JPH10303472A - Thermoelectric conversion element and its manufacture - Google Patents

Thermoelectric conversion element and its manufacture

Info

Publication number
JPH10303472A
JPH10303472A JP9123574A JP12357497A JPH10303472A JP H10303472 A JPH10303472 A JP H10303472A JP 9123574 A JP9123574 A JP 9123574A JP 12357497 A JP12357497 A JP 12357497A JP H10303472 A JPH10303472 A JP H10303472A
Authority
JP
Japan
Prior art keywords
thermoelectric semiconductor
semiconductor chip
resin
conversion element
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9123574A
Other languages
Japanese (ja)
Other versions
JP4003254B2 (en
Inventor
Hitoshi Tauchi
比登志 田内
Satoru Ogawa
悟 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP12357497A priority Critical patent/JP4003254B2/en
Publication of JPH10303472A publication Critical patent/JPH10303472A/en
Application granted granted Critical
Publication of JP4003254B2 publication Critical patent/JP4003254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element which absorbs the positional dislocation in junction between a thermoelectric semiconductor chip and an electrode, and is excellent in the reliability on the junction between the thermoelectric semiconductor chip and the electrode at use, and besides is excellent in heating and cooling effect. SOLUTION: This thermoelectric conversion element comprises a pair of heat converting substrates 210 and 220 arranged in opposition, a plurality of electrodes 21 and 22 arranged each at the inner flanks of the heat converting substrates, and a p-type thermoelectric semiconductor chip 11 and an n-type thermoelectric semiconductor chip 12 arranged adjacently between each electrode 21 and 22 of a pair of heat converting substrates 210 and 220 and connected in series by the electrodes 21 and 22. In this case, this element is provided with a resin part 3 consisting of synthetic resin between the thermoelectric semiconductor chips 11 and 12, and besides is provided with a vacant space 31 between the resin part 3 and the heat converting substrates 210 and 220.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,一端が発熱し,他端が冷却する
といういわゆるペルチェ効果を有する熱電変換素子,特
にその熱電半導体チップと電極との接合信頼性に優れた
熱電変換素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion element having a so-called Peltier effect in which one end generates heat and the other end cools, and in particular, a thermoelectric conversion element excellent in bonding reliability between a thermoelectric semiconductor chip and an electrode and a method of manufacturing the same. About.

【0002】[0002]

【従来技術】熱電変換素子9は,図15〜図17に示す
ごとく,相対向して配設された上下一対の熱交換基板2
10,220と,該熱交換基板の内側面にそれぞれ設け
た複数の電極21,22とを有する。また,上記一対の
熱交換基板の電極21,22の間に隣り合って配置さ
れ,上記電極21,22によって直列接続された,P型
熱電半導体チップ11とN型熱電半導体チップ12とを
有する。
2. Description of the Related Art As shown in FIGS. 15 to 17, a thermoelectric conversion element 9 is composed of a pair of upper and lower heat exchange substrates 2 arranged opposite to each other.
10 and 220, and a plurality of electrodes 21 and 22 provided on the inner surface of the heat exchange substrate, respectively. Further, it has a P-type thermoelectric semiconductor chip 11 and an N-type thermoelectric semiconductor chip 12 which are arranged adjacent to each other between the electrodes 21 and 22 of the pair of heat exchange substrates and are connected in series by the electrodes 21 and 22.

【0003】上記,熱交換基板としては,例えばアルミ
ナセラミックスが用いられ,また電極は銅箔膜が用いら
れる。なお,図17において,符号215,225はリ
ード線である。そして,上記P型熱電半導体チップ1
1,N型熱電半導体チップ12の間に,例えばP→N→
P→Nの方向へ電流を流すことにより,一方の熱交換基
板210側が発熱部となり,他方の熱交換基板220側
が冷却部となるいわゆるペルチェ効果が発現される。
As the above-mentioned heat exchange substrate, for example, alumina ceramic is used, and a copper foil film is used as an electrode. In FIG. 17, reference numerals 215 and 225 indicate lead wires. Then, the P-type thermoelectric semiconductor chip 1
Between the 1, N-type thermoelectric semiconductor chips 12, for example, P → N →
By passing a current in the direction of P → N, a so-called Peltier effect is exerted in which one heat exchange substrate 210 side becomes a heat generating portion and the other heat exchange substrate 220 side becomes a cooling portion.

【0004】また,上記熱電変換素子9の製造に当たっ
ては,図18に示すごとく,一方の熱交換基板210上
に電極21を形成すると共に該電極21上に半田25を
印刷形成しておく。また,他方の熱交換基板220に
も,同様に電極22,半田25を形成しておく。そし
て,電極21,22の間にP型熱電半導体チップ11と
N型熱電半導体チップ12とを交互に隣り合わせて配置
すると共に,これらの間を半田25により接合する。半
田接合は,上記のごとく印刷形成したクリーム状の半田
を加熱溶融することにより行なう。
In manufacturing the thermoelectric conversion element 9, as shown in FIG. 18, an electrode 21 is formed on one heat exchange substrate 210, and a solder 25 is printed on the electrode 21. Similarly, the electrode 22 and the solder 25 are formed on the other heat exchange substrate 220. Then, the P-type thermoelectric semiconductor chips 11 and the N-type thermoelectric semiconductor chips 12 are alternately arranged adjacent to each other between the electrodes 21 and 22. Solder joining is performed by heating and melting the cream-like solder printed and formed as described above.

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来の熱
電変換素子には次の問題がある。即ち,まず上記半田接
合時においては,半田が溶融し溶融半田には互いに引き
寄せ合おうとする力が働いている。そのため,図19に
示すごとく,一方の電極21上においてはP型熱電半導
体チップ11とN型熱電半導体チップ12の上端部が互
いに引張られ,他方の電極22上においては上記N型熱
電半導体チップ12と他のP型熱電半導体チップ11の
下端部が互いに引張られる。
However, the conventional thermoelectric conversion device has the following problems. That is, first, at the time of the above-mentioned solder joining, the solder is melted, and a force for attracting the molten solder to each other acts. Therefore, as shown in FIG. 19, the upper ends of the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 are pulled together on one electrode 21, and the N-type thermoelectric semiconductor chip 12 is formed on the other electrode 22. And the lower ends of the other P-type thermoelectric semiconductor chips 11 are pulled together.

