JP3603675B2 - Thermoelectric module and manufacturing method thereof - Google Patents

Thermoelectric module and manufacturing method thereof Download PDF

Info

Publication number
JP3603675B2
JP3603675B2 JP17623499A JP17623499A JP3603675B2 JP 3603675 B2 JP3603675 B2 JP 3603675B2 JP 17623499 A JP17623499 A JP 17623499A JP 17623499 A JP17623499 A JP 17623499A JP 3603675 B2 JP3603675 B2 JP 3603675B2
Authority
JP
Japan
Prior art keywords
thermoelectric element
type thermoelectric
type
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17623499A
Other languages
Japanese (ja)
Other versions
JP2001007413A (en
Inventor
洋二 浦野
策雄 鎌田
浩一 吉岡
健太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17623499A priority Critical patent/JP3603675B2/en
Publication of JP2001007413A publication Critical patent/JP2001007413A/en
Application granted granted Critical
Publication of JP3603675B2 publication Critical patent/JP3603675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱電モジュール及びその製造方法に関するものである。
【0002】
【従来の技術】
従来の熱電モジュールは、ゾーンメルト法等で溶融育成したインゴット状の熱電材料を切断して断面角状で棒状の熱電素子を作り、所定の導通パターンになるよう、熱電素子と導電性材料からなる電極とを半田付け等で接合して作成されていた。このようにして製造された熱電モジュールは、熱電素子の形状が一定である。したがって、インゴットの時点での熱的、機械的特性にバラツキがなければ熱的特性、電気的な伝導性あるいは機械的性能が一定であるといった利点を有している。(特公昭38−25925号公報参照)
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の技術による熱電モジュールや熱電モジュールの製造方法においては、熱電素子が脆弱な材料にて形成されているために、インゴット状の熱電材料を切断して熱電素子部材を製造するとき、あるいは棒状の熱電素子部材を組み立てたものに切れ目を入れるときに、熱電素子となるその熱電素子部材に割れが生じやすく、熱電素子の製造工程において製品の歩留まり低下を生じるという問題があった。
【0004】
ところで、熱電素子部材の製造工程における割れ不良対策としては、例えば、本出願人において出願されて特開平9−293909として開示されている、略棒状に形成され束ねられた複数の熱電素子部材を長手方向に対して横断するように切断するとともに、この切断面に電極を形成してなる熱電モジュール及びその製造方法がある。しかしこの場合、熱電素子部材を束ねて切断するためにはその棒状の外形寸法を取り扱い可能な大きさとする必要があり、熱電素子部材を細径化し熱電効率を高くすることが実質上困難であった。
【0005】
本発明は、上記事由に鑑みてなしたもので、その目的とするところは、容易に割れを防止して切断可能であって熱電素子の細線化も容易な熱電モジュール及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の熱電モジュールの製造方法にあっては、隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュールの製造方法であって、略棒状のP型の熱電素子部材及びN型の熱電素子部材を、複数本のものがそれぞれ平行となるよう絶縁性基板の表面に接着してP型熱電素子基板及びN型熱電素子基板を形成し、そのP型熱電素子基板及びN型熱電素子基板の複数を積層させて積層長尺体を形成し、同積層長尺体を長手方向と直交する方向に切断してそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極を設けることを特徴としている。
【0007】
この場合、隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュールが、まず、絶縁性基板の表面に、複数本の略棒状のP型の熱電素子部材及びN型の熱電素子部材を、それぞれが平行となるよう接着されてP型熱電素子基板及びN型熱電素子基板が形成され、次いで、そのP型熱電素子基板及びN型熱電素子基板の複数が積層されて積層長尺体が形成され、その後、長手方向と直交する方向に同積層長尺体が切断されてそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極が設けられ製造される。
【0008】
また、隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュールの製造方法であって、長尺板状のP型の熱電素子部材及びN型の熱電素子部材を絶縁性基板の表面に接着するとともにその各熱電素子部材を長手方向にそれぞれ分離するよう複数本の平行溝を刻設してP型熱電素子基板及びN型熱電素子基板を形成し、そのP型熱電素子基板及びN型熱電素子基板の複数を積層させて積層長尺体を形成し、同積層長尺体を長手方向と直交する方向に切断してそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極を設けることも好ましい。
【0009】
この場合、まず、絶縁性基板の表面に、長尺板状のP型の熱電素子部材及びN型の熱電素子部材をそれぞれ接着されるとともに、複数本の平行溝がその各熱電素子部材を長手方向にそれぞれ分離するよう刻設されてP型熱電素子基板及びN型熱電素子基板が形成され、次いで、そのP型熱電素子基板及びN型熱電素子基板の複数が積層されて積層長尺体が形成され、その後、長手方向と直交する方向に同積層長尺体が切断されてそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極が設けられ製造される。
【0010】
そして、上記熱電素子部材は、その内部構造がP型熱電素子基板及びN型熱電素子基板の長手方向に略一致した平行のへき開面を有することが好ましい。
【0011】
この場合、P型熱電素子基板及びN型熱電素子基板の長手方向に略一致した平行の、熱電素子部材の内部構造へき開面に沿って通電される。
【0012】
また、上記熱電素子部材が溶製材料であることが好ましい。
【0013】
この場合、熱電モジュールは、溶製材料による複数本の略棒状または長尺板状の、P型の熱電素子部材及びN型の熱電素子部材が、上記絶縁性基板表面に接着されて熱電素子基板が形成されて、その切断面間に電極が設けられ製造される。
【0014】
また、上記絶縁性基板を、熱可塑性樹脂等の加熱溶融材によるものとするとともに、上記電極を配設した後に熱電モジュールを加熱してその絶縁性基板を除去することが好ましい。
【0015】
この場合、熱電モジュールは、その熱電素子部材の切断面間に電極の配設された後に、熱可塑性樹脂等の加熱溶融材にて形成された絶縁性基板が加熱にて除去され製造される。
【0016】
また、上記絶縁性基板を、ワックス材にて形成するのが好ましい。
【0017】
この場合、熱電モジュールは、その熱電素子部材の切断面間に電極の配設された後に、加熱溶融材としてのワックス材にて形成された絶縁性基板が加熱にて除去される。
【0018】
また、上記P型熱電素子基板及びN型熱電素子基板を、P型の熱電素子部材及びN型の熱電素子部材同士が隣接するよう相互に対をなして複数を積層させるのが好ましい。
【0019】
この場合、熱電モジュールは、P型の熱電素子部材及びN型の熱電素子部材同士が隣接し且つ相互に対をなすよう複数が積層された熱電素子基板による積層長尺体を切断した、P型の熱電素子部材とN型の熱電素子部材との切断面間に電極が設けられ製造される。
【0020】
【発明の実施の形態】
図1、2は、本発明の請求項1、3、4及び8に対応する第1の実施の形態を示し、図3は、本発明の請求項2及び8に対応する第2の実施の形態を示し、図4は、本発明の請求項5、6及び8に対応する第3の実施の形態を示し、図5は、本発明の請求項7及び8に対応する第4の実施の形態を示している。
【0021】
[第1の実施の形態]
図1は、第1の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は熱電素子部材、(b)は熱電素子基板、(c)は積層長尺体、(d)は熱電モジュールである。図2は、同実施の形態の熱電モジュールの製造方法の熱電素子部材の説明図である。
【0022】
この実施の形態の熱電モジュールの製造方法は、隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュール1の製造方法であって、略棒状のP型の熱電素子部材6及びN型の熱電素子部材7を、複数本のものがそれぞれ平行となるよう絶縁性基板5の表面に接着してP型熱電素子基板3及びN型熱電素子基板4を形成し、そのP型熱電素子基板3及びN型熱電素子基板4の複数を積層させて積層長尺体2を形成し、同積層長尺体2を長手方向と直交する方向に切断してそのP型の熱電素子部材6とN型の熱電素子部材7との切断面間に電極8を設けている。
