹脂、シリコーン系樹脂、不飽和ポリ
エステル系樹脂の硬化物等。 〔天然樹脂〕天然ゴム、セルロース、デンプン、蛋白
質、うるしなどの樹液等なお、これらの樹脂は単独で用
いても2種以上併用しても良い。
[Thermosetting Resin] A cured product of epoxy resin, phenol resin, melamine resin, urethane resin, imide resin, urea resin, silicone resin, unsaturated polyester resin, and the like. [Natural resin] Sap of natural rubber, cellulose, starch, protein, urushi, etc. These resins may be used alone or in combination of two or more.

【0011】また、上記樹脂の中でも、特に形状回復性
に優れるものとして、オレフィン樹脂、スチレン系樹
脂、アミド系樹脂、アクリル共重合体、軟質ポリウレタ
ン、軟質塩化ビニル樹脂、ポリアセタール、シリコーン
樹脂、各種エラストマーが特に挙げられる。原料発泡体
の独立気泡率は、本発明の発泡体として必要とする回復
量により決まり、60%〜100%が好ましい。
Among the above-mentioned resins, olefin resins, styrene resins, amide resins, acrylic copolymers, soft polyurethanes, soft vinyl chloride resins, polyacetals, silicone resins and various elastomers are particularly excellent in shape recovery. Is especially mentioned. The closed cell ratio of the raw material foam is determined by the amount of recovery required for the foam of the present invention, and is preferably 60% to 100%.

【0012】本発明で使用される発泡剤としては、特に
限定されないが、たとえば、分解型の発泡剤としてアゾ
ジカルボンアミド(ADCA)、アゾビスイソブチロニ
トリル(AIBN)、ジニトロソペンタメチレンテトラ
ミン(DPT)、p−トルエンスルホニルヒドラジド
(TSH)、ベンゼンスルホニルヒドラジド(BSH)
及び、重炭酸ナトリウムなどが挙げられ、揮発型の発泡
剤として炭酸ガス、プロパン、メチルエーテル、ペンタ
ン、1,1−ジクロロ−1−フルオロエタンなどの気体
およびエーテル、石油エーテル、アセトン、エタノール
などの揮発性液体が挙げられる。
The foaming agent used in the present invention is not particularly limited. For example, decomposition type foaming agents such as azodicarbonamide (ADCA), azobisisobutyronitrile (AIBN) and dinitrosopentamethylenetetramine ( DPT), p-toluenesulfonyl hydrazide (TSH), benzenesulfonyl hydrazide (BSH)
And sodium bicarbonate and the like, and as a volatile type foaming agent, carbon dioxide gas, propane, methyl ether, pentane, gas such as 1,1-dichloro-1-fluoroethane and ether and petroleum ether, acetone, ethanol and the like. Volatile liquids may be mentioned.

【0013】また、これらの発泡剤のうち、炭酸ガス
等、透過性の大きいガスを用いることが好ましい。ま
た、これら発泡剤と共に、発泡速度を調節する発泡助剤
を添加してもよい。因に、発泡速度を速める発泡助剤と
して、ステアリン酸亜鉛,ステアリン酸カルシウム等の
金属石けん、亜鉛華,硝酸亜鉛等の無機塩、アジピン
酸,シュウ酸等の酸類が挙げられ、発泡速度を遅延する
発泡助剤として、マレイン酸,フタル酸等の有機酸、無
水マレイン酸,無水フタル酸等の有機酸無水物、ジブチ
ル錫マレート,塩化錫等の錫化合物が挙げられる。
Of these foaming agents, it is preferable to use a gas having high permeability such as carbon dioxide gas. Further, a foaming aid for controlling the foaming rate may be added together with these foaming agents. As foaming aids for increasing the foaming speed, metal soaps such as zinc stearate and calcium stearate, inorganic salts such as zinc white and zinc nitrate, and acids such as adipic acid and oxalic acid are used, and the foaming speed is retarded. Examples of the foaming assistant include organic acids such as maleic acid and phthalic acid, organic acid anhydrides such as maleic anhydride and phthalic anhydride, and tin compounds such as dibutyltin malate and tin chloride.

【0014】発泡助剤は、使用する樹脂,発泡剤,助剤
の種類によって異なるが、通常熱可塑性樹脂100重量
部に対して0.1〜2重量部程度の添加割合で添加され
ることが好ましい。すなわち、添加量が0.1重量部以
下では、効果が小さく、2重量部以上では飽和状態とな
り、それ以上の添加効果がなくなる恐れがある。
The foaming aid varies depending on the type of resin, foaming agent and auxiliary used, but is usually added in an addition ratio of about 0.1 to 2 parts by weight with respect to 100 parts by weight of the thermoplastic resin. preferable. That is, when the amount is 0.1 part by weight or less, the effect is small, and when the amount is 2 parts by weight or more, the state is saturated, and there is a possibility that the effect of further addition may be lost.

【0015】また、上記発泡体には、充填剤、補強繊
維、着色剤、紫外線吸収剤、酸化防止剤、難燃剤等を必
要に応じて混合されていても構わない。充填剤として
は、たとえば、炭酸カルシウム、タルク、クレー、酸化
マグネシウム、酸化亜鉛、カーボンブラック、二酸化ケ
イ素、酸化チタン、ガラス粉、ガラスビーズ等が挙げら
れる。
Further, the above foam may be mixed with a filler, a reinforcing fiber, a colorant, an ultraviolet absorber, an antioxidant, a flame retardant and the like, if necessary. Examples of the filler include calcium carbonate, talc, clay, magnesium oxide, zinc oxide, carbon black, silicon dioxide, titanium oxide, glass powder, glass beads and the like.