【0006】それ故,熱電半導体チップ(P型熱電半導
体チップとN型熱電半導体チップの両者を総称する場合
をいう)と電極との接合位置にズレを生じたり,熱電半
導体チップが傾斜した状態(図19)で半田接合される
ことがある。そのため,接合力が弱くなる。また,上記
位置ズレに伴って,僅か0.5mm程度の間隙しかない
隣接する電極に対して,熱電半導体チップが接合されて
しまうこともある。
[0006] Therefore, a displacement occurs in the junction position between the thermoelectric semiconductor chip (both P-type thermoelectric semiconductor chip and N-type thermoelectric semiconductor chip) and the electrode, or the thermoelectric semiconductor chip is inclined ( In FIG. 19), soldering may be performed. For this reason, the joining force is weakened. Further, the thermoelectric semiconductor chip may be bonded to an adjacent electrode having a gap of only about 0.5 mm due to the positional shift.

【0007】更に,熱電変換素子は使用中には,一方の
熱交換基板が発熱側,他方の熱交換基板が冷却側とな
り,例えば一方は約50℃,他方は−10℃というよう
に両者間には大きな温度差が生じる。そのため,発熱側
の熱交換基板は膨張し,冷却側の熱交換基板は収縮す
る。
Further, during use of the thermoelectric conversion element, one heat exchange substrate is on the heat generation side and the other heat exchange substrate is on the cooling side. For example, one of the heat exchange substrates is at about 50 ° C. and the other is at −10 ° C. Causes a large temperature difference. Therefore, the heat exchange substrate on the heat generation side expands, and the heat exchange substrate on the cooling side contracts.

【0008】また,一方の熱交換基板210と他方の熱
交換基板220とが相対向する間隔は,約10mm程度
である。そのため,上記温度差に伴って熱応力が発生す
る。それ故,熱電半導体チップと電極との間の接合強度
が充分でないと,両者の接合部分に破損を生じ,接合信
頼性が低下する。
The distance between one heat exchange substrate 210 and the other heat exchange substrate 220 is about 10 mm. Therefore, thermal stress is generated in accordance with the temperature difference. Therefore, if the bonding strength between the thermoelectric semiconductor chip and the electrode is not sufficient, the bonding portion between the two will be damaged, and the bonding reliability will be reduced.

【0009】本発明はかかる従来の問題点に鑑み,熱電
半導体チップと電極との接合位置ズレがなく,使用時に
おける熱電半導体チップと電極との接合信頼性に優れ,
かつ発熱,冷却効果に優れた熱電変換素子及びその製造
方法を提供しようとするものである。
In view of the above-mentioned conventional problems, the present invention has no displacement in the bonding position between the thermoelectric semiconductor chip and the electrode, and has excellent bonding reliability between the thermoelectric semiconductor chip and the electrode during use.
Another object of the present invention is to provide a thermoelectric conversion element excellent in heat generation and cooling effects and a method for manufacturing the same.

【0010】[0010]

【課題の解決手段】請求項1に記載の発明は,相対向し
て配設された一対の熱交換基板と,該熱交換基板の内側
面にそれぞれ設けた複数の電極と,上記一対の熱交換基
板の各電極の間に隣り合って配置され,上記電極によっ
て直列接続された,P型熱電半導体チップとN型熱電半
導体チップとよりなる熱電変換素子において,上記熱電
半導体チップの間には合成樹脂よりなる樹脂部を設けて
なり,かつ該樹脂部と上記熱交換基板との間には空隙部
を設けてなることを特徴とする熱電変換素子である。
According to a first aspect of the present invention, a pair of heat exchange substrates disposed opposite to each other, a plurality of electrodes provided on an inner surface of the heat exchange substrate, and the pair of heat exchange substrates are provided. In a thermoelectric conversion element composed of a P-type thermoelectric semiconductor chip and an N-type thermoelectric semiconductor chip which are arranged adjacent to each other between electrodes of an exchange board and connected in series by the electrodes, the thermoelectric semiconductor chips are combined between the thermoelectric semiconductor chips. A thermoelectric conversion element comprising a resin portion made of a resin, and a gap provided between the resin portion and the heat exchange substrate.

【0011】本発明において最も注目すべきことは,上
記熱電半導体チップの間に合成樹脂よりなる樹脂部を設
けたこと,及び該樹脂部と熱交換基板との間には空隙部
を設けたことである。
The most remarkable point of the present invention is that a resin portion made of a synthetic resin is provided between the thermoelectric semiconductor chips, and a gap is provided between the resin portion and the heat exchange substrate. It is.

【0012】次に,本発明の作用効果につき説明する。
本発明においては,上記熱電半導体チップ(P型熱電半
導体チップとN型熱電半導体チップとの総称)の間には
上記樹脂部を設けている。そのため,全ての熱電半導体
チップは樹脂部によってその周囲が固定され,各熱電半
導体チップの位置は固定された状態にある。
Next, the operation and effect of the present invention will be described.
In the present invention, the resin portion is provided between the thermoelectric semiconductor chips (general term for the P-type thermoelectric semiconductor chip and the N-type thermoelectric semiconductor chip). Therefore, the periphery of all the thermoelectric semiconductor chips is fixed by the resin portion, and the position of each thermoelectric semiconductor chip is fixed.

【0013】そのため,熱電半導体チップと電極との間
を半田接合する際に,溶融半田によって熱電半導体チッ
プの先端部が引き寄せられようとしても,熱電半導体チ
ップの先端部は移動しない。それ故,従来例に示したご
とく,熱電半導体チップと電極との間に位置ズレを生じ
たり,熱電半導体チップが傾斜した状態で接合されると
いうことはない。そのため,接合強度が高い。また,そ
のために,熱電半導体チップが隣接する電極との間を短
絡するということもない。
Therefore, when the thermoelectric semiconductor chip and the electrode are soldered together, the distal end of the thermoelectric semiconductor chip does not move even if the distal end of the thermoelectric semiconductor chip is drawn by the molten solder. Therefore, as shown in the conventional example, no displacement occurs between the thermoelectric semiconductor chip and the electrode, and the thermoelectric semiconductor chip is not joined in an inclined state. Therefore, the joining strength is high. In addition, there is no short circuit between the thermoelectric semiconductor chip and the adjacent electrode.