【0023】
又、該実施の形態の熱電モジュールの製造方法は、熱電素子部材6,7は、その内部構造がP型熱電素子基板3及びN型熱電素子基板4の長手方向に略一致した平行のへき開面(図示せず)を有してもいる。又、該実施の形態の熱電モジュールの製造方法は、熱電素子部材6,7が溶製材料であることとしてもいる。
【0024】
熱電モジュール1は、電極8,8の表面上に熱交換基板が取着されて、熱電素子方式の発電装置や熱ポンプ等の熱電装置を形成するもので、上記の製造方法にて製造されて、P型及びN型の熱電素子の電気抵抗を容易に低減化し所定の電源装置に対する特性を効果的に合致させることができる。詳しくは、この熱電モジュール1は、図1(a)に示すような、所定長さの長い角棒状のP型の熱電素子部材6及びN型の熱電素子部材7を用いて製造される。
【0025】
熱電素子部材6,7は、P型の熱電素子部材6には鉛・テルル系化合物、N型の熱電素子部材7にはビスマス・テルル系化合物が使用される。この場合、上記原料を溶融させて所定温度にて撹拌させ、一方向性凝固を行った、図2(a)に示す多結晶の熱電素子インゴットAを切り出した、図2(b)に示すような長尺板状の溶製材料Bが、図2(c)に示すように角棒状に切断され用いられる。この溶製材料による場合、より良好な熱電特性が得られる反面、結晶のへき開面による機械的強度の低下が問題となる。そのため、所定の大きさの外形をもった角棒状の熱電素子部材6,7とする必要がある。
【0026】
この熱電素子部材6,7は、後述するP型熱電素子基板3及びN型熱電素子基板4の長手方向である矢印Cにて示す方向に向け通電されるが、その長手方向に略一致した平行の、熱電素子部材6,7の内部構造へき開面に沿って通電されるのでより良好な熱電特性を得ることができる。なお、熱電素子部材6,7は、上記によるものの他、熱電素子材料粉末の焼結若しくは押し出し加工等により、P型及びN型の角柱状の熱電素子部材として作製しても良い。
【0027】
P型熱電素子基板3及びN型熱電素子基板4は、この場合、ポリイミドやパリレン等の絶縁材による板材にて形成された絶縁性基板5の一面に、上記の長い角棒状の熱電素子部材6,7の複数本を、所定間隔をもって、例えば半導体封止材料に用いられるエポキシ系樹脂による接着剤にて接着して形成される。なお、隣り合う熱電素子部材6または7の相互間の間隔は、図1(d)に示すように、絶縁性基板5の板厚寸法と略同一とすることにて後述する電極8を45度の角度をもって設けることができて、最短距離にて接続させて隣接する熱電素子間の相互の熱伝達の調和を図ることができる。
【0028】
この場合、積層長尺体2は、図1(c)に示すように、複数のP型熱電素子基板3及びN型熱電素子基板4が交互にそれぞれ積層し、上記のエポキシ系樹脂による接着剤にて接着されて形成されている。なお、本発明においては、P型熱電素子基板3及びN型熱電素子基板4の積層の順番は、上記の交互によるもの以外に、P型の熱電素子部材6及びN型の熱電素子部材7同士及び、P型熱電素子基板3及びN型熱電素子基板4の絶縁性基板5,5同士が隣接するよう相互に対をなして設けるようにしても良いが、この場合、各熱電素子部材6,7の表面を予めポリイミドやパリレン等の絶縁材でコーティングした後に絶縁性基板5へ接着する必要がある。
【0029】
次に、固着後の上記積層長尺体2を長手方向に対して直交(横断)する方向に切断し、図1(d)に示すような所定長さのブロック状をした後、P型の熱電素子部材6とN型の熱電素子部材7の表裏両側の切断面を電極形成面とするため、これらの電極形成面の全面にスパッタリング処理により、CuやNiあるいは半田等を付着させて電極形成面のメタライズを行う。そのスパッタ膜の膜厚は0.1〜5μm程度の薄膜にしている。次いで電気めっきにより、スパッタ膜の上にCuめっき膜或いはNiめつき膜を積層してさらに20〜200μm程度の厚膜とした後、このめっき膜表面にクリーム半田を塗布して電極8,8…をその一面を当接させて160〜170℃に加熱して、P型の熱電素子部材6とN型の熱電素子部材7とがその電極8を通じて交互に直列に通電できるよう、表裏両側の切断面に同図に示すように電極8,8…を半田付けにより固着させて設ける。
【0030】
上記の熱電モジュールは、隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュール1が、まず、絶縁性基板5の表面に、複数本の略棒状のP型の熱電素子部材6及びN型の熱電素子部材7を、それぞれが平行となるよう接着されてP型熱電素子基板3及びN型熱電素子基板4が形成される。次いで、そのP型熱電素子基板3及びN型熱電素子基板4の複数が積層されて積層長尺体2が形成される。その後、長手方向と直交する方向に同積層長尺体2が、例えばソーイングマシン等の鋸刃を使用して切断される。このとき、各熱電素子部材が絶縁性基板5に安定状態となるよう保持されており、略棒状の熱電素子部材に曲げ力が加わること無く切断される。その後、そのP型の熱電素子部材6とN型の熱電素子部材7との切断面間に電極8が設けられ熱電モジュール1が製造される。
【0031】
したがって、以上説明した熱電モジュール1の製造方法によると、略棒状の熱電素子部材に曲げ力が加わること無く切断されるので、容易に割れを防止して切断可能であって熱電素子の細線化も容易に行うことができる。
【0032】
そして、P型熱電素子基板3及びN型熱電素子基板4の長手方向に略一致した平行の、熱電素子部材の内部構造へき開面に沿って通電されるので、良好な熱電特性を達成できて、性能の向上した熱電モジュールを得ることができる。また、熱電モジュール1は、溶製材料による複数本の略棒状の、P型の熱電素子部材6及びN型の熱電素子部材7が、上記絶縁性基板5表面に接着されて熱電素子基板3,4が形成されて、その切断面間に電極8が設けられ製造されるので、より良好な熱電特性を達成できる。
【0033】
[第2の実施の形態]
図3は、第2の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は熱電素子部材の、(b)は熱電素子基板、(c)は積層長尺体、(d)は熱電モジュールである。
【0034】
この実施の形態の熱電モジュールの製造方法は、熱電素子部材の構成と製造工程の一部とが第1の実施の形態と異なるもので、他の構成と手順とは第1の実施の形態のものと同一で、該実施の形態の熱電モジュールの製造方法は、隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュール1の製造方法であって、長尺板状のP型の熱電素子部材9及びN型の熱電素子部材10を絶縁性基板5の表面に接着するとともにその各熱電素子部材を長手方向にそれぞれ分離するよう複数本の平行溝11、11…を刻設してP型熱電素子基板3及びN型熱電素子基板4を形成し、そのP型熱電素子基板3及びN型熱電素子基板4の複数を積層させて積層長尺体2を形成し、同積層長尺体2を長手方向と直交する方向に切断してそのP型の熱電素子部材9とN型の熱電素子部材10との切断面間に電極8,8…を設けている。
【0035】
詳しくは、この熱電モジュール1は、図3(a)に示すように、所定長さの長尺板状のP型の熱電素子部材9及びN型の熱電素子部材10を用いて製造される。この熱電素子部材9,10は、P型の熱電素子部材9には鉛・テルル系化合物、N型の熱電素子部材10にはビスマス・テルル系化合物が使用されるが、この場合、上記原料を溶融させて所定温度にて撹拌させ一方向性凝固を行って得られた、図2(a)に示すような多結晶の熱電素子インゴットAを切り出して、図2(b)に示すような長尺板状とした溶製材料Bが使用される。
【0036】
すなわちこのものにおいては、まず、図3(a)に示すように、長尺板状の熱電素子部材9,10を絶縁性基板5の表面に直接接着し、次いで、図3(b)に示すように、その各熱電素子部材9,10を長手方向にそれぞれ分離するよう複数本の平行溝11、11…を刻設してP型熱電素子基板3及びN型熱電素子基板4を形成する。したがって、この場合、熱電素子インゴットを棒状とする必要がないため、溶製材料の問題である結晶のへき開面による熱電素子部材の機械的強度の低下の影響をより低く抑えることができて、より良好な熱電特性をもった熱電モジュール1を得ることができる。
【0037】
その後、図3(c)に示すように、上記P型熱電素子基板3及びN型熱電素子基板4の複数が積層されて積層長尺体2が形成された後、その長手方向と直交する方向に同積層長尺体2が、例えばソーイングマシン等の鋸刃を使用して切断され、図3(d)に示すように、そのP型の熱電素子部材9とN型の熱電素子部材10との切断面間に電極8が設けられ熱電モジュール1が製造される。
【0038】
したがって、以上説明した熱電モジュール1の製造方法によると、まず、絶縁性基板5の表面に、長尺板状のP型の熱電素子部材9及びN型の熱電素子部材10をそれぞれ接着されるとともに、複数本の平行溝11がその各熱電素子部材を長手方向にそれぞれ分離するよう刻設されてP型熱電素子基板3及びN型熱電素子基板4が形成され、次いで、そのP型熱電素子基板3及びN型熱電素子基板4の複数が積層されて積層長尺体2が形成され、その後、長手方向と直交する方向に同積層長尺体2が切断されてそのP型の熱電素子部材9とN型の熱電素子部材10との切断面間に電極8が設けられ製造されるので、溶製材料の問題である結晶のへき開面による、熱電素子部材の機械的強度の低下の影響をより低く抑えることができ、以て、容易に割れを防止して熱電素子の細線化を達成し、より良好な熱電特性を容易に得ることができる。
【0039】
[第3の実施の形態]