【0016】補強繊維としては、たとえば、ガラス繊
維、炭素繊維等が挙げられる。着色剤としては、たとえ
ば、酸化チタン等の顔料が挙げられる。酸化防止剤とし
ては、一般に用いれるものであれば、特に限定されず、
たとえば、テトラキス〔メチレン(3,5−ジ−t−ブ
チル−4−ヒドロキシハイドロシンナメート)〕メタ
ン、チオジプロピオン酸ジラウリル、1,1,3−トリ
ス(2−メチル−4−ヒドロキシ−5−t−ブチルフェ
ニル)ブタン等が挙げられる。
Examples of the reinforcing fibers include glass fibers and carbon fibers. Examples of the coloring agent include pigments such as titanium oxide. The antioxidant is not particularly limited as long as it is generally used,
For example, tetrakis [methylene (3,5-di-t-butyl-4-hydroxyhydrocinnamate)] methane, dilauryl thiodipropionate, 1,1,3-tris (2-methyl-4-hydroxy-5- t-butylphenyl) butane and the like.

【0017】難燃剤としては、ヘキサブロモフェニルエ
ーテル,デカブロモジフェニルエーテル等の臭素系難燃
剤、ポリリン酸アンモニウム、トリメチルホスフェー
ト、トリエチルホスフェート等の含リン酸系難燃剤、メ
ラミン誘導体、無機系難燃剤等の1種又は2種以上の混
合物が挙げられる。減圧室本体内の圧力は、特に限定さ
れないが、絶対圧力で0.05〜0.9atm 程度が好ま
しく、0.05〜0.5atm 程度がより好ましい。
Examples of the flame retardant include bromine flame retardants such as hexabromophenyl ether and decabromodiphenyl ether, phosphoric acid flame retardants such as ammonium polyphosphate, trimethyl phosphate and triethyl phosphate, melamine derivatives and inorganic flame retardants. Examples include one kind or a mixture of two or more kinds. The pressure inside the decompression chamber body is not particularly limited, but is preferably about 0.05 to 0.9 atm in absolute pressure, more preferably about 0.05 to 0.5 atm.

【0018】すなわち、0.05atm を下回ると、圧縮
時に樹脂自体の変形の大部分が塑性変形となり、形状回
復性が損なわれ、0.9atm を超えると大気圧に戻して
も充分な回復量が得られず、結果として形状回復性も損
なわれる。減圧室の減圧室本体と出口とを封止する液体
としては、原料発泡体を構成する樹脂を溶解しない液体
であれば、水等、特に限定されないが、比重の大きい液
体の方が好ましい。
That is, if it is less than 0.05 atm, most of the deformation of the resin itself becomes plastic deformation at the time of compression and the shape recoverability is impaired, and if it exceeds 0.9 atm, a sufficient recovery amount is obtained even if the pressure is returned to atmospheric pressure. Not obtained, and as a result, the shape recoverability is also impaired. The liquid for sealing the decompression chamber main body and the outlet of the decompression chamber is not particularly limited, such as water, as long as it does not dissolve the resin forming the raw material foam, but a liquid having a large specific gravity is preferable.

【0019】すなわち、比重が大きいと、減圧室本体側
と、出口側との液面差を小さくすることができ、装置自
体をコンパクトにすることができる。なお、発泡体製造
時の液体の温度は、原料発泡体を構成する樹脂の軟化点
(非晶性樹脂についてはガラス転移点、結晶性樹脂につ
いては融点を軟化点とする)以下である。すなわち、液
体を軟化点以上の温度にして圧縮を行った場合、抜重後
の発泡体の形状回復能がなくなる恐れがある。
That is, when the specific gravity is large, the liquid level difference between the decompression chamber main body side and the outlet side can be made small, and the apparatus itself can be made compact. The temperature of the liquid during the production of the foam is equal to or lower than the softening point of the resin constituting the raw material foam (the glass transition point for the amorphous resin, the melting point for the crystalline resin is the softening point). That is, when the liquid is compressed at a temperature equal to or higher than the softening point, there is a possibility that the shape recovery ability of the foamed body after weight removal may be lost.

【0020】液圧以外の圧縮手段としては、無端ベル
ト、ロール、絞りダイ等で直接圧縮するもの、などが挙
げられ、これらを組み合わて用いることもできる。な
お、絞りダイで圧縮する方法の場合、液体はシリコーン
オイル等の潤滑性を備えたものが好ましい。また、液体
中の原料発泡体に所望の張力を与えるために、減圧室本
体の出口付近に原料発泡体を挟むようにピンチローラを
設けておくことが好ましい。
Examples of the compression means other than the hydraulic pressure include direct compression with an endless belt, a roll, a drawing die and the like, and these may be used in combination. In the case of the method of compressing with a drawing die, the liquid preferably has a lubricating property such as silicone oil. Further, in order to apply a desired tension to the raw material foam in the liquid, it is preferable to provide a pinch roller near the outlet of the decompression chamber body so as to sandwich the raw material foam.