【0014】また,本発明においては,樹脂部と熱交換
基板との間には,空隙部を設けている。そのため,発熱
側の熱交換基板と冷却側の熱交換基板との間の断熱性が
優れ,熱電変換素子の発熱,冷却効果が高い。
In the present invention, a gap is provided between the resin portion and the heat exchange substrate. Therefore, the heat insulation between the heat exchange substrate on the heat generation side and the heat exchange substrate on the cooling side is excellent, and the heat generation and cooling effect of the thermoelectric conversion element is high.

【0015】次に,請求項2の発明のように,上記合成
樹脂は,エポキシ樹脂,フェノール樹脂,ポリウレタン
樹脂,アクリル樹脂,スチレン樹脂の1種又は2種以上
よりなる多孔質発泡体であることが好ましい。これらの
樹脂は特に生成のしやすさ,耐熱性などの点で優れてい
る。更に,これらの樹脂は多孔質発泡体であるため,発
熱側と冷却側との間における熱伝導性が低く,熱電変換
素子の上記発熱,冷却効果が一層向上する。
Next, as in the invention of claim 2, the synthetic resin is a porous foam made of one or more of epoxy resin, phenol resin, polyurethane resin, acrylic resin, and styrene resin. Is preferred. These resins are particularly excellent in ease of formation and heat resistance. Furthermore, since these resins are porous foams, the thermal conductivity between the heat generation side and the cooling side is low, and the above-mentioned heat generation and cooling effects of the thermoelectric conversion element are further improved.

【0016】次に,請求項3の発明のように,上記樹脂
部には,ガラス中空体,石英中空体,ポリエチレン樹脂
中空体,ポリウレタン樹脂中空体,ポリプロピレン樹脂
中空体,ポリウレタン樹脂中空体,アクリル樹脂中空
体,スチレン樹脂中空体,ポリカーボネート樹脂中空体
の1種又は2種以上よりなる低熱伝導粒子が分散混合さ
れていることが好ましい。
Next, as in the third aspect of the present invention, the resin portion includes a glass hollow body, a quartz hollow body, a polyethylene resin hollow body, a polyurethane resin hollow body, a polypropylene resin hollow body, a polyurethane resin hollow body, and an acrylic resin. It is preferable that low thermal conductive particles composed of one or more of a resin hollow body, a styrene resin hollow body, and a polycarbonate resin hollow body are dispersed and mixed.

【0017】この場合には,樹脂部中に上記中空体より
なる低熱伝導粒子が分散混合されているので,樹脂部の
伝熱性が一層低下し,上記のごとく熱電変換素子の発
熱,冷却効果が一層向上する。上記,低熱伝導粒子は樹
脂部中に,3〜80重量%含まれていることが好まし
い。3%未満では,上記効果が低く,80%を越えると
強度低下が著しく破損のおそれがある。
In this case, since the low thermal conductive particles made of the hollow body are dispersed and mixed in the resin portion, the heat conductivity of the resin portion is further reduced, and the heat generation and cooling effects of the thermoelectric conversion element are reduced as described above. Further improve. It is preferable that the low thermal conductive particles are contained in the resin portion in an amount of 3 to 80% by weight. If it is less than 3%, the above effect is low, and if it is more than 80%, the strength is significantly reduced and there is a possibility of breakage.

【0018】次に,請求項4の発明のように,上記電極
は,上記熱電半導体チップと接触していない部分に,凹
状空間部を有し,かつ該凹状空間部は上記樹脂部と接触
していないことが好ましい(実施形態例2,図14参
照)。この場合には,電極が樹脂部と対面している部分
に上記凹状空間部を有するため,両者の間は断熱性が向
上する。そのため,熱電変換素子の発熱,冷却効果が一
層向上する。
Next, as in the invention of claim 4, the electrode has a concave space portion at a portion not in contact with the thermoelectric semiconductor chip, and the concave space portion is in contact with the resin portion. It is preferable that they are not provided (see Embodiment 2 and FIG. 14). In this case, since the electrode has the concave space portion at a portion facing the resin portion, the heat insulating property between the two is improved. Therefore, the heat generation and cooling effects of the thermoelectric conversion element are further improved.

【0019】次に,上記熱電変換素子の製造方法として
は,容器状の治具内にP型熱電半導体チップとN型熱電
半導体チップとを交互に配置し,これら熱電半導体チッ
プの間に電極接続部を除いて合成樹脂を充填し,樹脂部
を形成して,上記熱電半導体チップを樹脂部により固定
した中間体を作製し,次いで,上記P型熱電半導体チッ
プとN型熱電半導体チップとを交互に直列接続されるよ
うに電極に対して接合することを特徴とする熱電変換素
子の製造方法がある。
Next, as a method of manufacturing the above-mentioned thermoelectric conversion element, a P-type thermoelectric semiconductor chip and an N-type thermoelectric semiconductor chip are alternately arranged in a container-like jig, and electrodes are connected between these thermoelectric semiconductor chips. The resin part is filled except for the part, a resin part is formed, an intermediate body in which the thermoelectric semiconductor chip is fixed by the resin part is produced, and then the P-type thermoelectric semiconductor chip and the N-type thermoelectric semiconductor chip are alternated. There is a method for manufacturing a thermoelectric conversion element, which is joined to an electrode so as to be connected in series.

【0020】この製造方法によれば,熱電半導体チップ
の間に容易,確実に樹脂部を設けることができ,また上
記のごとく熱電半導体チップと電極との接合位置ズレが
なく,使用時における熱電半導体チップと電極との接続
信頼性に優れた熱電変換素子を製造することができる。
According to this manufacturing method, the resin portion can be easily and reliably provided between the thermoelectric semiconductor chips, and there is no displacement of the joining position between the thermoelectric semiconductor chip and the electrodes as described above. A thermoelectric conversion element having excellent connection reliability between the chip and the electrode can be manufactured.