図4は、第3の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は絶縁性基板の除去前、(b)は絶縁性基板の除去後を示す。
【0040】
この実施の形態の熱電モジュールの製造方法は、絶縁性基板の構成と製造工程の一部とが第1の実施の形態と異なるもので、他の構成と手順とは第1の実施の形態のものと同一で、該実施の形態の熱電モジュールの製造方法は、絶縁性基板5を、熱可塑性樹脂等の加熱溶融材によるものとするとともに、上記電極8を配設した後に熱電モジュール1を加熱してその絶縁性基板5を除去している。また、該実施の形態の熱電モジュールの製造方法は、絶縁性基板5を、ワックス材にて形成してもいる。
【0041】
詳しくは、この熱電モジュール1は、加熱溶融材に相当するワックス材として、日化精工(株)製の商品名がイエローワックスと呼ばれているものを板状化し形成された絶縁性基板5を使用して、図4(a)に示すように熱電モジュール1を形成した後、この熱電モジュール1を、その内部温度が大略70℃に維持されている加熱炉内に収容し、図4(b)に示すように、絶縁性基板5を溶融させて除去させている。
【0042】
上記のワックス材においては、一般に60〜70℃に加熱することにて溶融させることができ、電極8,8…を半田付けにて固着させた状態の熱電モジュール1の半田付け部分へ過大な熱的ストレスを加えることなく除去することができて、作業性とともに品質面において優れる。また、熱電モジュールがその熱電素子部材9,10の切断面間に電極8,8…の配設された後に、加熱溶融材にて形成された絶縁性基板5が加熱にて除去されて、図4(b)に示すように熱電素子間が空気層を介して分離される。そのため、熱電素子相互間の熱伝達を少なくできて熱電モジュール1全体の熱電効率を高めることができる。
【0043】
したがって、以上説明した熱電モジュール1の製造方法によると、熱電モジュール1は、その熱電素子部材6,7の切断面間に電極8,8…の配設された後に、熱可塑性樹脂等の加熱溶融材にて形成された絶縁性基板5が加熱にて除去され製造されるので、熱電素子相互間の熱伝達を少なくでき、以て、全体の熱電効率を高めることができる。また、その熱電素子部材6,7の切断面間に電極8,8…の配設された後に、加熱溶融材としてのワックス材にて形成された絶縁性基板5が加熱にて除去されるので、低い加熱溶融温度にて絶縁性基板5を除去できて、作業性とともに品質面において優れる。
【0044】
[第4の実施の形態]
図5は、第4の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は積層長尺体、(d)は熱電モジュールである。
【0045】
この実施の形態の熱電モジュールの製造方法は、熱電素子基板の構成と製造工程の一部とが第1の実施の形態と異なるもので、他の構成と手順とは第1の実施の形態のものと同一で、該実施の形態の熱電モジュールの製造方法は、P型熱電素子基板3及びN型熱電素子基板4を、P型の熱電素子部材6及びN型の熱電素子部材7同士が隣接するよう相互に対をなして複数を積層させている。
【0046】
詳しくは、この熱電モジュール1は、図5(a)に示すように、例えば長い角棒状の熱電素子部材6,7の複数本を、その熱電素子部材6,7の外形幅より僅かに広い間隔をもって接着してP型熱電素子基板3及びN型熱電素子基板4を形成し、そのP型の熱電素子部材6及びN型の熱電素子部材7同士を相互がかみ合うようにして積層長尺体2を形成した後、この積層長尺体2を長手方向に対して直交(横断)する方向に切断し、図5(b)に示すように、所定長さのブロック状をした後、P型の熱電素子部材6とN型の熱電素子部材7の表裏両側の切断面のメタライズを行う。そのメタライズされたスパッタ膜の上に、Cuめっき膜或いはNiめつき膜を積層してさらに20〜200μm程度の厚膜とした後、P型の熱電素子部材6とN型の熱電素子部材7とがその電極8を通じて交互に直列に通電できるよう、表裏両側の切断面に同図に示すように電極8,8…を半田付けにより固着させて設ける。
【0047】
このとき、P型の熱電素子部材6及びN型の熱電素子部材7同士が隣接し且つ相互に対をなすよう複数が積層された熱電素子基板3,4による積層長尺体2を切断した、P型の熱電素子部材6とN型の熱電素子部材7との切断面間に、図5(b)に示すように、電極8,8…を同一方向に最短距離をもって接続させて設けることができ、簡単な構成によって容易に隣接する熱電素子間の相互の熱伝達の調和を図ることができる。
【0048】
したがって、以上説明した熱電モジュール1の製造方法によると、熱電モジュール1は、P型の熱電素子部材6及びN型の熱電素子部材7同士が隣接し且つ相互に対をなすよう複数が積層された熱電素子基板3,4による積層長尺体2を切断した、P型の熱電素子部材6とN型の熱電素子部材7との切断面間に電極8,8…が設けられ製造されるので、電極8を簡単な形状のものを使用して形成でき以て、より組立の作業性において優れる。
【0049】
なお、本発明の熱電モジュールの製造方法は、上記によるもの以外に、勿論、熱電素子部材を溶製材料の長尺板状のものとして平行溝を刻設して分離させたもの、あるいは、絶縁性基板を加熱溶融材によるものとして組立後除去させたものを含むことは言うまでもない。
【0050】
【発明の効果】
本発明の熱電モジュール及びその製造方法は、上述の実施態様の如く実施されて、隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュールが、まず、絶縁性基板の表面に、複数本の略棒状のP型の熱電素子部材及びN型の熱電素子部材を、それぞれが平行となるよう接着されてP型熱電素子基板及びN型熱電素子基板が形成され、次いで、そのP型熱電素子基板及びN型熱電素子基板の複数が積層されて積層長尺体が形成され、その後、長手方向と直交する方向に同積層長尺体が切断されてそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極が設けられ製造されるので、容易に割れを防止して切断可能であって熱電素子の細線化も容易に行うことができる。
【0051】
また、まず、絶縁性基板の表面に、長尺板状のP型の熱電素子部材及びN型の熱電素子部材をそれぞれ接着されるとともに、複数本の平行溝がその各熱電素子部材を長手方向にそれぞれ分離するよう刻設されてP型熱電素子基板及びN型熱電素子基板が形成され、次いで、そのP型熱電素子基板及びN型熱電素子基板の複数が積層されて積層長尺体が形成され、その後、長手方向と直交する方向に同積層長尺体が切断されてそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極が設けられ製造されるので、溶製材料の問題である結晶のへき開面による、熱電素子部材の機械的強度の低下の影響をより低く抑えることができ、以て、容易に割れを防止して熱電素子の細線化を達成し、より良好な熱電特性を容易に得ることができる。
【0052】
そして、P型熱電素子基板及びN型熱電素子基板の長手方向に略一致した平行の、熱電素子部材の内部構造へき開面に沿って通電されるので、良好な熱電特性を達成できて、性能の向上した熱電モジュールを得ることができる。
【0053】
また、熱電モジュールは、溶製材料による複数本の略棒状または長尺板状の、P型の熱電素子部材及びN型の熱電素子部材が、上記絶縁性基板表面に接着されて熱電素子基板が形成されて、その切断面間に電極が設けられ製造されるので、より良好な熱電特性を達成できる。
【0054】
また、熱電モジュールは、その熱電素子部材の切断面間に電極の配設された後に、熱可塑性樹脂等の加熱溶融材にて形成された絶縁性基板が加熱にて除去され製造されるので、熱電素子相互間の熱伝達を少なくでき、以て、全体の熱電効率を高めることができる。
【0055】
また、熱電モジュールは、その熱電素子部材の切断面間に電極の配設された後に、加熱溶融材としてのワックス材にて形成された絶縁性基板が加熱にて除去されるので、低い加熱溶融温度にて絶縁性基板を除去できて、作業性とともに品質面において優れる。
【0056】
また、熱電モジュールは、P型の熱電素子部材及びN型の熱電素子部材同士が隣接し且つ相互に対をなすよう複数が積層された熱電素子基板による積層長尺体を切断した、P型の熱電素子部材とN型の熱電素子部材との切断面間に電極が設けられ製造されるので、電極を簡単な形状のものを使用して形成でき以て、より組立の作業性において優れる。
【0057】
【図面の簡単な説明】
【図1】本発明の、第1の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は熱電素子部材、(b)は熱電素子基板、(c)は積層長尺体、(d)は熱電モジュールである。
【図2】同実施の形態の熱電モジュールの製造方法の熱電素子部材の説明図である。
【図3】第2の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は熱電素子部材の、(b)は熱電素子基板、(c)は積層長尺体、(d)は熱電モジュールである。
【図4】第3の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は絶縁性基板の除去前、(b)は絶縁性基板の除去後を示す。
【図5】第4の実施の形態の熱電モジュールの製造方法の、手順の概要を示す図で、(a)は積層長尺体、(d)は熱電モジュールである。
【符号の説明】
1 熱電モジュール
2 積層長尺体
3 P型熱電素子基板
4 N型熱電素子基板
5 絶縁性基板
6 熱電素子部材(P型)
7 熱電素子部材(N型)
8 電極
9 熱電素子部材(P型)
10 熱電素子部材(N型)
11 平行溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric module and a method for manufacturing the same.