【0021】[0021]

【発明の実施の形態】以下に、本発明の実施の形態を図
面を参照しつつ詳しく説明する。図1は、本発明の実施
の形態をあらわしている。本発明の製造方法は、図1に
示すような製造装置1を用いて行うことができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. The manufacturing method of the present invention can be performed using the manufacturing apparatus 1 as shown in FIG.

【0022】すなわち、この製造装置1aは、押出機2
と、減圧室3aと、引取りローラ4,4とを備えてい
る。押出機2は、発泡剤となるガスを樹脂中に供給する
ガス供給装置21を有し、その出口が減圧室3aの入口
31に臨んでいて、押出機2から連続的に押出成形され
る発泡性樹脂材料5aが直ちに減圧室3a内に入るよう
になっている。
That is, the manufacturing apparatus 1a includes the extruder 2
And the decompression chamber 3a and the take-up rollers 4 and 4. The extruder 2 has a gas supply device 21 for supplying a gas serving as a foaming agent into the resin, and its outlet faces the inlet 31 of the decompression chamber 3a, and foaming is continuously extruded from the extruder 2. The resin material 5a immediately enters the decompression chamber 3a.

【0023】減圧室3aは、出口32が入口31より低
い位置に設けられているとともに、入口31から出口3
2に到る経路としての中間部33が入口31および出口
32より低くなっている。そして、中間部33に入口3
1と出口32との間を封止するように所定量の液体6が
入れられるようになっている。
The decompression chamber 3a is provided with the outlet 32 at a position lower than the inlet 31, and also from the inlet 31 to the outlet 3.
The intermediate portion 33 as a route to reach 2 is lower than the inlet 31 and the outlet 32. And the entrance 3 to the intermediate portion 33
A predetermined amount of liquid 6 is introduced so as to seal between 1 and the outlet 32.

【0024】すなわち、液体6で封止された入口側の部
分が減圧室本体34となっている。減圧室本体34に
は、真空装置35が接続されていて、液封された減圧室
本体34内を所望の圧力に減圧できるようになっている
とともに、原料発泡体8aを挟むようにピンチローラ3
7,37が設けられている。また、中間部33には、最
下端部付近に、減圧室3aの中間部33内の液体6を増
減させることができる液量調整装置36が設けられてい
るとともに、図示していないが、無端ベルト、ローラ、
テンター等の規制手段や、ピンチローラ、絞りダイ等の
圧縮手段を必要に応じて設けることができるようになっ
ている。
That is, the inlet side portion sealed with the liquid 6 is the decompression chamber body 34. A vacuum device 35 is connected to the decompression chamber main body 34 so as to reduce the pressure inside the liquid-sealed decompression chamber main body 34 to a desired pressure, and also to pinch the raw material foam 8a.
7, 37 are provided. Further, the intermediate portion 33 is provided with a liquid amount adjusting device 36 capable of increasing / decreasing the amount of the liquid 6 in the intermediate portion 33 of the decompression chamber 3a in the vicinity of the lowermost end portion, and although not shown, there is no end Belts, rollers,
A restricting means such as a tenter and a compressing means such as a pinch roller and a drawing die can be provided as needed.

【0025】引取りローラ4,4は、その引取り速度を
自由に調整できるようになっている。したがって、この
製造装置1aを用いれば、つぎのようにして所望の発泡
体9を製造することができる。
The take-up rollers 4, 4 can freely adjust their take-up speed. Therefore, by using this manufacturing apparatus 1a, the desired foam 9 can be manufactured as follows.

【0026】 減圧室3aの入口31側と出口側32
との間を封止するように中間部33に所望量の液体6を
満たし、入口31側に減圧室本体34をつくる。 真空装置35によって減圧室本体34内を所望の減
圧状態にする。この減圧度に応じて、液体6は、入口側
31の方が出口側32より高くなる。
An inlet 31 side and an outlet side 32 of the decompression chamber 3a
The intermediate portion 33 is filled with a desired amount of the liquid 6 so as to seal the space between and, and the decompression chamber main body 34 is formed on the inlet 31 side. The inside of the decompression chamber body 34 is brought into a desired decompression state by the vacuum device 35. The liquid 6 becomes higher on the inlet side 31 than on the outlet side 32 depending on the degree of pressure reduction.

【0027】 発泡剤となるガスをガス供給装置21
から樹脂中に注入して発泡性樹脂材料5aを押出機2か
ら入口31を介して減圧室本体34内に押し出す。これ
により、発泡性樹脂材料5aが減圧室本体34内で発泡
して原料発泡体8aとなる。すなわち、発泡性樹脂材料
5aを大気圧以下に減圧された空間で発泡させることに
より、得られた原料発泡体8aの気泡内圧はほぼ減圧さ
れた空間の圧力とほぼ等しくなっている。
The gas serving as the foaming agent is supplied to the gas supply device 21.
And the foamable resin material 5a is extruded from the extruder 2 into the decompression chamber main body 34 through the inlet 31. As a result, the foamable resin material 5a foams in the decompression chamber body 34 to become the raw material foam 8a. That is, by foaming the expandable resin material 5a in the space depressurized to the atmospheric pressure or lower, the internal pressure of the bubbles of the obtained raw material foam 8a is substantially equal to the pressure of the depressurized space.