【0021】次に,請求項6の発明のように,上記中間
体は,上記熱電半導体チップの厚み方向に複数個にスラ
イス切断してスライス中間体となし,該スライス中間体
における上記P型熱電半導体チップとN型熱電半導体チ
ップとを電極に接合することが好ましい。この場合に
は,多数の中間体(スライス中間体)を容易に作製する
ことができ,熱電変換素子の生産性が向上し,かつ製造
コストが低くなる。
Next, as in the invention of claim 6, the intermediate is slice-cut into a plurality of pieces in the thickness direction of the thermoelectric semiconductor chip to form a slice intermediate, and the P-type thermoelectric element in the slice intermediate is formed. Preferably, the semiconductor chip and the N-type thermoelectric semiconductor chip are joined to the electrodes. In this case, a large number of intermediates (slice intermediates) can be easily produced, the productivity of the thermoelectric conversion element improves, and the manufacturing cost decreases.

【0022】なお,本発明にかかる熱電変換素子は,例
えばクーラーボックス,冷水器,レーザーダイオードの
温調などに用いることができる。
The thermoelectric conversion element according to the present invention can be used, for example, for controlling the temperature of a cooler box, a water cooler, a laser diode, and the like.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 本発明の実施形態例にかかる熱電変換素子及びその製造
方法につき,図1〜図7を用いて説明する。本例の熱電
変換素子は,図1,図2に示すごとく,相対向して配設
された一対の熱交換基板210,220と,該熱交換基
板210,220の内側面にそれぞれ設けた複数の電極
21,22と,上記一対の熱交換基板210,220の
各電極21,22の間に隣り合って配置され,上記電極
21,22によって直列接続された,P型熱電半導体チ
ップ11とN型熱電半導体チップ12とよりなる。上記
熱電半導体チップ11,12の間には合成樹脂よりなる
樹脂部3を設けてあり,かつ該樹脂部3と上記熱交換基
板210,220との間には空隙部31を設けてある。
また,樹脂部3と電極21,22との間にも空間部32
が設けてある。
Embodiment 1 A thermoelectric conversion element and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, the thermoelectric conversion element of the present embodiment includes a pair of heat exchange boards 210 and 220 disposed opposite to each other, and a plurality of And the P-type thermoelectric semiconductor chip 11, which is disposed adjacent to between the electrodes 21 and 22 and the electrodes 21 and 22 of the pair of heat exchange substrates 210 and 220 and is connected in series by the electrodes 21 and 22, respectively. Type thermoelectric semiconductor chip 12. A resin portion 3 made of a synthetic resin is provided between the thermoelectric semiconductor chips 11 and 12, and a gap portion 31 is provided between the resin portion 3 and the heat exchange substrates 210 and 220.
A space 32 is also provided between the resin portion 3 and the electrodes 21 and 22.
Is provided.

【0024】次に,上記熱電変換素子を製造するに当た
っては,図3〜図7に示すごとく,まず容器状の治具4
の内部41にP型熱電半導体チップ11とN型熱電半導
体チップ12とを交互に配置し,これら熱電半導体チッ
プの間にその電極接続部(上面,下面)を除いて合成樹
脂30を充填し(図4,図5),該合成樹脂30を発泡
硬化させて樹脂部3を形成して,上記多数の熱電半導体
チップ11,12を樹脂部3により固定した中間体35
を作製しする(図6)。上記熱電半導体チップ11,1
2は,図4に示すごとく,治具4の底面に設けた凹状立
設部42に,その下部を嵌合することにより行なう。
Next, in manufacturing the thermoelectric conversion element, first, as shown in FIGS.
The P-type thermoelectric semiconductor chips 11 and the N-type thermoelectric semiconductor chips 12 are alternately arranged in the interior 41, and the synthetic resin 30 is filled between these thermoelectric semiconductor chips except for the electrode connection portions (upper and lower surfaces) ( 4 and 5), the synthetic resin 30 is foamed and hardened to form the resin portion 3, and the intermediate body 35 in which the large number of thermoelectric semiconductor chips 11 and 12 are fixed by the resin portion 3.
(FIG. 6). The thermoelectric semiconductor chip 11, 1
Step 2 is performed by fitting the lower part of the jig 4 to a concave standing part 42 provided on the bottom surface of the jig 4 as shown in FIG.

【0025】次いで,上記P型熱電半導体チップ11と
N型熱電半導体チップ12とを交互に直列接続されるよ
うに電極21,22に対して接合する。上記電極21
は,図7に示すごとく,,アルミナセラミック製の熱交
換基板210の表面にろう付けにより形成してある。電
極22も同様である。また,上記電極21,22と熱電
半導体チップ11,12との接合は半田により行なう。
半田は,上記電極21,22の表面に,クリーム半田を
印刷しておき,これを加熱溶融することによって両者を
接合する。本例において,上記合成樹脂は,ポリウレタ
ン樹脂を用い,これを発泡,硬化させて樹脂部30とし
た。
Next, the P-type thermoelectric semiconductor chips 11 and the N-type thermoelectric semiconductor chips 12 are joined to the electrodes 21 and 22 so as to be alternately connected in series. The electrode 21
As shown in FIG. 7, is formed by brazing on the surface of a heat exchange substrate 210 made of alumina ceramic. The same applies to the electrode 22. The electrodes 21 and 22 and the thermoelectric semiconductor chips 11 and 12 are joined by soldering.
For the solder, cream solder is printed on the surfaces of the electrodes 21 and 22 and the two are joined by heating and melting. In this example, the synthetic resin is a polyurethane resin, which is foamed and cured to form the resin portion 30.

【0026】次に,本例の作用効果につき説明する。本
発明においては,上記熱電半導体チップ11,12の間
には上記樹脂部3を設けている。そのため,全ての熱電
半導体チップ11,12は樹脂部3によってその周囲が
固定され,それらの位置は固定された状態にある。
Next, the operation and effect of this embodiment will be described. In the present invention, the resin portion 3 is provided between the thermoelectric semiconductor chips 11 and 12. Therefore, all the thermoelectric semiconductor chips 11 and 12 have their periphery fixed by the resin portion 3 and their positions are fixed.

【0027】そのため,熱電半導体チップ11,12と
電極21,22との間を半田接合する際に,溶融半田に
よって熱電半導体チップの先端部が引き寄せられようと
しても,熱電半導体チップの先端部は移動しない。それ
故,熱電半導体チップ11,12と電極21,22との
間に位置ズレを生じたり,熱電半導体チップが傾斜した
状態で接合されるということはない。そのため,接合強
度が高く,電極間が短絡されるということもない。
Therefore, when the thermoelectric semiconductor chips 11, 12 and the electrodes 21, 22 are joined by soldering, even if the tip of the thermoelectric semiconductor chip is drawn by the molten solder, the tip of the thermoelectric semiconductor chip moves. do not do. Therefore, no misalignment occurs between the thermoelectric semiconductor chips 11 and 12 and the electrodes 21 and 22, and the thermoelectric semiconductor chips are not joined in an inclined state. Therefore, the bonding strength is high and the electrodes are not short-circuited.