[0002]
[Prior art]
A conventional thermoelectric module is made of a thermoelectric element and a conductive material so as to form a rod-shaped thermoelectric element having a square cross section by cutting an ingot-shaped thermoelectric material melt-grown by a zone melt method or the like, so as to have a predetermined conduction pattern. It was made by bonding electrodes to the electrodes by soldering or the like. In the thermoelectric module manufactured in this way, the shape of the thermoelectric element is constant. Therefore, if there is no variation in the thermal and mechanical characteristics at the time of the ingot, there is an advantage that the thermal characteristics, electrical conductivity or mechanical performance are constant. (See Japanese Patent Publication No. 38-25925)
[0003]
[Problems to be solved by the invention]
However, in the method for manufacturing a thermoelectric module or a thermoelectric module according to the above-described conventional technique, since the thermoelectric element is formed of a fragile material, when manufacturing a thermoelectric element member by cutting an ingot-shaped thermoelectric material, Alternatively, when a cut is made in the assembly of the rod-shaped thermoelectric element members, the thermoelectric element members that become the thermoelectric elements are liable to be cracked, resulting in a problem that the production yield of the thermoelectric element is reduced.
[0004]
By the way, as a countermeasure against cracking failure in the manufacturing process of the thermoelectric element member, for example, a plurality of thermoelectric element members formed in a substantially rod shape and bundled, which is disclosed in Japanese Patent Application Laid-Open No. 9-293909, is filed. There is a thermoelectric module formed by cutting so as to cross the direction and forming electrodes on the cut surface, and a method of manufacturing the same. However, in this case, in order to bundle and cut the thermoelectric element members, it is necessary to make the rod-shaped outer dimensions manageable, and it is substantially difficult to reduce the diameter of the thermoelectric element members to increase the thermoelectric efficiency. Was.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermoelectric module that can be easily cut and prevented from cracking and that can easily be thinned, and a method for manufacturing the same. It is in.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in a method of manufacturing a thermoelectric module according to the present invention, both sides of a P-type thermoelectric element and an N-type thermoelectric element which are arranged adjacent to each other are connected by electrodes. A method of manufacturing a thermoelectric module, comprising: bonding a substantially rod-shaped P-type thermoelectric element member and an N-type thermoelectric element member to a surface of an insulating substrate such that a plurality of the thermoelectric element members are parallel to each other; An element substrate and an N-type thermoelectric element substrate are formed, a plurality of the P-type thermoelectric element substrates and a plurality of the N-type thermoelectric element substrates are laminated to form a laminated elongate body, and the laminated elongate body is oriented in a direction orthogonal to the longitudinal direction. And an electrode is provided between the cut surfaces of the P-type thermoelectric element member and the N-type thermoelectric element member.
[0007]
In this case, the thermoelectric module that connects the P-type thermoelectric element and the N-type thermoelectric element, which are disposed adjacent to each other, with electrodes on both front and rear sides, is first provided on the surface of the insulating substrate with a plurality of substantially thermoelectric modules. A rod-shaped P-type thermoelectric element member and an N-type thermoelectric element member are bonded so as to be parallel to each other to form a P-type thermoelectric element substrate and an N-type thermoelectric element substrate, and then the P-type thermoelectric element substrate and A plurality of N-type thermoelectric element substrates are laminated to form a laminated elongate body, and thereafter, the laminated elongate body is cut in a direction orthogonal to the longitudinal direction, and the P-type thermoelectric element member and the N-type thermoelectric element are cut. An electrode is provided between the cut surfaces of the member and is manufactured.
[0008]
The present invention also relates to a method for manufacturing a thermoelectric module in which P-type thermoelectric elements and N-type thermoelectric elements arranged adjacent to each other are connected by electrodes on both front and rear surfaces thereof, comprising a long plate-shaped P-type thermoelectric element. The element member and the N-type thermoelectric element member are adhered to the surface of the insulating substrate, and a plurality of parallel grooves are formed so as to separate the respective thermoelectric element members in the longitudinal direction. A thermoelectric element substrate is formed, a plurality of the P-type thermoelectric element substrates and a plurality of the N-type thermoelectric element substrates are laminated to form a laminated elongate body, and the laminated elongate body is cut in a direction orthogonal to the longitudinal direction. It is also preferable to provide an electrode between the cut surfaces of the P-type thermoelectric element member and the N-type thermoelectric element member.
[0009]
In this case, first, a long plate-shaped P-type thermoelectric element member and an N-type thermoelectric element member are respectively adhered to the surface of the insulating substrate, and a plurality of parallel grooves extend the respective thermoelectric element members. The P-type thermoelectric element substrate and the N-type thermoelectric element substrate are formed by being engraved so as to be separated from each other in the directions, and then a plurality of the P-type thermoelectric element substrates and the N-type thermoelectric element substrates are laminated to form a laminated elongated body. Then, the laminated long body is cut in a direction orthogonal to the longitudinal direction, and electrodes are provided between the cut surfaces of the P-type thermoelectric element member and the N-type thermoelectric element member to manufacture.
[0010]
Preferably, the thermoelectric element member has a parallel cleavage surface whose internal structure substantially coincides with the longitudinal direction of the P-type thermoelectric element substrate and the N-type thermoelectric element substrate.
[0011]
In this case, the electric current is supplied along the cleaved surface of the internal structure of the thermoelectric element member which is substantially parallel to the longitudinal direction of the P-type thermoelectric element substrate and the N-type thermoelectric element substrate.
[0012]
Further, it is preferable that the thermoelectric element member is a smelting material.
[0013]
In this case, the thermoelectric module comprises a plurality of substantially rod-shaped or long plate-shaped thermoelectric element members and an N-type thermoelectric element member made of a smelting material adhered to the surface of the insulating substrate. Is formed, and electrodes are provided between the cut surfaces to manufacture.
[0014]
It is preferable that the insulating substrate is made of a heat-melting material such as a thermoplastic resin, and that the insulating substrate is removed by heating the thermoelectric module after disposing the electrodes.