【0028】 原料発泡体8aを中間部33の液体6
内を通して、原料発泡体8aに液体6内で所望の圧縮手
段によって所望方向から圧縮して原料発泡体8aを構成
する樹脂の弾性変形領域内で収縮させて発泡体9を得
る。 得られた発泡体9を引取りローラ4,4で連続的に
引き取る。
The raw material foam 8 a is mixed with the liquid 6 in the intermediate portion 33.
Through the inside, the raw material foam 8a is compressed in the liquid 6 from a desired direction by a desired compression means and contracted in the elastic deformation region of the resin forming the raw material foam 8a to obtain the foam 9. The foam 9 thus obtained is continuously taken up by the take-up rollers 4 and 4.

【0029】因に、液体6中で、図2に示すように、原
料発泡体8aの幅方向の両端部81,81を、たとえ
ば、無端ベルト82,82と受板83とによって上下か
ら挟持して幅方向に収縮しないように規制するととも
に、引取りロール4,4による引取り速度を調整してピ
ンチローラ37,37と引取りローラ4,4との間の原
料発泡体8aおよび発泡体9に所定の張力を加え原料発
泡体8aがその進行方向に収縮しないように規制する
と、液体6の圧力によって原料発泡体8aが厚み方向の
みに収縮した発泡体9を得ることができる。
As shown in FIG. 2, both ends 81, 81 of the raw material foam 8a in the width direction are clamped from above and below by the endless belts 82, 82 and the receiving plate 83, for example, in the liquid 6. Of the raw material foam 8a and the foam 9 between the pinch rollers 37, 37 and the take-up rollers 4, 4 by adjusting the take-up speed by the take-up rolls 4, 4 so as not to shrink in the width direction. When a predetermined tension is applied to the raw material foam 8a so that the raw material foam 8a is not contracted in the traveling direction, the raw material foam 8a can be contracted only in the thickness direction by the pressure of the liquid 6 to obtain the foam 9.

【0030】また、引取りロール4,4による引取り速
度を調整してピンチローラ37,37と引取りローラ
4,4との間の原料発泡体8aおよび発泡体9に所定の
張力を加え原料発泡体8aがその進行方向に収縮しない
ように規制するだけにすると、液体6の圧力によって原
料発泡体8aの進行方向を除く周囲から均等に収縮した
発泡体9を得ることができる。
Further, by adjusting the take-up speed by the take-up rolls 4 and 4, a predetermined tension is applied to the raw material foam 8a and the foam 9 between the pinch rollers 37 and 37 and the take-up rollers 4 and 4, and the raw material is applied. If only the foam 8a is restricted so as not to shrink in the traveling direction, the foam 9 uniformly contracted by the pressure of the liquid 6 from the periphery excluding the traveling direction of the raw material foam 8a can be obtained.

【0031】さらに、引取りローラ4,4による引取り
速度を遅くしてピンチローラ37,37と引取りローラ
4,4との間の原料発泡体8aおよび発泡体9に所定の
張力を加えないようにすると、進行方向に収縮した、す
なわち、三次元的に収縮した発泡体9を得ることができ
る。
Further, the take-up speed by the take-up rollers 4 and 4 is slowed so that a predetermined tension is not applied to the raw material foam 8a and the foam 9 between the pinch rollers 37 and 37 and the take-up rollers 4 and 4. By doing so, it is possible to obtain the foam 9 that contracts in the traveling direction, that is, contracts three-dimensionally.

【0032】また、液体6として潤滑性を有するシリコ
ーンオイル等を用いるとともに、図3に示すように、液
体6中に所望の断面形状の絞りダイ7を設ければ、原料
発泡体8aを絞りダイ7の断面形状に収縮した発泡体9
を得ることができる。この製造方法によれば、以上のよ
うに、所望の方向に収縮した遅延された形状回復性を有
する発泡体9を連続的に得ることができる。すなわち、
用途に応じた所望形状の発泡体9を生産性よく製造する
ことができる。
Further, if a silicone oil having lubricity is used as the liquid 6 and a drawing die 7 having a desired sectional shape is provided in the liquid 6 as shown in FIG. 3, the raw material foam 8a is drawn. Foam 9 shrunk to 7 cross-sectional shape
Can be obtained. According to this manufacturing method, as described above, it is possible to continuously obtain the foam 9 that is contracted in the desired direction and has the delayed shape recovery property. That is,
It is possible to produce the foam 9 having a desired shape according to the use with high productivity.

【0033】また、原料発泡体を減圧下で発泡させて得
るため、高倍率の発泡体を得ることができるとともに、
減圧度を変えることにより、発泡倍率も容易に変更でき
る。しかも、減圧発泡のあと、直ちに液圧をかけるた
め、大気圧下で収縮させる場合に比べ原料発泡体を早期
に収縮させることができ生産性がより向上する。また、
減圧室本体34部分のシールを液体6によって行ってい
るため、シール部材の磨耗等の問題もなく、製造装置1
aのメンテナンスも容易である。
Further, since the raw material foam is obtained by foaming it under reduced pressure, it is possible to obtain a high-magnification foam and
The foaming ratio can be easily changed by changing the degree of vacuum. Moreover, since the liquid pressure is applied immediately after the foaming under reduced pressure, the raw material foam can be contracted earlier than in the case of contracting under the atmospheric pressure, and the productivity is further improved. Also,
Since the liquid 6 is used to seal the decompression chamber main body 34, there is no problem such as wear of the seal member, and the manufacturing apparatus 1
Maintenance of a is also easy.