【0028】また,本発明においては,樹脂部3と熱交
換基板210,220との間には空隙部31,更に樹脂
部3と電極21,22との間にも空隙部32を設けてい
る。そのため,発熱側の熱交換基板210,220と冷
却側の熱交換基板210,220との間の断熱性に優
れ,熱電変換素子の発熱,冷却効果が高い。
In the present invention, a gap 31 is provided between the resin portion 3 and the heat exchange boards 210 and 220, and a gap 32 is further provided between the resin portion 3 and the electrodes 21 and 22. . Therefore, the heat exchange boards 210 and 220 on the heat generation side and the heat exchange boards 210 and 220 on the cooling side are excellent in heat insulation, and the heat generation and cooling effects of the thermoelectric conversion element are high.

【0029】実施形態例2 本例は図8〜図14に示すごとく,電極21,22に凹
状空間部(図12,図13)を有する熱電変換素子を示
すと共に該熱電変換素子は,スライス中間体(図11)
を作製して製造したものである。即ち,まず本例の熱電
変換素子においては,図14に示すごとく,電極21,
22は,熱電半導体チップ11,21と接触していない
部分に凹状空間部216,226を有する。その他は,
実施形態例1と同様である。
Embodiment 2 As shown in FIGS. 8 to 14, this embodiment shows a thermoelectric conversion element having concave spaces (FIGS. 12 and 13) in the electrodes 21 and 22. Body (Fig. 11)
Was manufactured. That is, first, in the thermoelectric conversion element of this example, as shown in FIG.
Reference numeral 22 has concave spaces 216 and 226 in portions not in contact with the thermoelectric semiconductor chips 11 and 21. Others
This is the same as the first embodiment.

【0030】次に,上記熱電変換素子を製造する方法に
つき,図8〜図13を用いて説明する。まず,図8に示
すごとく,深い容器状の治具40の内部41の底部40
1に両面テープ46を配置し,その上に実施形態例1と
同様にP型熱電半導体チップ11,N型熱電半導体チッ
プ12を交互に隣り合わせて配置して,両面テープ46
上に接着し,立設固定する。上記P型熱電半導体チップ
11,N型熱電半導体チップ12は,長さ100mmで
ある。次に,上記治具40内に実施形態例1と同様に合
成樹脂を入れ,硬化させた(図9)。本例においては,
上記合成樹脂としてはエポキシ樹脂(日本ペルノックス
社製ME252)の中に5重量%のガラス中空体(ガラ
スバルーン。住友3M会社製,S20)を分散混合させ
たものを用いた。これにより,多数のP型熱電半導体チ
ップ11,N型熱電半導体チップ12を樹脂部3により
固定した中間体36を得た(図10)。
Next, a method of manufacturing the thermoelectric conversion element will be described with reference to FIGS. First, as shown in FIG.
1, a P-type thermoelectric semiconductor chip 11 and an N-type thermoelectric semiconductor chip 12 are alternately arranged adjacent to each other, similarly to the first embodiment.
Glue on top and fix upright. The P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 have a length of 100 mm. Next, a synthetic resin was placed in the jig 40 and cured as in the first embodiment (FIG. 9). In this example,
As the synthetic resin, a resin obtained by dispersing and mixing 5% by weight of a glass hollow body (glass balloon; S20, manufactured by Sumitomo 3M Company) in an epoxy resin (ME252, manufactured by Pernox Japan Limited) was used. As a result, an intermediate body 36 in which a large number of P-type thermoelectric semiconductor chips 11 and N-type thermoelectric semiconductor chips 12 were fixed by the resin portion 3 was obtained (FIG. 10).

【0031】次いで,図10に示すごとく,内周刀カッ
ター49を用いて該中間体36を厚み1mmにスライス
切断してスライス中間体37(図11)を50個作製し
た。このスライス中間体37は,P型熱電半導体チップ
11,N型熱電半導体チップ12,樹脂部3は上下面と
も,同一平面状にある。
Next, as shown in FIG. 10, the intermediate 36 was slice-cut to a thickness of 1 mm using an inner knife 49 to produce 50 slice intermediates 37 (FIG. 11). In the slice intermediate body 37, the P-type thermoelectric semiconductor chip 11, the N-type thermoelectric semiconductor chip 12, and the resin portion 3 have the same upper and lower surfaces.

【0032】一方,図12,図13に示すごとく,熱交
換基板210,220210に両面テープ214を介し
て電極21を接着する。電極21は,上記P型熱電半導
体チップ11,N型熱電半導体チップ12を直列接続で
きる位置に配設する。また,本例の電極21は,上記樹
脂部3と対面する部分に凹状空間部216を有する。こ
のことは,熱交換基板220,電極22,凹状空間部2
26についても同様である(図14)。
On the other hand, as shown in FIGS. 12 and 13, the electrodes 21 are bonded to the heat exchange substrates 210 and 220210 via the double-sided tape 214. The electrode 21 is provided at a position where the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 can be connected in series. Further, the electrode 21 of the present example has a concave space 216 at a portion facing the resin portion 3. This means that the heat exchange substrate 220, the electrode 22, the concave space 2
The same applies to 26 (FIG. 14).

【0033】次に,上記スライス中間体37の上面,下
面に上記電極21,22を対面配置し,実施形態例1と
同様に各熱電半導体チップと電極とを半田接合する。こ
れにより,上記図14に示した熱電変換素子が得られ
る。その他は,実施形態例1と同様である。
Next, the electrodes 21 and 22 are arranged facing each other on the upper and lower surfaces of the slice intermediate body 37, and the thermoelectric semiconductor chips and the electrodes are soldered in the same manner as in the first embodiment. Thus, the thermoelectric conversion element shown in FIG. 14 is obtained. Other configurations are the same as those of the first embodiment.