[0015]
In this case, the thermoelectric module is manufactured by disposing electrodes between the cut surfaces of the thermoelectric element members, and then removing the insulating substrate formed of a heat-melting material such as a thermoplastic resin by heating.
[0016]
Preferably, the insulating substrate is formed of a wax material.
[0017]
In this case, in the thermoelectric module, after the electrodes are arranged between the cut surfaces of the thermoelectric element member, the insulating substrate formed of the wax material as the heat melting material is removed by heating.
[0018]
Further, it is preferable that a plurality of the P-type thermoelectric element substrates and the N-type thermoelectric element substrates are stacked in pairs so that the P-type thermoelectric element members and the N-type thermoelectric element members are adjacent to each other.
[0019]
In this case, the P-type thermoelectric element member is obtained by cutting a laminated elongate body of a thermoelectric element substrate in which a plurality of P-type thermoelectric element members and N-type thermoelectric element members are adjacent to each other and laminated to form a pair. An electrode is provided between the cut surfaces of the thermoelectric element member and the N-type thermoelectric element member.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
FIGS. 1 and 2 show a first embodiment corresponding to claims 1, 3, 4 and 8 of the present invention, and FIG. 3 shows a second embodiment corresponding to claims 2 and 8 of the present invention. FIG. 4 shows a third embodiment corresponding to claims 5, 6 and 8 of the present invention, and FIG. 5 shows a fourth embodiment corresponding to claims 7 and 8 of the present invention. The form is shown.
[0021]
[First Embodiment]
FIG. 1 is a diagram showing an outline of a procedure of a method for manufacturing a thermoelectric module according to a first embodiment, in which (a) is a thermoelectric element member, (b) is a thermoelectric element substrate, and (c) is a laminated elongated body. , (D) are thermoelectric modules. FIG. 2 is an explanatory diagram of a thermoelectric element member of the method for manufacturing a thermoelectric module according to the embodiment.
[0022]
The method for manufacturing a thermoelectric module according to the present embodiment is a method for manufacturing a thermoelectric module 1 in which both sides of front and back sides of a P-type thermoelectric element and an N-type thermoelectric element which are disposed adjacent to each other are connected by electrodes. Then, the substantially rod-shaped P-type thermoelectric element member 6 and the N-type thermoelectric element member 7 are bonded to the surface of the insulating substrate 5 such that a plurality of the P-type thermoelectric element members are parallel to each other. A thermoelectric element substrate 4 is formed, a plurality of the P-type thermoelectric element substrates 3 and a plurality of the N-type thermoelectric element substrates 4 are laminated to form a laminated elongated body 2, and the laminated elongated body 2 is orthogonal to the longitudinal direction. The electrode 8 is provided between the cut surfaces of the P-type thermoelectric element member 6 and the N-type thermoelectric element member 7 by cutting in the direction.
[0023]
Further, in the method of manufacturing the thermoelectric module according to this embodiment, the thermoelectric element members 6 and 7 have parallel cleavage surfaces whose internal structures substantially coincide with the longitudinal directions of the P-type thermoelectric element substrate 3 and the N-type thermoelectric element substrate 4. (Not shown). In the method of manufacturing a thermoelectric module according to the embodiment, the thermoelectric element members 6 and 7 are made of a smelting material.
[0024]
The thermoelectric module 1 has a heat exchange substrate attached to the surfaces of the electrodes 8 and 8 to form a thermoelectric device such as a thermoelectric generator or a heat pump. The thermoelectric module 1 is manufactured by the above manufacturing method. , P-type and N-type thermoelectric elements can be easily reduced, and the characteristics for a predetermined power supply device can be effectively matched. More specifically, the thermoelectric module 1 is manufactured using a long and rectangular rod-shaped P-type thermoelectric element member 6 and an N-type thermoelectric element member 7 having a predetermined length as shown in FIG.
[0025]
The thermoelectric element members 6 and 7 use a lead / tellurium compound for the P-type thermoelectric element member 6 and a bismuth / tellurium compound for the N-type thermoelectric element member 7. In this case, the polycrystalline thermoelectric element ingot A shown in FIG. 2A was cut out of the above-mentioned raw material, which was stirred at a predetermined temperature to perform unidirectional solidification, as shown in FIG. 2B. A long plate-like ingot material B is cut into a square bar as shown in FIG. In the case of using this ingot material, while better thermoelectric properties can be obtained, there is a problem that the mechanical strength is reduced due to the cleavage surface of the crystal. Therefore, it is necessary to use the thermoelectric element members 6 and 7 in the form of square rods having an outer shape of a predetermined size.
[0026]
The thermoelectric element members 6 and 7 are energized in a direction indicated by an arrow C which is a longitudinal direction of a P-type thermoelectric element substrate 3 and an N-type thermoelectric element substrate 4 which will be described later. However, since current is supplied along the cleaved surfaces of the internal structure of the thermoelectric element members 6, 7, better thermoelectric characteristics can be obtained. The thermoelectric element members 6 and 7 may be manufactured as P-type and N-type prismatic thermoelectric element members by sintering or extruding thermoelectric element material powder in addition to the above.
[0027]
In this case, the P-type thermoelectric element substrate 3 and the N-type thermoelectric element substrate 4 are provided on one surface of an insulating substrate 5 formed of a plate material made of an insulating material such as polyimide or parylene. , 7 are adhered at predetermined intervals with an adhesive such as an epoxy resin used for a semiconductor sealing material. The distance between the adjacent thermoelectric element members 6 or 7 is substantially the same as the thickness of the insulating substrate 5 as shown in FIG. And can be connected at the shortest distance to achieve harmony of mutual heat transfer between adjacent thermoelectric elements.
[0028]
In this case, as shown in FIG. 1 (c), the laminated long body 2 is formed by alternately laminating a plurality of P-type thermoelectric element substrates 3 and N-type thermoelectric element substrates 4, and using an adhesive made of the above-described epoxy resin. It is formed by bonding. In the present invention, the order of lamination of the P-type thermoelectric element substrate 3 and the N-type thermoelectric element substrate 4 is not limited to the above-mentioned alternation, and the P-type thermoelectric element member 6 and the N-type thermoelectric element member 7 Also, the insulating substrates 5 and 5 of the P-type thermoelectric element substrate 3 and the N-type thermoelectric element substrate 4 may be provided in pairs so that they are adjacent to each other. 7 has to be coated with an insulating material such as polyimide or parylene before bonding to the insulating substrate 5.
[0029]
Next, the laminated elongate body 2 after fixing is cut in a direction orthogonal (transverse) to the longitudinal direction to form a block having a predetermined length as shown in FIG. Since the cut surfaces on both sides of the thermoelectric element member 6 and the N-type thermoelectric element member 7 are used as electrode forming surfaces, Cu, Ni, solder, or the like is adhered to the entire surface of these electrode forming surfaces by sputtering to form electrodes. Perform surface metallization. The thickness of the sputtered film is as thin as about 0.1 to 5 μm. Next, a Cu plating film or a Ni plating film is laminated on the sputtered film by electroplating to further form a thick film of about 20 to 200 μm, and cream solder is applied to the surface of the plating film to form electrodes 8, 8,. Is heated to 160 to 170 ° C. with one surface thereof in contact with each other, so that the P-type thermoelectric element members 6 and the N-type thermoelectric element members 7 can be alternately energized in series through the electrodes 8 so as to cut the front and back sides. Are fixed on the surface by soldering as shown in FIG.
[0030]
In the above-described thermoelectric module, the thermoelectric module 1 that connects the front and back surfaces of the P-type thermoelectric element and the N-type thermoelectric element that are disposed adjacent to each other with electrodes is first formed on the surface of the insulating substrate 5. A plurality of substantially rod-shaped P-type thermoelectric element members 6 and N-type thermoelectric element members 7 are bonded to be parallel to each other to form a P-type thermoelectric element substrate 3 and an N-type thermoelectric element substrate 4. . Next, a plurality of the P-type thermoelectric element substrates 3 and the N-type thermoelectric element substrates 4 are laminated to form the laminated elongated body 2. Thereafter, the laminated elongated body 2 is cut in a direction orthogonal to the longitudinal direction using a saw blade such as a sawing machine. At this time, each thermoelectric element member is held by the insulating substrate 5 in a stable state, and is cut without applying a bending force to the substantially rod-shaped thermoelectric element member. Thereafter, the electrode 8 is provided between the cut surfaces of the P-type thermoelectric element member 6 and the N-type thermoelectric element member 7, and the thermoelectric module 1 is manufactured.
[0031]
Therefore, according to the manufacturing method of the thermoelectric module 1 described above, since the substantially rod-shaped thermoelectric element member is cut without applying a bending force, the thermoelectric element member can be easily cut while preventing cracking, and the thermoelectric element can be thinned. It can be done easily.
[0032]
And since electricity is supplied along the cleavage plane of the internal structure of the thermoelectric element member which is substantially parallel to the longitudinal direction of the P-type thermoelectric element substrate 3 and the N-type thermoelectric element substrate 4, good thermoelectric characteristics can be achieved, A thermoelectric module with improved performance can be obtained. The thermoelectric module 1 has a plurality of substantially rod-shaped P-type thermoelectric element members 6 and N-type thermoelectric element members 7 made of a smelting material adhered to the surface of the insulating substrate 5. Since the electrodes 4 are formed and the electrodes 8 are provided between the cut surfaces and manufactured, better thermoelectric characteristics can be achieved.
[0033]
[Second embodiment]
3A and 3B are diagrams showing an outline of a procedure of a method for manufacturing a thermoelectric module according to a second embodiment, in which FIG. 3A shows a thermoelectric element member, FIG. 3B shows a thermoelectric element substrate, and FIG. (D) is a thermoelectric module.
[0034]
The method of manufacturing a thermoelectric module according to this embodiment is different from the first embodiment in the configuration of the thermoelectric element member and a part of the manufacturing process, and the other configurations and procedures are the same as those in the first embodiment. The method for manufacturing a thermoelectric module according to this embodiment is the same as that of the thermoelectric module 1 in which the P-type thermoelectric element and the N-type thermoelectric element, which are arranged adjacent to each other, are connected by electrodes on both front and rear surfaces. In this method, the long plate-shaped P-type thermoelectric element members 9 and the N-type thermoelectric element members 10 are bonded to the surface of the insulating substrate 5 and the respective thermoelectric element members are separated in the longitudinal direction. A plurality of parallel grooves 11, 11... Are engraved to form a P-type thermoelectric element substrate 3 and an N-type thermoelectric element substrate 4, and a plurality of the P-type thermoelectric element substrates 3 and the N-type thermoelectric element substrates 4 are laminated. To form a laminated elongated body 2, and the laminated elongated body 2 is By cutting in a direction perpendicular and the electrodes 8, 8 ... between the cut surface of the thermoelectric element member 10 of the thermoelectric element member 9 and the N-type of P-type is provided.
[0035]
More specifically, as shown in FIG. 3A, the thermoelectric module 1 is manufactured using a long plate-shaped P-type thermoelectric element member 9 and an N-type thermoelectric element member 10 having a predetermined length. For the thermoelectric element members 9 and 10, a lead / tellurium compound is used for the P-type thermoelectric element member 9 and a bismuth / tellurium-based compound is used for the N-type thermoelectric element member 10. In this case, the above raw materials are used. A polycrystalline thermoelectric element ingot A as shown in FIG. 2A obtained by melting and stirring at a predetermined temperature to perform unidirectional solidification is cut out and has a length as shown in FIG. 2B. A smelted material B is used.
[0036]
That is, in this case, first, as shown in FIG. 3A, the long plate-shaped thermoelectric element members 9 and 10 are directly bonded to the surface of the insulating substrate 5, and then shown in FIG. A plurality of parallel grooves 11, 11... Are formed so as to separate the respective thermoelectric element members 9, 10 in the longitudinal direction, so that the P-type thermoelectric element substrate 3 and the N-type thermoelectric element substrate 4 are formed. Therefore, in this case, since it is not necessary to make the thermoelectric element ingot into a rod shape, the influence of the decrease in the mechanical strength of the thermoelectric element member due to the cleavage surface of the crystal, which is a problem of the smelting material, can be further suppressed, and A thermoelectric module 1 having good thermoelectric characteristics can be obtained.
[0037]
Thereafter, as shown in FIG. 3 (c), after a plurality of the P-type thermoelectric element substrates 3 and the N-type thermoelectric element substrates 4 are laminated to form a laminated elongated body 2, a direction perpendicular to the longitudinal direction is formed. The laminated elongate body 2 is cut using a saw blade such as a sawing machine, and the P-type thermoelectric element member 9 and the N-type thermoelectric element member 10, as shown in FIG. The electrodes 8 are provided between the cut surfaces, and the thermoelectric module 1 is manufactured.
[0038]
Therefore, according to the method of manufacturing the thermoelectric module 1 described above, first, the long plate-shaped P-type thermoelectric element member 9 and the N-type thermoelectric element member 10 are bonded to the surface of the insulating substrate 5, respectively. P-type thermoelectric element substrate 3 and N-type thermoelectric element substrate 4 are formed by engraving a plurality of parallel grooves 11 so as to separate the respective thermoelectric element members in the longitudinal direction, and then, the P-type thermoelectric element substrate 3 and a plurality of N-type thermoelectric element substrates 4 are laminated to form a laminated elongate body 2, and thereafter, the laminated elongate body 2 is cut in a direction orthogonal to the longitudinal direction to form a P-type thermoelectric element member 9. The electrode 8 is provided between the cut surfaces of the thermoelectric element member 10 and the N-type thermoelectric element member 10, so that the influence of the decrease in the mechanical strength of the thermoelectric element member due to the cleavage surface of the crystal, which is a problem of the ingot material, is improved. Can be kept low, In to prevent cracking to achieve thinning of the thermoelectric element, it is possible to easily obtain a better heat conductive properties.
[0039]
[Third Embodiment]
FIGS. 4A and 4B are diagrams showing an outline of a procedure of a method of manufacturing a thermoelectric module according to the third embodiment. FIG. 4A shows a state before the insulating substrate is removed, and FIG.
[0040]
The method for manufacturing a thermoelectric module according to this embodiment is different from the first embodiment in the configuration of the insulating substrate and a part of the manufacturing process, and the other configurations and procedures are the same as those in the first embodiment. The method for manufacturing a thermoelectric module according to the present embodiment is the same as that of the first embodiment except that the insulating substrate 5 is made of a heat-melting material such as a thermoplastic resin, and the thermoelectric module 1 is heated after the electrodes 8 are provided. Then, the insulating substrate 5 is removed. In the method of manufacturing a thermoelectric module according to the embodiment, the insulating substrate 5 is formed of a wax material.
[0041]
More specifically, the thermoelectric module 1 has an insulating substrate 5 formed as a wax material equivalent to a heat-melting material, which is made of Nika Seiko Co., Ltd., whose product name is called yellow wax, in a plate shape. After forming the thermoelectric module 1 as shown in FIG. 4A, the thermoelectric module 1 is housed in a heating furnace whose internal temperature is maintained at approximately 70 ° C. As shown in ()), the insulating substrate 5 is melted and removed.
[0042]
The above-mentioned wax material can be generally melted by heating to 60 to 70 ° C., and excessive heat is applied to the soldered portion of the thermoelectric module 1 in a state where the electrodes 8, 8... Are fixed by soldering. It can be removed without applying any mechanical stress, and is excellent in workability and quality. After the thermoelectric module is provided with the electrodes 8, 8,... Between the cut surfaces of the thermoelectric element members 9, 10, the insulating substrate 5 formed of a heated molten material is removed by heating. As shown in FIG. 4 (b), the thermoelectric elements are separated via an air layer. Therefore, heat transfer between the thermoelectric elements can be reduced, and the thermoelectric efficiency of the entire thermoelectric module 1 can be increased.
[0043]
Therefore, according to the manufacturing method of the thermoelectric module 1 described above, the thermoelectric module 1 is heated and melted by the thermoplastic resin or the like after the electrodes 8, 8... Are disposed between the cut surfaces of the thermoelectric element members 6, 7. Since the insulating substrate 5 formed of the material is removed and manufactured by heating, the heat transfer between the thermoelectric elements can be reduced, and the overall thermoelectric efficiency can be improved. Also, after the electrodes 8, 8,... Are arranged between the cut surfaces of the thermoelectric element members 6, 7, the insulating substrate 5 formed of a wax material as a heat-melting material is removed by heating. In addition, the insulating substrate 5 can be removed at a low heating and melting temperature, which is excellent in workability and quality.
[0044]
[Fourth Embodiment]
FIGS. 5A and 5B are diagrams showing an outline of a procedure of a method for manufacturing a thermoelectric module according to the fourth embodiment, wherein FIG. 5A shows a laminated elongated body and FIG. 5D shows a thermoelectric module.
[0045]
In the method for manufacturing a thermoelectric module according to this embodiment, the configuration of the thermoelectric element substrate and a part of the manufacturing process are different from those of the first embodiment, and the other configurations and procedures are the same as those of the first embodiment. In the same manner as in the first embodiment, the method for manufacturing the thermoelectric module according to the present embodiment is such that the P-type thermoelectric element substrate 3 and the N-type thermoelectric element substrate 4 are arranged such that the P-type thermoelectric element members 6 and the N-type thermoelectric element members 7 are adjacent to each other. And a plurality of them are stacked in pairs.
[0046]
More specifically, as shown in FIG. 5A, the thermoelectric module 1 includes a plurality of long rectangular rod-shaped thermoelectric element members 6 and 7, each having an interval slightly larger than the outer width of the thermoelectric element members 6 and 7. To form a P-type thermoelectric element substrate 3 and an N-type thermoelectric element substrate 4. The P-type thermoelectric element members 6 and the N-type thermoelectric element members 7 are engaged with each other to form a laminated elongated body 2. Is formed, the laminated elongate body 2 is cut in a direction orthogonal (transverse) to the longitudinal direction, and formed into a block of a predetermined length as shown in FIG. Metallization is performed on the cut surfaces on both sides of the thermoelectric element member 6 and the N-type thermoelectric element member 7. After a Cu plating film or a Ni plating film is laminated on the metallized sputter film to form a thick film of about 20 to 200 μm, the P-type thermoelectric element member 6 and the N-type thermoelectric element member 7 Are fixed by soldering to the cut surfaces on both front and back sides as shown in FIG.
[0047]
At this time, the laminated long body 2 was cut by the thermoelectric element substrates 3 and 4 in which a plurality of P-type thermoelectric element members 6 and N-type thermoelectric element members 7 were adjacent to each other and were paired with each other. As shown in FIG. 5B, electrodes 8, 8... May be provided in the same direction at the shortest distance between the cut surfaces of the P-type thermoelectric element member 6 and the N-type thermoelectric element member 7. The heat transfer between adjacent thermoelectric elements can be easily coordinated with a simple configuration.
[0048]
Therefore, according to the method of manufacturing the thermoelectric module 1 described above, the thermoelectric module 1 has a plurality of P-type thermoelectric element members 6 and a plurality of N-type thermoelectric element members 7 stacked so as to be adjacent to each other and form a pair with each other. The electrodes 8 are provided between the cut surfaces of the P-type thermoelectric element member 6 and the N-type thermoelectric element member 7 which are obtained by cutting the laminated long body 2 by the thermoelectric element substrates 3 and 4. Since the electrode 8 can be formed using a simple shape, the workability of assembly is more excellent.
[0049]
The method of manufacturing a thermoelectric module according to the present invention may be, in addition to the above, of course, a thermoelectric element member having a long plate-like shape of a smelting material, in which parallel grooves are cut and separated, or an insulating material. It is needless to say that the conductive substrate includes a substrate made of a heat-melted material and removed after assembling.
[0050]
【The invention's effect】
The thermoelectric module and the method of manufacturing the same according to the present invention are implemented as in the above-described embodiment, and the P-type thermoelectric element and the N-type thermoelectric element, which are disposed adjacent to each other, are connected to the front and rear surfaces by electrodes. First, a plurality of substantially rod-shaped P-type thermoelectric element members and N-type thermoelectric element members are adhered to the surface of an insulating substrate so as to be parallel to each other, and a P-type thermoelectric element substrate and An N-type thermoelectric element substrate is formed, then a plurality of the P-type thermoelectric element substrates and a plurality of the N-type thermoelectric element substrates are laminated to form a laminated elongate body, and thereafter, the laminated elongate body is formed in a direction orthogonal to the longitudinal direction. Since the body is cut and an electrode is provided between the cut surfaces of the P-type thermoelectric element member and the N-type thermoelectric element member and manufactured, it is possible to easily prevent breakage and cut the thin wire of the thermoelectric element. Conversion can be easily performed.
[0051]
First, a long plate-shaped P-type thermoelectric element member and an N-type thermoelectric element member are respectively adhered to the surface of the insulating substrate, and a plurality of parallel grooves are formed so that each thermoelectric element member extends in the longitudinal direction. A P-type thermoelectric element substrate and an N-type thermoelectric element substrate are formed so as to be separated from each other, and then a plurality of the P-type thermoelectric element substrates and the N-type thermoelectric element substrates are laminated to form a laminated elongated body. After that, the laminated elongate body is cut in a direction orthogonal to the longitudinal direction, and electrodes are provided between the cut surfaces of the P-type thermoelectric element member and the N-type thermoelectric element member. Due to the cleavage surface of the crystal, which is a problem of the material of manufacture, the influence of the decrease in the mechanical strength of the thermoelectric element member can be suppressed lower, thereby easily preventing cracking and achieving a thinner thermoelectric element, Better thermoelectric properties can be easily obtained
[0052]
And since electricity is supplied along the cleavage plane of the internal structure of the thermoelectric element member which is substantially parallel to the longitudinal direction of the P-type thermoelectric element substrate and the N-type thermoelectric element substrate, good thermoelectric characteristics can be achieved, and An improved thermoelectric module can be obtained.
[0053]
Further, in the thermoelectric module, a plurality of substantially rod-shaped or long plate-shaped thermoelectric element members and an N-type thermoelectric element member made of a smelting material are adhered to the surface of the insulating substrate to form a thermoelectric element substrate. Since it is formed and manufactured by providing an electrode between its cut surfaces, better thermoelectric properties can be achieved.
[0054]
Further, since the thermoelectric module is manufactured by disposing the electrodes between the cut surfaces of the thermoelectric element members and then removing the insulating substrate formed of a heat-fusible material such as a thermoplastic resin by heating, the thermoelectric module is manufactured. The heat transfer between the thermoelectric elements can be reduced, and the overall thermoelectric efficiency can be increased.
[0055]
Further, in the thermoelectric module, after the electrodes are arranged between the cut surfaces of the thermoelectric element members, the insulating substrate formed of the wax material as the heat-melting material is removed by heating, so that the heat-melting temperature is low. The insulating substrate can be removed at a temperature, which is excellent in workability and quality.
[0056]
In addition, the thermoelectric module is a P-type thermoelectric element member in which a P-type thermoelectric element member and an N-type thermoelectric element member are adjacent to each other and a laminated long body formed by a plurality of thermoelectric element substrates laminated so as to form a pair is cut off. Since the electrodes are provided between the cut surfaces of the thermoelectric element member and the N-type thermoelectric element member, the electrodes can be formed using a simple shape, so that the assembling workability is further improved.
[0057]
[Brief description of the drawings]
FIG. 1 is a view showing an outline of a procedure of a method for manufacturing a thermoelectric module according to a first embodiment of the present invention, wherein (a) is a thermoelectric element member, (b) is a thermoelectric element substrate, and (c) is (D) is a thermoelectric module.
FIG. 2 is an explanatory diagram of a thermoelectric element member of the method for manufacturing a thermoelectric module of the embodiment.
3A and 3B are diagrams showing an outline of a procedure of a method for manufacturing a thermoelectric module according to a second embodiment, in which FIG. 3A is a thermoelectric element member, FIG. 3B is a thermoelectric element substrate, and FIG. (D) is a thermoelectric module.
4A and 4B are diagrams showing an outline of a procedure of a method for manufacturing a thermoelectric module according to a third embodiment, in which FIG. 4A shows a state before an insulating substrate is removed, and FIG. 4B shows a state after the insulating substrate is removed.
FIGS. 5A and 5B are diagrams showing an outline of a procedure of a method for manufacturing a thermoelectric module according to a fourth embodiment, in which FIG. 5A shows a laminated long body and FIG. 5D shows a thermoelectric module.
[Explanation of symbols]
1 Thermoelectric module
2 Laminated long body
3 P-type thermoelectric element substrate
4 N-type thermoelectric element substrate
5 Insulating substrate
6 Thermoelectric element members (P type)
7 Thermoelectric element members (N type)
8 electrodes
9 Thermoelectric element members (P type)
10. Thermoelectric element members (N type)
11 parallel grooves

Claims (8)

隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュールの製造方法であって、
略棒状のP型の熱電素子部材及びN型の熱電素子部材を、複数本のものがそれぞれ平行となるよう絶縁性基板の表面に接着してP型熱電素子基板及びN型熱電素子基板を形成し、そのP型熱電素子基板及びN型熱電素子基板の複数を積層させて積層長尺体を形成し、同積層長尺体を長手方向と直交する方向に切断してそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極を設けることを特徴とする熱電モジュールの製造方法。
A method for manufacturing a thermoelectric module in which P-type thermoelectric elements and N-type thermoelectric elements arranged adjacent to each other are connected by electrodes on both front and back surfaces, and
A substantially rod-shaped P-type thermoelectric element member and an N-type thermoelectric element member are bonded to the surface of an insulating substrate such that a plurality of the P-type thermoelectric element members are parallel to each other to form a P-type thermoelectric element substrate and an N-type thermoelectric element substrate. A plurality of the P-type thermoelectric element substrates and a plurality of the N-type thermoelectric element substrates are laminated to form a laminated elongate body, and the laminated elongate body is cut in a direction orthogonal to the longitudinal direction to form the P-type thermoelectric element. A method for manufacturing a thermoelectric module, comprising: providing an electrode between cut surfaces of a member and an N-type thermoelectric element member.
隣接させて配設されたP型の熱電素子及びN型の熱電素子の、表裏両側の面を電極にて接続する熱電モジュールの製造方法であって、
長尺板状のP型の熱電素子部材及びN型の熱電素子部材を絶縁性基板の表面に接着するとともにその各熱電素子部材を長手方向にそれぞれ分離するよう複数本の平行溝を刻設してP型熱電素子基板及びN型熱電素子基板を形成し、そのP型熱電素子基板及びN型熱電素子基板の複数を積層させて積層長尺体を形成し、同積層長尺体を長手方向と直交する方向に切断してそのP型の熱電素子部材とN型の熱電素子部材との切断面間に電極を設けることを特徴とする熱電モジュールの製造方法。
A method for manufacturing a thermoelectric module in which P-type thermoelectric elements and N-type thermoelectric elements arranged adjacent to each other are connected by electrodes on both front and back surfaces, and
A long plate-shaped P-type thermoelectric element member and an N-type thermoelectric element member are adhered to the surface of the insulating substrate, and a plurality of parallel grooves are formed so as to separate the respective thermoelectric element members in the longitudinal direction. Forming a P-type thermoelectric element substrate and an N-type thermoelectric element substrate, and laminating a plurality of the P-type thermoelectric element substrates and the N-type thermoelectric element substrates to form a laminated elongate body. A method for producing a thermoelectric module, characterized in that the thermoelectric module is cut in a direction perpendicular to the direction of the axis and an electrode is provided between cut surfaces of the P-type thermoelectric element member and the N-type thermoelectric element member.
熱電素子部材は、その内部構造がP型熱電素子基板及びN型熱電素子基板の長手方向に略一致した平行のへき開面を有することを特徴とする請求項1又は2記載の熱電モジュールの製造方法。The method for manufacturing a thermoelectric module according to claim 1 or 2, wherein the thermoelectric element member has a parallel cleavage surface whose internal structure substantially coincides with the longitudinal direction of the P-type thermoelectric element substrate and the N-type thermoelectric element substrate. . 熱電素子部材が溶製材料であることを特徴とする請求項1乃至3のいずれか一つの請求項記載の熱電モジュールの製造方法。The method for manufacturing a thermoelectric module according to any one of claims 1 to 3, wherein the thermoelectric element member is a smelting material. 絶縁性基板を、熱可塑性樹脂等の加熱溶融材によるものとするとともに、上記電極を配設した後に熱電モジュールを加熱してその絶縁性基板を除去することを特徴とする請求項1乃至4のいずれか一つの請求項記載の熱電モジュールの製造方法。5. The insulating substrate according to claim 1, wherein the insulating substrate is made of a heat-fusible material such as a thermoplastic resin, and after the electrodes are provided, the thermoelectric module is heated to remove the insulating substrate. A method for manufacturing a thermoelectric module according to any one of the preceding claims. 絶縁性基板を、ワックス材にて形成したことを特徴とする請求項5記載の熱電モジュールの製造方法。The method for manufacturing a thermoelectric module according to claim 5, wherein the insulating substrate is formed of a wax material. P型熱電素子基板及びN型熱電素子基板を、P型の熱電素子部材及びN型の熱電素子部材同士が隣接するよう相互に対をなして複数を積層させたことを特徴とする請求項1乃至6のいずれか一つの請求項記載の熱電モジュールの製造方法。2. A plurality of P-type thermoelectric element substrates and N-type thermoelectric element substrates are stacked in pairs so that the P-type thermoelectric element members and the N-type thermoelectric element members are adjacent to each other. A method for manufacturing a thermoelectric module according to any one of claims 1 to 6. 請求項1若しくは請求項3乃至7のいずれか一つの請求項記載の製造方法にて形成したことを特徴とする熱電モジュール。A thermoelectric module formed by the manufacturing method according to claim 1 or claim 3 .
JP17623499A 1999-06-23 1999-06-23 Thermoelectric module and manufacturing method thereof Expired - Lifetime JP3603675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17623499A JP3603675B2 (en) 1999-06-23 1999-06-23 Thermoelectric module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17623499A JP3603675B2 (en) 1999-06-23 1999-06-23 Thermoelectric module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001007413A JP2001007413A (en) 2001-01-12
JP3603675B2 true JP3603675B2 (en) 2004-12-22

Family

ID=16009993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17623499A Expired - Lifetime JP3603675B2 (en) 1999-06-23 1999-06-23 Thermoelectric module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3603675B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974289B2 (en) * 2012-09-10 2016-08-23 パナソニックIpマネジメント株式会社 Thermoelectric conversion element and thermoelectric conversion module
JP6709040B2 (en) * 2015-11-18 2020-06-10 日東電工株式会社 Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2001007413A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
EP2534707B1 (en) Thermoelectric conversion element and producing method thereof
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP3828924B2 (en) Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion apparatus using the element
US9087962B2 (en) Thermoelectric conversion module
JP4395733B2 (en) Thermoelectric conversion element module manufacturing method and electrode structure used in thermoelectric conversion element module manufacturing method
JP2015511397A (en) Thermoelectric generator module, metal-ceramic substrate and method for producing such kind of metal-ceramic substrate
JPH0864875A (en) Manufacture of thermoelectric converter
JP3603675B2 (en) Thermoelectric module and manufacturing method thereof
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JP2006013434A (en) Thermoelectric transducer module, its aggregate, and method for manufacturing them
JP2002208741A (en) Thermoelectric semiconductor device, cooler-heater using thermoelectric semiconductor device and manufacturing method therefor
JP2004221375A (en) Method of manufacturing thermoelectric semiconductor, thermoelectric converter, and thermoelectric conversion device
JPH10242536A (en) Manufacture of thermoelectric module
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JPWO2018100933A1 (en) Thermoelectric module
JP2013026567A (en) Method for manufacturing thermoelectric element
JPH1187787A (en) Production of thermoelectrtc module
JP4280064B2 (en) Method for manufacturing thermoelectric conversion module
JPH10313134A (en) Manufacture of thermoelectric module
JP4275938B2 (en) Method for manufacturing thermoelectric conversion module
JP3465879B2 (en) Manufacturing method of thermoelectric conversion module
JP2002359405A (en) Thermoelectric element array unit, manufacturing method therefor, and thermoelectric module using the thermoelectric element array unit
JP2004296960A (en) Thermoelectric element and its manufacturing method
JP5177421B2 (en) Thermoelectric module
JP2003234515A (en) Thermoelectric module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8