【0034】図4は本発明の製造方法の他の実施の形態
をあらわしている。図4に示すように、この製造方法で
は、予備発泡された予備発泡体または熱分解型発泡剤を
含有する発泡原反を発泡性樹脂材料5bと、減圧室3b
の入口38の手前にピンチローラ11,11を有し、入
口38内周面に潤滑剤が塗布されるか、入口38内周面
がフッ素樹脂等の摩擦係数の小さい樹脂で形成されるな
どしてシール性を保持するようにするとともに、減圧室
3bの入口38側内壁面に沿ってヒータ39が設けられ
た製造装置1bとを用いる以外は、上記の実施の形態と
同様にして発泡体9を得ることができる。
FIG. 4 shows another embodiment of the manufacturing method of the present invention. As shown in FIG. 4, in this manufacturing method, a foamed raw material containing a pre-foamed pre-foamed body or a pyrolytic foaming agent is used as a foaming resin material 5b and a decompression chamber 3b.
Has a pinch roller 11, 11 in front of the inlet 38 of the, and a lubricant is applied to the inner peripheral surface of the inlet 38, or the inner peripheral surface of the inlet 38 is formed of a resin having a small friction coefficient such as a fluororesin. To maintain the sealing property and to use the manufacturing apparatus 1b in which the heater 39 is provided along the inner wall surface of the decompression chamber 3b on the inlet 38 side, in the same manner as in the above embodiment. Can be obtained.

【0035】すなわち、予備発泡された予備発泡体また
は熱分解型発泡剤を含有する発泡原反からなる発泡性樹
脂材料5bは、ピンチロール11,11によって所定速
度で減圧室3bの入口38から所望の減圧度に減圧され
た減圧室本体34内へ送りこまれるのであるが、発泡性
樹脂材料5bが予備発泡体であれば、減圧室本体34側
に送り込まれるとヒータ39によって樹脂の軟化点付
近、発泡原反であれば、発泡剤の分解温度まで加熱され
たのち減圧下でそれぞれ発泡し原料発泡体8bとなり、
以下同様にして発泡体9を得ることができる。
That is, the expandable resin material 5b made of a pre-foamed pre-foamed material or a foamed raw material containing a pyrolytic foaming agent is desired from the inlet 38 of the decompression chamber 3b at a predetermined speed by the pinch rolls 11, 11. Although it is fed into the decompression chamber main body 34 decompressed to the decompression degree, if the expandable resin material 5b is a pre-foamed body, when it is fed to the decompression chamber main body 34 side, the heater 39 causes the vicinity of the softening point of the resin, If it is a raw material foam, it is heated to the decomposition temperature of the foaming agent and then foamed under reduced pressure to form the raw material foam 8b.
The foam 9 can be obtained in the same manner.

【0036】[0036]

【実施例】つぎに、本発明の実施例を詳しく説明する。 (実施例1)減圧室3aの全長が20mである図1に示
す装置1aを用いて以下のとおりに発泡体9を製造し
た。
EXAMPLES Next, examples of the present invention will be described in detail. (Example 1) Foam 9 was manufactured as follows using apparatus 1a shown in FIG. 1 in which decompression chamber 3a has a total length of 20 m.

【0037】まず、減圧室3aの中間部33に、液体6
として水をはるとともに、減圧室本体34部分を絶対圧
で0.2atm に減圧した。また、この時の入口31側と
出口側32の水位差は、約8mであった。
First, the liquid 6 is placed in the intermediate portion 33 of the decompression chamber 3a.
As the water was poured, the pressure reducing chamber main body 34 was depressurized to 0.2 atm by absolute pressure. The water level difference between the inlet 31 side and the outlet side 32 at this time was about 8 m.

【0038】つぎに、低密度ポリエチレン(三菱油化社
製 ZC30 融点110℃)に樹脂100g当たり炭
酸ガスを1.2g圧入し、押出機2の直径2.0mmの円
形口金から連続的に減圧室本体34内に発泡性樹脂材料
5aとして押出成形し、減圧室本体34内で発泡させ、
直径10mm、発泡倍率29倍、独立気泡率85%の原料
発泡体8aを連続的に得るとともに、この原料発泡体8
aを中間部33の水中を通して出口32側に導入し、2
58m/分(圧縮所要時間5秒)で引取りロール4,4
によって引き取って発泡体9を連続的に得た。
Next, 1.2 g of carbon dioxide gas per 100 g of resin was injected into low-density polyethylene (ZC30, melting point 110 ° C., manufactured by Mitsubishi Petrochemical Co., Ltd.), and the decompression chamber was continuously discharged from the circular die of the extruder 2 having a diameter of 2.0 mm. Extrusion molding as a foamable resin material 5a in the main body 34, foaming in the decompression chamber main body 34,
A raw material foam 8a having a diameter of 10 mm, a foaming ratio of 29 times, and a closed cell rate of 85% is continuously obtained.
a through the water of the intermediate portion 33 to the outlet 32 side,
Take-up rolls 4, 4 at 58 m / min (compression time 5 seconds)
Then, the foamed body 9 was continuously obtained by taking out.

【0039】得られた発泡体9は製造直後その直径が
4.5mmであったが、その後もガス透過によって1時間
程で直径4mmまで収縮した。そして、この発泡体9を常
温常圧下30日間放置したところ、直径約9mmまで二次
元的に形状回復した。
The obtained foam 9 had a diameter of 4.5 mm immediately after its production, but thereafter it contracted to a diameter of 4 mm in about 1 hour due to gas permeation. When the foam 9 was left standing for 30 days at room temperature and pressure, the shape was two-dimensionally recovered to a diameter of about 9 mm.