【0034】本例の熱電変換素子によれば,電極21,
22が樹脂部3と対面する位置に凹状空間部216,2
26を有している。そのため,両者間の伝熱が殆どな
く,熱電変換素子の発熱,冷却効果が向上する。また,
スライス中間体を作製して熱電変換素子を製造するの
で,中間体の製造が容易で,生産効率が向上する。その
他,実施形態例1と同様の効果を得ることができる。
According to the thermoelectric conversion element of this embodiment, the electrodes 21,
22 is a concave space portion 216, 2 at a position facing the resin portion 3.
26. Therefore, there is almost no heat transfer between the two, and the heat generation and cooling effects of the thermoelectric conversion element are improved. Also,
Since a thermoelectric conversion element is manufactured by producing a slice intermediate, the production of the intermediate is easy and the production efficiency is improved. In addition, the same effects as those of the first embodiment can be obtained.

【0035】実施形態例3 本例は,実施形態例1,2に示した熱電変換素子につい
て,電極と熱電半導体チップとの間の位置ズレ発生試
験,冷熱衝撃試験による接合信頼性のテストを行なっ
た。このテストは,20個の熱電変換素子を製造して行
なった。位置ズレ発生試験においては,熱電半導体チッ
プが本来接合されるべき電極21,22ではなく,隣接
する電極21,22に接触してしまっている数を「ズレ
不良数」とした。
Embodiment 3 In this embodiment, for the thermoelectric conversion elements shown in Embodiments 1 and 2, a test for the occurrence of positional displacement between the electrode and the thermoelectric semiconductor chip and a test for bonding reliability by a thermal shock test are performed. Was. This test was performed by manufacturing 20 thermoelectric conversion elements. In the misalignment test, the number of the thermoelectric semiconductor chips contacting the adjacent electrodes 21 and 22 instead of the electrodes 21 and 22 to which the thermoelectric semiconductor chips should be originally bonded was defined as the “number of misalignment failures”.

【0036】この「ズレ不良数」の数は,上記20個の
熱電変換素子中にはP型熱電半導体チップとN型熱電半
導体チップとが合計254個入っているが,その中1つ
でも上記ズレ不良を生じている場合に,その熱電変換素
子はズレ不良ありとカウントした。
The number of “misalignment defects” is such that the total of 254 P-type thermoelectric semiconductor chips and N-type thermoelectric semiconductor chips are included in the 20 thermoelectric conversion elements, and even one of them is the same as the above. When a displacement failure occurred, the thermoelectric conversion element was counted as having a displacement failure.

【0037】また,上記冷熱衝撃試験においては,熱電
変換素子を−50℃に1時間,120℃に1時間放置す
るというサイクルを,200サイクル実施した後,熱電
変換素子の内部抵抗の変化が10%以上のものを「冷熱
衝撃試験不良」とカウントした。
In the thermal shock test, after 200 cycles of leaving the thermoelectric conversion element at −50 ° C. for 1 hour and at 120 ° C. for 1 hour, the internal resistance of the thermoelectric conversion element changed by 10 cycles. % Or more were counted as "defective thermal shock test".

【0038】また,比較のため,樹脂部を設けなかった
他は実施形態例1と同様にして熱電変換素子を製造し,
上記と同様の試験を行なった。これらの結果を表1に示
す。
For comparison, a thermoelectric conversion element was manufactured in the same manner as in Embodiment 1 except that no resin portion was provided.
The same test as above was performed. Table 1 shows the results.

【0039】[0039]

【表1】 [Table 1]

【0040】表1より知られるごとく,本発明によれ
ば,電極21,22と熱電半導体チップとの間の位置ズ
レがなく,両者間の接合信頼性に優れた熱電変換素子を
得ることができる。
As can be seen from Table 1, according to the present invention, it is possible to obtain a thermoelectric conversion element having no positional deviation between the electrodes 21 and 22 and the thermoelectric semiconductor chip and having excellent junction reliability between them. .

【0041】[0041]

【発明の効果】本発明によれば,熱電半導体チップと電
極との接合位置ズレがなく,使用時における熱電半導体
チップと電極との接合信頼性に優れ,かつ発熱,冷却効
果に優れた熱電変換素子及びその製造方法を提供するこ
とができる。
According to the present invention, there is no misalignment between the thermoelectric semiconductor chip and the electrode, the thermoelectric semiconductor chip and the electrode are excellent in the reliability of use and the thermoelectric conversion excellent in the heat generation and cooling effects during use. An element and a method for manufacturing the element can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,熱電変換素子の説明
図。
FIG. 1 is an explanatory diagram of a thermoelectric conversion element according to a first embodiment.

【図2】実施形態例1における,熱電変換素子の斜視
図。
FIG. 2 is a perspective view of a thermoelectric conversion element according to the first embodiment.

【図3】実施形態例1における,治具内に熱電半導体チ
ップを配設する場合の斜視図。
FIG. 3 is a perspective view showing a case where a thermoelectric semiconductor chip is provided in a jig in the first embodiment.

【図4】実施形態例1における,治具内に熱電半導体チ
ップを配設する場合の断面説明図。
FIG. 4 is an explanatory cross-sectional view illustrating a case where a thermoelectric semiconductor chip is provided in a jig according to the first embodiment.

【図5】実施形態例1における,熱電半導体チップの内
に合成樹脂を注入する場合の説明図。
FIG. 5 is an explanatory diagram in the case of injecting a synthetic resin into the thermoelectric semiconductor chip according to the first embodiment.

【図6】実施形態例1における,中間体の斜視図。FIG. 6 is a perspective view of an intermediate according to the first embodiment.

【図7】実施形態例1における,電極及び熱交換基板の
斜視図。
FIG. 7 is a perspective view of an electrode and a heat exchange substrate according to the first embodiment.

【図8】実施形態例2における,治具内に熱電半導体チ
ップを配設する場合の断面説明図。
FIG. 8 is a cross-sectional view illustrating a case where a thermoelectric semiconductor chip is provided in a jig according to a second embodiment.

【図9】実施形態例2における,熱電半導体チップの内
に合成樹脂を注入する場合の説明図。
FIG. 9 is an explanatory diagram in the case of injecting a synthetic resin into a thermoelectric semiconductor chip according to the second embodiment.