【0040】(実施例2)減圧室3bの全長が20mで
ある図4に示す装置1bを用いて以下のとおりに発泡体
9を製造した。まず、減圧室3bの中間部33に、液体
6としてジメチルシリコーンオイル(東レ・ダウコーニ
ング・シリコーン社製、比重0.97)をはるととも
に、減圧室本体34部分を絶対圧で0.3atm に減圧し
た。そして、この時の入口38側と出口側の液面差は、
約7mであった。また、ヒータ39としては赤外線ヒー
タを用い、ヒータ39の加熱温度としては、240℃に
設定した。
Example 2 Foam 9 was manufactured as follows using the apparatus 1b shown in FIG. 4 in which the total length of the decompression chamber 3b was 20 m. First, dimethyl silicone oil (manufactured by Toray Dow Corning Silicone Co., Ltd., specific gravity 0.97) is applied as liquid 6 to the intermediate portion 33 of the decompression chamber 3b, and the decompression chamber main body 34 is adjusted to 0.3 atm in absolute pressure. The pressure was reduced. The liquid level difference between the inlet 38 side and the outlet side at this time is
It was about 7 m. An infrared heater was used as the heater 39, and the heating temperature of the heater 39 was set to 240 ° C.

【0041】つぎに、 ・低密度ポリエチレン(住友化学社製 G201) 100重量部 ・アゾジカルボンアミド 5重量部 ・酸化亜鉛 2重量部 を配合してなる樹脂組成物を押出機により、幅200m
m、厚さ3mmに押し出した後、750kv×4Mrad の条
件で電子線架橋を行って発泡原反を得た。
Next, 100 parts by weight of low-density polyethylene (G201 manufactured by Sumitomo Chemical Co., Ltd.), 5 parts by weight of azodicarbonamide, and 2 parts by weight of zinc oxide were used to prepare a resin composition having a width of 200 m by an extruder.
After extruding to a thickness of 3 mm and a thickness of 3 mm, electron beam crosslinking was carried out under the condition of 750 kv × 4 Mrad to obtain a foamed raw fabric.

【0042】この発泡原反を100℃に温め、発泡性樹
脂材料5bとしてピンチロール11,11によって3m
/分の速度で減圧室3bの入口38から減圧室本体34
内に送り込んで減圧室本体34内で減圧発泡させ、幅6
00mm、厚さ9mm、発泡倍率29倍、独立気泡率85%
の原料発泡体8bを得るとともに、減圧室本体34の出
口側に設けたピンチロール37,37で9m/分の線速
で液体6中に送り込むとともに、液体6中に設けた入口
の断面形状が9mm×600mmで出口の断面形状が5mm×
400mmの図3に示すような絞りダイ7を通してこの原
料発泡体8bを収縮させたのち、引取りロール4,4に
よって7m/分の速度で連続的に引き取って断面形状が
5mm×400mmの発泡体を得た。
This foamed raw fabric is heated to 100 ° C., and as the foamable resin material 5b, 3 m is obtained by the pinch rolls 11 and 11.
From the inlet 38 of the decompression chamber 3b to the decompression chamber main body 34 at a speed of 1 / min.
It is sent into the inside of the decompression chamber main body 34 to be decompressed and foamed, and the width 6
00 mm, thickness 9 mm, expansion ratio 29 times, closed cell rate 85%
In addition to obtaining the raw material foam 8b, the pinch rolls 37, 37 provided on the outlet side of the decompression chamber body 34 are fed into the liquid 6 at a linear velocity of 9 m / min, and the sectional shape of the inlet provided in the liquid 6 9mm x 600mm, the cross-sectional shape of the exit is 5mm x
This raw material foam 8b was shrunk through a 400 mm drawing die 7 as shown in FIG. 3, and then continuously taken by the take-up rolls 4 and 4 at a speed of 7 m / min to obtain a foam having a cross-sectional shape of 5 mm × 400 mm. Got

【0043】得られた発泡体を5mm×400mm×600
mmに裁断し、常温常圧下で30日間放置したところ、
7.5mm×550mm×730mmまで三次元的に形状が回
復した。
The obtained foam is 5 mm × 400 mm × 600
When cut into mm and left at room temperature and pressure for 30 days,
The shape recovered three-dimensionally up to 7.5 mm x 550 mm x 730 mm.

【0044】(比較例1) ・スチレン−アクリロニトリル共重合体(旭化成工業社製、スライラックAS7 69) 100重量部 ・タルク(日本タルク社製 MS) 0.2重量部 を配合してなる樹脂組成物を、スクリュー押出機(φ5
0mm、L/D=30)のホッパーに投入し、押出機内で
溶融混練した。なお、押出機のシリンダー温度は、ホッ
パーから押出機先端に向かって190℃、205℃、2
20℃、220℃に設定しておいた。
(Comparative Example 1) 100 parts by weight of styrene-acrylonitrile copolymer (Asahi Kasei Kogyo Co., Ltd., Slylac AS7 69) Talc (MS of Nippon Talc Co., Ltd.) 0.2 parts by weight resin composition Screw extruder (φ5
It was put into a hopper of 0 mm and L / D = 30) and melt-kneaded in the extruder. The cylinder temperature of the extruder is 190 ° C, 205 ° C, 2 ° C from the hopper toward the tip of the extruder.
It was set to 20 ° C and 220 ° C.

【0045】つぎに、スクリュー先端部に設けられた発
泡材注入部から、発泡剤としてトリクロロモノフルオロ
メタンを上記樹脂組成物100g当たり32gの割合で
投入し、引続き100℃になるまで充分に冷却し、直径
φ0.8mmのノズル多数個を有した口金からストランド
状に5kg/hの押出量で押し出し、直ちに冷却シ、カッ
ターにて直径1mm、長さ3mmのペレット状未発泡粒子を
得た。
Next, trichloromonofluoromethane was added as a foaming agent at a ratio of 32 g per 100 g of the resin composition from a foaming material injection portion provided at the tip of the screw, and then sufficiently cooled to 100 ° C. Then, it was extruded in a strand shape from a die having a large number of nozzles having a diameter of 0.8 mm at an extrusion rate of 5 kg / h, and immediately cooled, and a pellet-shaped unexpanded particle having a diameter of 1 mm and a length of 3 mm was obtained with a cutter.

【0046】このペレット状未発泡粒子を室温にて熟成
放置後、ゲージ圧0.3kg/cm2 のスチーム雰囲気で4
5秒間加熱し発泡させたのち、得られた発泡体を10℃
に冷却したところ、発泡体が10分後3次元方向に自然
収縮して形状回復性の発泡体が得られた。
The pelletized unexpanded particles were aged at room temperature and then left in a steam atmosphere with a gauge pressure of 0.3 kg / cm 2.
After heating for 5 seconds to foam, the resulting foam is heated to 10 ° C.
After cooling for 10 minutes, the foam spontaneously shrank in the three-dimensional direction to obtain a shape-recoverable foam.

【0047】得られた発泡体は、発泡倍率が35.5倍
で、30日間常温、常圧で放置したところ、発泡倍率が
164倍まで3次元的に形状が回復した。また、独立気
泡率は92%であった。なお、上記実施例1,2および
比較例1において、発泡倍率、独立気泡率は、以下のよ
うにして求めた。
The foamed product thus obtained had an expansion ratio of 35.5 and was left for 30 days at room temperature and normal pressure, and the foaming ratio was restored three-dimensionally up to 164 times. Further, the closed cell rate was 92%. In Examples 1 and 2 and Comparative Example 1, the expansion ratio and the closed cell ratio were determined as follows.

【0048】〔発泡倍率〕得られた発泡体から縦35mm
×横35mmの小片を切り出し、その小片を、水が入れら
れたメスシリンダー内に沈めて、その体積Aを測定する
とともに、電子天秤を用いてその重量を測定する。そし
て、得られた発泡体の重量を、発泡体の小片の体積Aで
除し、発泡体の密度を算出し、発泡倍率=用いた樹脂の
密度/発泡密度の式により求める。
[Expansion ratio] 35 mm in length from the obtained foam
× A small piece of 35 mm in width is cut out, the small piece is submerged in a measuring cylinder containing water, and its volume A is measured, and its weight is measured using an electronic balance. Then, the weight of the obtained foam is divided by the volume A of the small piece of the foam, the density of the foam is calculated, and the expansion ratio = the density of the resin used / the foam density is determined.

【0049】〔独立気泡率〕空気比較式比重計1000
型(東京サイエンス社製)を用い、1〜1/2〜1気圧
法で体積B(独立気泡体積+樹脂体積)を測定する。そ
して、独立気泡率=(体積B−重量/樹脂の密度)/
(体積A−重量/樹脂の密度)の式により求める。
[Independent bubble ratio] Air-comparison specific gravity meter 1000
Using a mold (manufactured by Tokyo Science Co., Ltd.), the volume B (closed cell volume + resin volume) is measured by the 1-1 / 2-1 atmosphere method. And closed cell rate = (volume B-weight / resin density) /
It is determined by the formula (volume A-weight / resin density).

【0050】[0050]

【発明の効果】本発明にかかる発泡体の製造方法は、以
上のように構成されているので、所望方向に収縮した遅
延した形状回復性を有する発泡体を連続して製造するこ
とができる。また、原料発泡体を減圧下で発泡させて得
るため、高倍率の発泡体を得ることができるとともに、
液量を変えるなどして収縮度も容易に変更できる。
EFFECTS OF THE INVENTION Since the method for producing a foam according to the present invention is constructed as described above, it is possible to continuously produce a foam having a delayed shape recovery property which shrinks in a desired direction. Further, since the raw material foam is obtained by foaming under reduced pressure, it is possible to obtain a high-magnification foam,
The degree of shrinkage can be easily changed by changing the liquid volume.

【0051】しかも、減圧発泡のあと、直ちに液圧をか
けるため、大気圧下で収縮させる場合に比べ原料発泡体
を早期に収縮させる。すなわち、断熱材やシール材やい
ろいろな用途に使用できる発泡体を安価に生産性よく製
造することができる。また、減圧室本体部分のシールを
液体によって行っているため、シール部材の磨耗等の問
題もなく、製造装置のメンテナンスも容易である。
Moreover, since the liquid pressure is applied immediately after the foaming under reduced pressure, the raw material foam is contracted earlier than when the foaming is contracted under the atmospheric pressure. That is, a heat insulating material, a sealing material, and a foam that can be used for various purposes can be manufactured at low cost with high productivity. Further, since the depressurizing chamber main body is sealed with a liquid, there is no problem such as wear of the seal member, and maintenance of the manufacturing apparatus is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる発泡体の製造方法の1例をあら
わす説明図である。
FIG. 1 is an explanatory view showing an example of a method for producing a foam according to the present invention.

【図2】図1の製造方法の圧縮方法の1例をあらわす説
明図である。
FIG. 2 is an explanatory diagram showing an example of a compression method of the manufacturing method of FIG.

【図3】図1の製造方法の圧縮方法の他例をあらわす説
明図である。
FIG. 3 is an explanatory diagram showing another example of the compression method of the manufacturing method of FIG.

【図4】本発明にかかる圧縮装置の他の例をあらわす説
明図である。
FIG. 4 is an explanatory diagram showing another example of the compression device according to the present invention.

【符号の説明】[Explanation of symbols]

1a 製造装置 1b 製造装置 3a 減圧室 3b 減圧室 31 入口 32 出口 33 中間部(経路) 34 減圧室本体 38 入口 5a 発泡性樹脂材料 5b 発泡性樹脂材料 6 液体 7 絞りダイ(圧縮手段) 8a 原料発泡体 8b 原料発泡体 9 発泡体 1a Manufacturing apparatus 1b Manufacturing apparatus 3a Decompression chamber 3b Decompression chamber 31 Inlet 32 Outlet 33 Intermediate part (path) 34 Decompression chamber main body 38 Inlet 5a Expandable resin material 5b Expandable resin material 6 Liquid 7 Drawing die (compressing means) 8a Raw material foaming Body 8b Raw material foam 9 Foam

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】入口側に設けられた減圧室本体から出口に
到る経路が所望の液体によって封止された減圧室の、前
記減圧室本体に発泡性樹脂材料を連続的に送り込み、減
圧室本体内でこの発泡性樹脂材料を減圧発泡させて原料
発泡体を得たのち、この原料発泡体を、前記液体内に通
して液体中で液圧および/または所望の圧縮手段を介し
て任意の方向から圧縮し、出口側から所望速度で連続的
に引き取ることを特徴とする発泡体の製造方法。
1. A decompression chamber in which a path from a decompression chamber main body provided on an inlet side to an outlet is sealed by a desired liquid, and a foamable resin material is continuously fed into the decompression chamber main body to form a decompression chamber. After the foamable resin material is foamed in the main body under reduced pressure to obtain a raw material foam, the raw material foam is passed through the liquid, and in the liquid, liquid pressure and / or any desired compression means is applied to the raw material foam. A method for producing a foam, which comprises compressing from a direction and continuously withdrawing from an outlet side at a desired speed.
JP7292687A 1995-11-10 1995-11-10 Manufacture of foamed body Pending JPH09131741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7292687A JPH09131741A (en) 1995-11-10 1995-11-10 Manufacture of foamed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7292687A JPH09131741A (en) 1995-11-10 1995-11-10 Manufacture of foamed body

Publications (1)

Publication Number Publication Date
JPH09131741A true JPH09131741A (en) 1997-05-20

Family

ID=17785006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7292687A Pending JPH09131741A (en) 1995-11-10 1995-11-10 Manufacture of foamed body

Country Status (1)

Country Link
JP (1) JPH09131741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053850A (en) * 2001-08-10 2003-02-26 Inoac Corp Melamine foam molded object, method for manufacturing the same and washing appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053850A (en) * 2001-08-10 2003-02-26 Inoac Corp Melamine foam molded object, method for manufacturing the same and washing appliance

Similar Documents

Publication Publication Date Title
US4154785A (en) Method of manufacturing a tough board of thermoplastic resin foam having integral skins and a dense intermediate layer
US6090479A (en) Shape-recoverable resin foamed product
US4518557A (en) Process for skin foam
US4832770A (en) Method of manufacturing foamed polypropylene resin sheet
JPH0447615B2 (en)
JPS6216166B2 (en)
CA2024814C (en) Method and apparatus for extruding a thermoplastic plastics material foam
US4747983A (en) Process and apparatus for manufacturing foamed structures with integral skin
KR100250372B1 (en) Process for the production of products of light cellular plastic with closed cells
US3422172A (en) Production of plastic foam sheet
US3248462A (en) Method for producing foamed sheet material having essentially equal tensile properties
JPH09131741A (en) Manufacture of foamed body
EP0750973A2 (en) A resin foamed product, production method and laminated structure thereof
JPH0996380A (en) Piping material
JP3006378B2 (en) Vehicle interior molded product and method of manufacturing the same
JPH0931235A (en) Foam made of resin
JPH01145133A (en) Manufacture of synthetic resin molding having skin material
JPH07125031A (en) Production of thermoplastic resin foam
JPS6050130B2 (en) Manufacturing method of laminated sheet
JPH09132668A (en) Production of foam
JPS6330140B2 (en)
JP2832208B2 (en) Method for producing thermoplastic resin foam
DE10105591A1 (en) Production of composite material, e.g. for interior vehicle parts, involves extruding uncrosslinked, high-melt strength polypropylene foam through a sheet die and laminating with thermoplastic polyolefin elastomer
JP3281497B2 (en) Polypropylene resin foam
JPS60262621A (en) Preparation of synthetic resin expanded laminate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040204