【図10】実施形態例2における,中間体の説明図。FIG. 10 is an explanatory diagram of an intermediate according to the second embodiment.

【図11】実施形態例2における,スライス中間体の斜
視図。
FIG. 11 is a perspective view of a slice intermediate according to the second embodiment.

【図12】実施形態例2における,電極の側面断面図。FIG. 12 is a side sectional view of an electrode according to the second embodiment.

【図13】実施形態例2における,電極の斜視説明図。FIG. 13 is an explanatory perspective view of an electrode according to the second embodiment.

【図14】実施形態例2における,熱電変換素子の説明
図。
FIG. 14 is an explanatory diagram of a thermoelectric conversion element according to a second embodiment.

【図15】従来例における,熱電変換素子の説明図。FIG. 15 is an explanatory diagram of a thermoelectric conversion element in a conventional example.

【図16】従来例における,熱交換基板上への熱電半導
体チップの配設状態の説明図。
FIG. 16 is an explanatory view of a state in which a thermoelectric semiconductor chip is disposed on a heat exchange substrate in a conventional example.

【図17】従来例における,熱電変換素子の斜視図。FIG. 17 is a perspective view of a thermoelectric conversion element in a conventional example.

【図18】従来例における,熱電変換素子の製造方法の
説明図。
FIG. 18 is an explanatory view of a method of manufacturing a thermoelectric conversion element in a conventional example.

【図19】従来例における,問題点を示す説明図。FIG. 19 is an explanatory diagram showing a problem in a conventional example.

【符号の説明】[Explanation of symbols]

11...P型熱電半導体チップ, 12...N型熱電半導体チップ, 21,22...電極, 210,220...熱交換基板, 216,226...凹状空間部, 3...樹脂部, 30...合成樹脂, 4,40...治具, 35,36...中間体, 37...スライス中間体, 11. . . 11. P-type thermoelectric semiconductor chip; . . N-type thermoelectric semiconductor chip, 21, 22,. . . Electrodes, 210, 220. . . Heat exchange substrate, 216, 226. . . 2. concave space, . . 30. resin part, . . Synthetic resin, 4,40. . . Jig, 35, 36. . . Intermediate, 37. . . Slice intermediate,

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 相対向して配設された一対の熱交換基板
と,該熱交換基板の内側面にそれぞれ設けた複数の電極
と,上記一対の熱交換基板の各電極の間に隣り合って配
置され,上記電極によって直列接続された,P型熱電半
導体チップとN型熱電半導体チップとよりなる熱電変換
素子において,上記熱電半導体チップの間には合成樹脂
よりなる樹脂部を設けてなり,かつ該樹脂部と上記熱交
換基板との間には空隙部を設けてなることを特徴とする
熱電変換素子。
1. A pair of heat exchange substrates disposed opposite to each other, a plurality of electrodes provided on inner surfaces of the heat exchange substrates, and a plurality of electrodes adjacent to each other between the electrodes of the pair of heat exchange substrates. A thermoelectric conversion element comprising a P-type thermoelectric semiconductor chip and an N-type thermoelectric semiconductor chip arranged in series and connected in series by the electrodes, wherein a resin portion made of a synthetic resin is provided between the thermoelectric semiconductor chips; A thermoelectric conversion element characterized in that a gap is provided between the resin portion and the heat exchange substrate.
【請求項2】 請求項1において,上記合成樹脂は,エ
ポキシ樹脂,フェノール樹脂,ポリウレタン樹脂,アク
リル樹脂,スチレン樹脂の1種又は2種以上よりなる多
孔質発泡体であることを特徴とする熱電変換素子。
2. The thermoelectric device according to claim 1, wherein the synthetic resin is a porous foam made of one or more of epoxy resin, phenol resin, polyurethane resin, acrylic resin, and styrene resin. Conversion element.
【請求項3】 請求項1又は2において,上記樹脂部に
は,ガラス中空体,石英中空体,ポリエチレン樹脂中空
体,ポリウレタン樹脂中空体,ポリプロピレン樹脂中空
体,ポリウレタン樹脂中空体,アクリル樹脂中空体,ス
チレン樹脂中空体,ポリカーボネート樹脂中空体の1種
又は2種以上よりなる低熱伝導粒子が分散混合されてい
ることを特徴とする熱電変換素子。
3. The resin part according to claim 1, wherein the resin portion includes a glass hollow body, a quartz hollow body, a polyethylene resin hollow body, a polyurethane resin hollow body, a polypropylene resin hollow body, a polyurethane resin hollow body, and an acrylic resin hollow body. A thermoelectric conversion element, wherein low thermal conductive particles of one or more of a styrene resin hollow body and a polycarbonate resin hollow body are dispersed and mixed.
【請求項4】 請求項1〜3のいずれか一項において,
上記電極は,上記熱電半導体チップと接触していない部
分に,凹状空間部を有し,かつ該凹状空間部は上記樹脂
部と接触していないことを特徴とする熱電変換素子。
4. The method according to claim 1, wherein:
The thermoelectric conversion element, wherein the electrode has a concave space portion in a portion not in contact with the thermoelectric semiconductor chip, and the concave space portion is not in contact with the resin portion.
【請求項5】 容器状の治具内にP型熱電半導体チップ
とN型熱電半導体チップとを交互に配置し,これら熱電
半導体チップの間に電極接続部を除いて合成樹脂を充填
し,樹脂部を形成して,上記熱電半導体チップを樹脂部
により固定した中間体を作製し,次いで,上記P型熱電
半導体チップとN型熱電半導体チップとを交互に直列接
続されるように電極に対して接合することを特徴とする
熱電変換素子の製造方法。
5. A P-type thermoelectric semiconductor chip and an N-type thermoelectric semiconductor chip are alternately arranged in a container-like jig, and a synthetic resin is filled between these thermoelectric semiconductor chips except for an electrode connection portion. Forming an intermediate part, in which the thermoelectric semiconductor chip is fixed with a resin part, and then the P-type thermoelectric semiconductor chip and the N-type thermoelectric semiconductor chip are alternately connected in series to the electrodes. A method for manufacturing a thermoelectric conversion element, comprising joining.
【請求項6】 請求項5において,上記中間体は,上記
熱電半導体チップの厚み方向に複数個にスライス切断し
てスライス中間体となし,該スライス中間体における上
記P型熱電半導体チップとN型熱電半導体チップとを電
極に接合することを特徴とする熱電変換素子の製造方
法。
6. The slice intermediate according to claim 5, wherein the intermediate is sliced into a plurality of slices in the thickness direction of the thermoelectric semiconductor chip to form a slice intermediate, and the P-type thermoelectric semiconductor chip and the N-type in the slice intermediate are formed. A method for manufacturing a thermoelectric conversion element, comprising joining a thermoelectric semiconductor chip to an electrode.
JP12357497A 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof Expired - Fee Related JP4003254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12357497A JP4003254B2 (en) 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12357497A JP4003254B2 (en) 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10303472A true JPH10303472A (en) 1998-11-13
JP4003254B2 JP4003254B2 (en) 2007-11-07

Family

ID=14863959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12357497A Expired - Fee Related JP4003254B2 (en) 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4003254B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244026A (en) * 1999-02-17 2000-09-08 Seiko Instruments Inc Thermoelectric transfer element and its manufacture
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
KR101351683B1 (en) * 2012-02-09 2014-01-16 부산대학교 산학협력단 flexible thermoelectric element assembly united with heatsink and the manufacturing method of it
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
JP2015038961A (en) * 2013-07-17 2015-02-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion layer forming composition
WO2015186328A1 (en) * 2014-06-03 2015-12-10 株式会社デンソー Thermoelectric conversion element sheet, method for manufacturing same, and method for manufacturing thermoelectric conversion device
KR20170100515A (en) * 2014-12-26 2017-09-04 린텍 가부시키가이샤 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
WO2024029140A1 (en) * 2022-08-04 2024-02-08 マクセル株式会社 Peltier element and electronic device comprising peltier element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838994B1 (en) * 1967-03-24 1973-11-21
JPH07162039A (en) * 1993-12-10 1995-06-23 Sharp Corp Thermoelectric conversion device, heat exchange element, and device using them
JPH08225340A (en) * 1995-02-22 1996-09-03 Asahi Glass Co Ltd Phosphate-based glass microballoon
JPH08228027A (en) * 1994-12-22 1996-09-03 Union Material Kk Thermoelectric semiconductor element and manufacturing method thereof
JPH0955541A (en) * 1995-08-14 1997-02-25 Komatsu Electron Kk Thermoelectric device
JPH09293909A (en) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd Thermoelectric module and method for manufacturing it
JPH09321356A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Thermoelectric module and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838994B1 (en) * 1967-03-24 1973-11-21
JPH07162039A (en) * 1993-12-10 1995-06-23 Sharp Corp Thermoelectric conversion device, heat exchange element, and device using them
JPH08228027A (en) * 1994-12-22 1996-09-03 Union Material Kk Thermoelectric semiconductor element and manufacturing method thereof
JPH08225340A (en) * 1995-02-22 1996-09-03 Asahi Glass Co Ltd Phosphate-based glass microballoon
JPH0955541A (en) * 1995-08-14 1997-02-25 Komatsu Electron Kk Thermoelectric device
JPH09293909A (en) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd Thermoelectric module and method for manufacturing it
JPH09321356A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Thermoelectric module and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244026A (en) * 1999-02-17 2000-09-08 Seiko Instruments Inc Thermoelectric transfer element and its manufacture
JP2000286463A (en) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd Thermoelectric conversion module
KR101351683B1 (en) * 2012-02-09 2014-01-16 부산대학교 산학협력단 flexible thermoelectric element assembly united with heatsink and the manufacturing method of it
JP5956608B2 (en) * 2012-11-29 2016-07-27 京セラ株式会社 Thermoelectric module
WO2014084363A1 (en) * 2012-11-29 2014-06-05 京セラ株式会社 Thermoelectric module
JPWO2014084363A1 (en) * 2012-11-29 2017-01-05 京セラ株式会社 Thermoelectric module
JP2015038961A (en) * 2013-07-17 2015-02-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion layer forming composition
JP2016012716A (en) * 2014-06-03 2016-01-21 株式会社デンソー Thermoelectric conversion element sheet, manufacturing method thereof, and manufacturing method of thermoelectric conversion device
WO2015186328A1 (en) * 2014-06-03 2015-12-10 株式会社デンソー Thermoelectric conversion element sheet, method for manufacturing same, and method for manufacturing thermoelectric conversion device
KR20170100515A (en) * 2014-12-26 2017-09-04 린텍 가부시키가이샤 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
JPWO2016103784A1 (en) * 2014-12-26 2017-10-05 リンテック株式会社 Thermally conductive adhesive sheet, method for producing the same, and electronic device using the same
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
WO2024029140A1 (en) * 2022-08-04 2024-02-08 マクセル株式会社 Peltier element and electronic device comprising peltier element

Also Published As

Publication number Publication date
JP4003254B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP2533511B2 (en) Electronic component connection structure and manufacturing method thereof
JP5241928B2 (en) Thermoelectric element module and method of manufacturing thermoelectric element
WO1997045882A1 (en) Method for manufacturing thermoelectric module
JP2006339497A (en) Semiconductor package equipped with socket function, semiconductor module, electronic circuit module and circuit board with socket
JPH10229147A (en) Connection of cantilever ball for integrated circuit chip package
JPWO2013118478A1 (en) Semiconductor device
JPH10303472A (en) Thermoelectric conversion element and its manufacture
US9076782B2 (en) Semiconductor device and method of manufacturing same
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JP2007067231A (en) Thermoelectric module
JP3956405B2 (en) Thermoelectric module manufacturing method
JPH10229223A (en) Thermoelectric element
JPH1187787A (en) Production of thermoelectrtc module
CN108336640B (en) High-power semiconductor laser and preparation method thereof
WO2022209786A1 (en) Thermoelectric conversion module
JP4294965B2 (en) Thermoelectric conversion module
JP2020136293A (en) Semiconductor device and manufacturing method thereof
WO2023042372A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2019016658A (en) Optical module and method for manufacturing the same
JPH05275754A (en) Thermomodule
JP2006295063A (en) Thermoelectric transducing module
JPH10303470A (en) Thermoelectric cooler
JPH11307825A (en) Thermoelectric module and its manufacture
JP2000353829A (en) Thermoelectric module and manufacture of the same
JPH01100957A (en) Hybrid ic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees