JPH0922692A - Cobalt hydroxide and tricobalt tetraoxide for active material of nonaqueous electrolyte battery and manufacture thereof - Google Patents

Cobalt hydroxide and tricobalt tetraoxide for active material of nonaqueous electrolyte battery and manufacture thereof

Info

Publication number
JPH0922692A
JPH0922692A JP7168489A JP16848995A JPH0922692A JP H0922692 A JPH0922692 A JP H0922692A JP 7168489 A JP7168489 A JP 7168489A JP 16848995 A JP16848995 A JP 16848995A JP H0922692 A JPH0922692 A JP H0922692A
Authority
JP
Japan
Prior art keywords
cobalt
tank
active material
cobalt hydroxide
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7168489A
Other languages
Japanese (ja)
Other versions
JP3394364B2 (en
Inventor
Shoichiro Watanabe
庄一郎 渡邊
Akira Hashimoto
彰 橋本
Toyoji Sugimoto
豊次 杉本
Hideyuki Kita
秀行 北
Tokuyoshi Iida
得代志 飯田
Toshio Miyagawa
敏夫 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA KAGAKU KENKYUSHO KK
Panasonic Holdings Corp
Original Assignee
TANAKA KAGAKU KENKYUSHO KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA KAGAKU KENKYUSHO KK, Matsushita Electric Industrial Co Ltd filed Critical TANAKA KAGAKU KENKYUSHO KK
Priority to JP16848995A priority Critical patent/JP3394364B2/en
Publication of JPH0922692A publication Critical patent/JPH0922692A/en
Application granted granted Critical
Publication of JP3394364B2 publication Critical patent/JP3394364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery having the excellent cycle characteristic by controlling the arrangement of cobalt atoms in a particle, particle shape and particle diameter in the manufacture of cobalt compound as the raw material of the positive electrode active material. SOLUTION: As a deposit tank for manufacturing cobalt hydroxide, a 100l tank is used, and as the cobalt salt solution, cobalt sulfate, which is obtained by dissolving the cobalt metal at 60g/l, is used, and as the caustic alkali solution, the sodium hydroxide solution at 25% by weight is used. The cobalt salt solution is maintained at 8l/h of constant flow quantity and at 40 deg.C of in-tank temperature, and sufficiently agitated, and the sodium hydroxide solution is added so as to maintain the pH at 11-13.5. Thereafter, washing and dehydration is performed, and the cobalt salt solution is heated at 200-700 deg.C in the air atmosphere so as to obtain the tri cobalt tetraoxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池用
正極活物質であるリチウム複合コバルト酸化物の合成に
用いる原材料に関するものであり、とくに水酸化コバル
トとこれを熱処理して得られる四酸化三コバルトに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material used for synthesizing a lithium composite cobalt oxide which is a positive electrode active material for a non-aqueous electrolyte secondary battery, and particularly to a cobalt hydroxide and a material obtained by heat treating the same. The present invention relates to tricobalt tetroxide.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。現在、これら電子機
器の駆動用電源としての役割を、ニッケル−カドミウム
電池あるいは密閉型小型鉛蓄電池が担っているが、ポー
タブル化、コードレス化が進展し、定着するにしたが
い、駆動用電源となる二次電池の高エネルギー密度化、
小型軽量化の要望が強くなっている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless use is rapidly progressing. Currently, nickel-cadmium batteries or sealed small lead-acid batteries play the role of power sources for driving these electronic devices. However, as portable devices and cordless devices have progressed and they have become established, they will become drive power sources. High energy density of secondary batteries,
The demand for smaller and lighter is increasing.

【0003】このような状況から、高い充放電電圧を示
すリチウム複合遷移金属酸化物例えばLiCoO2を正
極活物質に用い、リチウムイオンの挿入、離脱を利用し
た非水電解液二次電池が提案されている。(例えば特開
昭63−59507号公報) 特にLiCoO2については例えば特開平1−3046
64号公報、特開平5−151998号公報、特開平5
−54888号公報に見られるようにその製法や形状、
粒子の大きさ等を検討したものが多数報告されている。
Under such circumstances, a non-aqueous electrolyte secondary battery has been proposed in which a lithium composite transition metal oxide exhibiting a high charge / discharge voltage, for example, LiCoO 2 , is used as a positive electrode active material, and insertion and removal of lithium ions are utilized. ing. (For example, Japanese Unexamined Patent Publication No. 63-59507) Particularly, for LiCoO 2 , for example, Japanese Unexamined Patent Publication No. 1-3046.
64, JP-A-5-151998, JP-A-5
The manufacturing method and the shape,
Many reports have been made on the study of particle size and the like.

【0004】[0004]

【発明が解決しようとする課題】しかし、これまで報告
されているLiCoO2を正極活物質に用いた非水電解
液二次電池では、充放電サイクルを繰り返し行う事によ
り、その電池放電容量が徐々に減少するというサイクル
劣化の問題が明らかとなった。
However, in the non-aqueous electrolyte secondary battery using LiCoO 2 as the positive electrode active material, which has been reported so far, the battery discharge capacity is gradually increased by repeating the charge / discharge cycle. It became clear that the problem of cycle deterioration was that the number of cycles decreased.

【0005】本発明者らが、十分検討を重ねた結果、こ
のような特性劣化は以下のことが原因であることが解っ
た。
As a result of thorough investigations by the present inventors, it has been found that such characteristic deterioration is caused by the following.

【0006】すなわち、サイクル劣化した電池を分解
し、極板の観察を行った結果、充放電サイクルを繰り返
した正極板では、正極活物質の微粉化が起こっている事
が判明した。
That is, as a result of disassembling the cycle-deteriorated battery and observing the electrode plate, it was found that in the positive electrode plate after repeated charge and discharge cycles, the positive electrode active material was pulverized.

【0007】LiCoO2は電池の充放電にともない、
その格子定数が変化する事が報告されており(J.N.
Reimers and J.R.Dahn J.El
ectrochem.Soc.2091,vol.13
9(1992))、特に結晶のC軸方向の膨張収縮が大
きい事が知られている。
LiCoO 2 is used as the battery is charged and discharged,
It has been reported that the lattice constant changes (J.N.
Reimers and J.M. R. Dahn J. El
electrochem. Soc. 2091, vol. 13
9 (1992)), and it is known that the crystal particularly expands and contracts in the C-axis direction.

【0008】このように充放電サイクルを繰り返す事に
よって活物質が膨張、収縮し、粒子の微細化や、極板か
らの離脱が生じ、充放電に関与できる活物質量が減少し
た事が原因である事が明かとなった。
Due to the fact that the active material expands and contracts by repeating the charge and discharge cycle in this way, the particles become finer and detach from the electrode plate, and the amount of the active material that can participate in the charge and discharge decreases. One thing became clear.

【0009】本発明の目的は、上記した従来の正極に関
する問題点の解決を図るものであり、特定の原料を用い
て合成することによってより良い、正極活物質を提供
し、充放電特性の優れた非水電解液二次電池を提供する
ものである。
An object of the present invention is to solve the above-mentioned problems associated with the conventional positive electrode, to provide a better positive electrode active material by synthesizing using a specific raw material, and to provide excellent charge / discharge characteristics. And a non-aqueous electrolyte secondary battery.

【0010】[0010]

【課題を解決するための手段】このような問題を解決す
るために、我々は、正極活物質の原料であるコバルト化
合物の製造方法について鋭意検討を行い、粒子内におけ
るコバルト原子の配列、粒子形状、粒子径を制御するこ
とにより、サイクル劣化を完全に防止するに至った。
[Means for Solving the Problems] In order to solve such a problem, we have diligently studied a method for producing a cobalt compound, which is a raw material of a positive electrode active material, and have made an arrangement of cobalt atoms in the particle and a shape of the particle. By controlling the particle size, cycle deterioration was completely prevented.

【0011】具体的に本発明は、LiCoO2を正極活
物質として合成する際のコバルト源としてコバルト水酸
化物を200℃〜700℃の温度範囲で熱処理したもの
を用い、このコバルト水酸化物はpH、温度を調整した
槽内にコバルト塩水溶液とか性アルカリ水溶液をその濃
度、流量を制御しながら連続的に供給、撹拌して得たも
のである。
Specifically, the present invention uses a cobalt hydroxide which is heat-treated in a temperature range of 200 ° C. to 700 ° C. as a cobalt source when synthesizing LiCoO 2 as a positive electrode active material. It was obtained by continuously supplying and stirring an aqueous cobalt salt solution and an aqueous alkaline solution while controlling the concentration and flow rate in a tank whose pH and temperature were adjusted.

【0012】コバルト塩としては硫酸コバルトもしくは
硫酸コバルトと塩化コバルトの混合水溶液が好ましく、
混合塩水溶液の濃度、供給量、槽内温度が一定として、
pH値が11.0〜13.5の範囲内に制御する事が望
ましい。
The cobalt salt is preferably cobalt sulfate or a mixed aqueous solution of cobalt sulfate and cobalt chloride,
Assuming that the concentration of the mixed salt aqueous solution, the supply amount, and the temperature inside the tank are constant,
It is desirable to control the pH value within the range of 11.0 to 13.5.

【0013】また、硫酸コバルトと塩化コバルトの混合
塩水溶液における硫酸イオンと塩素イオンのモル比(C
-/SO4 2-)は0より大きく5以下である事が望まし
い。
Further, the molar ratio of the sulfate ion to the chloride ion in the mixed salt aqueous solution of cobalt sulfate and cobalt chloride (C
It is desirable that l / SO 4 2− ) be greater than 0 and 5 or less.

【0014】更に本発明における製造法のような高いp
H領域では生成したコバルト水酸化物が酸化され易いた
め、安定化のために槽内に添加剤として硫酸アンモニウ
ム、塩化アンモニウム、硫酸ナトリウム、塩化ナトリウ
ム、ヒドラジン、ヒドラジン塩の少なくとも1種を添加
することが好ましい。
Furthermore, the high p as in the manufacturing method of the present invention is used.
In the H region, since the generated cobalt hydroxide is easily oxidized, at least one of ammonium sulfate, ammonium chloride, sodium sulfate, sodium chloride, hydrazine and hydrazine salt may be added as an additive in the tank for stabilization. preferable.

【0015】このような方法で製造されたコバルト水酸
化物は板状をしており、SEM写真における定方向径
(Feret diameter)を0.1〜10μm
に制御することが可能となり、このようなコバルト化合
物を熱処理して四酸化三コバルトを得てさらにこの四酸
化三コバルトを用いてLiCoO2を作製し正極活物質
として用いることにより、前記課題を解決することがで
きる。
The cobalt hydroxide produced by such a method has a plate-like shape, and the directional diameter (Feret diameter) in the SEM photograph is 0.1 to 10 μm.
The above problem can be solved by heat-treating such a cobalt compound to obtain tricobalt tetroxide, and using this tricobalt tetroxide to prepare LiCoO 2 and using it as a positive electrode active material. can do.

【0016】なお、定方向径(Feret diame
ter)とは、SEM写真において様々な方向を向いた
粒子の径をある一定方向から読みとり、平均した物であ
る。(参考文献:粉体工学の基礎 p.285(日刊工
業新聞社編))
It should be noted that the constant direction diameter (Feret diameter)
ter) is an average value obtained by reading the diameters of particles in various directions in a SEM photograph from a certain direction. (Reference: Basics of powder engineering p.285 (edited by Nikkan Kogyo Shimbun))

【0017】[0017]

【作用】コバルト塩である炭酸コバルト、酸化コバルト
等は粒子中における結晶はランダムに配列したいわゆる
多結晶状態であり、このためこれらを原料に用いたLi
CoO2は同様の多結晶状態となる。
[Function] Cobalt salts such as cobalt carbonate and cobalt oxide are in a so-called polycrystal state in which crystals are randomly arranged in the particles.
CoO 2 is in the same polycrystalline state.

【0018】また、特開平5−54888号公報に示す
様に、コバルト塩として水酸化コバルトを原料にした場
合も、単にコバルト塩水溶液にアルカリ溶液を加えて生
成する水酸化コバルトはその反応溶液中におけるpH、
温度、撹拌等が一定でないため水酸化コバルト粒子成長
の条件が不安定となり、生成する水酸化コバルトはやは
り多結晶な物となってしまう。
Further, as shown in JP-A-5-54888, even when cobalt hydroxide is used as a raw material as a cobalt salt, cobalt hydroxide produced by simply adding an alkaline solution to an aqueous solution of cobalt salt is present in the reaction solution. PH at
Since the temperature, stirring, etc. are not constant, the conditions for growing the cobalt hydroxide particles become unstable, and the formed cobalt hydroxide is also polycrystalline.

【0019】そのためこのような多結晶なコバルト化合
物を原料として用いた場合、合成されるLiCoO2
微細な結晶がランダムに配列した多結晶構造となる。
Therefore, when such a polycrystalline cobalt compound is used as a raw material, LiCoO 2 synthesized also has a polycrystalline structure in which fine crystals are randomly arranged.

【0020】このような多結晶構造を有するLiCoO
2を用いて二次電池を構成し、充放電を行った場合、微
細な結晶が膨張、収縮を繰り返す事によって、多結晶体
粒子中の結晶粒界において構造が破壊され、粒子が微細
化し、電池集電体から脱離する。その結果電池の放電容
量が低下しサイクル劣化を引き起こしている事が明かと
なった。
LiCoO having such a polycrystalline structure
When a secondary battery is constructed using 2 , when charging and discharging are performed, fine crystals repeatedly expand and contract, thereby destroying the structure at the crystal grain boundaries in the polycrystalline particles and making the particles finer, Disconnect from the battery current collector. As a result, it became clear that the discharge capacity of the battery was reduced and cycle deterioration was caused.

【0021】しかし、本発明のコバルト水酸化物の製造
方法を用いた場合、コバルト塩の濃度、槽温度、撹拌速
度、pH等を制御する事により、槽内で生成した微細な
結晶が成長する形でコバルト水酸化物粒子を形成するた
め、結晶が非常に良好な状態で同一方向に配列してい
る。
However, when the method for producing cobalt hydroxide according to the present invention is used, fine crystals produced in the tank grow by controlling the concentration of the cobalt salt, tank temperature, stirring speed, pH and the like. In order to form cobalt hydroxide particles, the crystals are aligned in the same direction in a very good state.

【0022】そして、このコバルト水酸化物におけるコ
バルト原子の結晶学的な配列が保たれた状態で四酸化三
コバルト(Co34)が作製され、この四酸化三コバル
ト(Co34)とリチウム塩とを反応させてLiCoO
2を作製すると、結晶粒界の非常に少ないLiCoO2
得られる。このような構造を有するLiCoO2を用い
て二次電池を構成し、充放電を行った場合、粒子構造破
壊の原因となる結晶粒界が非常に少ない為、粒子の微細
化、脱落が防止でき、良好なサイクル特性を実現する事
ができる。
[0022] Then, the tricobalt tetroxide in cobalt hydroxide in a state of crystallographic arrangement is kept cobalt atom (Co 3 O 4) is produced, the tricobalt tetraoxide (Co 3 O 4) To react with lithium salt to form LiCoO
When 2 is produced, LiCoO 2 having very few crystal grain boundaries can be obtained. When a rechargeable battery is constructed using LiCoO 2 having such a structure and charged and discharged, there are very few crystal grain boundaries that cause particle structure destruction, so that it is possible to prevent the particles from becoming fine and falling off. Good cycle characteristics can be realized.

【0023】また、高いpH領域においては生成したコ
バルト水酸化物が容易に酸化され易く、十分な結晶成長
が阻害され易くなる。
Further, in a high pH region, the produced cobalt hydroxide is easily oxidized, and sufficient crystal growth is easily hindered.

【0024】このため、槽内への添加剤として硫酸アン
モニウム、塩化アンモニウム、硫酸ナトリウム、塩化ナ
トリウム、ヒドラジン、ヒドラジン塩を用いると生成し
たコバルト水酸化物の結晶核が安定化し、より十分に結
晶の成長した粒子を得る事ができる。
Therefore, when ammonium sulfate, ammonium chloride, sodium sulfate, sodium chloride, hydrazine, or hydrazine salt is used as an additive in the bath, the crystal nuclei of the produced cobalt hydroxide are stabilized, and the crystal growth is more sufficiently achieved. The obtained particles can be obtained.

【0025】[0025]

【実施例】以下、図面とともに本発明の具体的な実施例
を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings.

【0026】図1に本実施例および比較例で用いた円筒
系電池の縦断面図を示す。図1において1は耐有機電解
液性のステンレス鋼板を加工した電池ケース、2は安全
弁を設けた封口板、3は絶縁パッキングを示す。4は極
板群であり、正極板5および負極板6がセパレータ7を
介して複数回渦巻状に巻回されてケース内に収納されて
いる。そして上記正極板5からは正極アルミリード5a
が引き出されて封口板2に接続され、負極板6からは負
極ニッケルリード6aが引き出されて電池ケース1の底
部に接続されている。8は絶縁リングで極板群4の上下
部にそれぞれ設けられている。
FIG. 1 shows a vertical cross-sectional view of the cylindrical battery used in this example and the comparative example. In FIG. 1, 1 is a battery case formed by processing a stainless steel plate resistant to organic electrolyte, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode plate 5 and the negative electrode plate 6 are spirally wound a plurality of times via the separator 7 and housed in the case. Then, from the positive electrode plate 5, a positive electrode aluminum lead 5a is formed.
Is drawn out and connected to the sealing plate 2, and the negative electrode nickel lead 6a is drawn out from the negative electrode plate 6 and connected to the bottom portion of the battery case 1. Reference numeral 8 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0027】以下、負極板6、電解液等について詳しく
説明する。負極板6は、コークスを加熱処理した炭素粉
100重量部に、フッ素樹脂系結着剤10重量部を混合
し、カルボキシメチルセルロース水溶液に懸濁させてペ
ースト状にした。そしてこのペーストを厚さ0.015
mmの銅箔の表面に塗着し、乾燥後0.2mmに圧延
し、幅37mm、長さ280mmの大きさに切り出して
負極板とした。
The negative electrode plate 6, the electrolytic solution and the like will be described in detail below. The negative electrode plate 6 was made into a paste by mixing 100 parts by weight of carbon powder obtained by heat-treating coke with 10 parts by weight of a fluororesin-based binder and suspending the mixture in an aqueous carboxymethyl cellulose solution. And this paste is 0.015
It was applied to the surface of a copper foil of mm, dried and rolled to 0.2 mm, and cut into a size of width 37 mm and length 280 mm to obtain a negative electrode plate.

【0028】電解液には炭酸エチレンと炭酸ジエチルの
等容積混合溶媒に、六フッ化リン酸リチウム1モル/l
の割合で溶解したものを用いて極板群4に注入した後、
電池を密封口し、試験電池とした。
As the electrolytic solution, 1 mol / l of lithium hexafluorophosphate was mixed in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate.
After injecting into the electrode plate group 4 using the one dissolved at a ratio of
The battery was sealed and used as a test battery.

【0029】以下、正極活物質の合成法について詳しく
説明する。コバルト水酸化物を製造する析出槽として、
100lのタンクを用い、コバルト塩水溶液として60
g/lのコバルト金属を溶解した硫酸コバルト、か性ア
ルカリ水溶液として25重量%の水酸化ナトリウム溶液
を用いた。このタンク内へコバルト塩溶液を8l/hの
一定流量で導入し、槽内温度を40℃に保ち、十分撹拌
しながら、水酸化ナトリウム溶液を一定範囲内のpH値
を保持するために間欠的に添加した。
The method for synthesizing the positive electrode active material will be described in detail below. As a precipitation tank for producing cobalt hydroxide,
Using a 100 l tank, 60 as a cobalt salt aqueous solution
A 25% by weight sodium hydroxide solution was used as a caustic alkaline aqueous solution of cobalt sulfate in which g / l of cobalt metal was dissolved. The cobalt salt solution was introduced into this tank at a constant flow rate of 8 l / h, the temperature inside the tank was kept at 40 ° C., and the sodium hydroxide solution was intermittently maintained to maintain a pH value within a predetermined range while sufficiently stirring. Was added to.

【0030】なおpHは槽温度において測定を行ってい
る。この一定範囲のpH値として、10.75〜11.
0、11.0〜11.25、11.25〜11.5、1
1.5〜11.75、11.75〜12.0、12.0
〜12.25、12.25〜12.5、12.5〜1
2.75、12.75〜13.0、13.0〜13.2
5、13.25〜13.5、13.5〜13.75の1
2段階に変化させてコバルト水酸化物を生成し、水洗、
乾燥した。
The pH is measured at the bath temperature. As the pH value in this certain range, 10.75 to 11.
0, 11.0 to 11.25, 11.25 to 11.5, 1
1.5-11.75, 11.75-12.0, 12.0
~ 12.25, 12.25 ~ 12.5, 12.5 ~ 1
2.75, 12.75 to 13.0, 13.0 to 13.2
5, 13.25 to 13.5, 13.5 to 13.75
Cobalt hydroxide is generated in two steps, washed with water,
Dried.

【0031】図2に本実施例による方法で製造されたコ
バルト水酸化物のSEM写真観察における結晶構造の模
式図を示す。図から判るように本実施例の方法で製造し
たコバルト水酸化物は全て図2に示したような板状の粒
子となっている。
FIG. 2 shows a schematic diagram of the crystal structure of the cobalt hydroxide produced by the method according to this example, as observed by an SEM photograph. As can be seen from the figure, all the cobalt hydroxides produced by the method of this example are plate-like particles as shown in FIG.

【0032】なお、pHの測定は40℃の状態で測定を
行い、例えばpHを11.25〜11.5で制御した場
合、析出pH値は下限値が11.25、上限値が11.
5の範囲で変化している。
The pH is measured at 40 ° C. When the pH is controlled at 11.25 to 11.5, for example, the precipitation pH value has a lower limit value of 11.25 and an upper limit value of 11.
It changes in the range of 5.

【0033】実際にはpH値が11.28になると水酸
化ナトリウム水溶液が添加され、pH値が11.42に
なると水酸化ナトリウムの供給ポンプが停止するように
設定されている。
In practice, the sodium hydroxide aqueous solution is added when the pH value reaches 11.28, and the sodium hydroxide supply pump is set to stop when the pH value reaches 11.42.

【0034】その後、水洗、脱水処理を行った後、空気
雰囲気下、300℃で熱処理を行い、四三酸化コバルト
とした後、炭酸リチウムと原子比で1対1になるように
混合し、酸化雰囲気下において900℃で10時間焼成
してLiCoO2を合成した。
Then, after washing with water and dehydration, heat treatment is carried out at 300 ° C. in an air atmosphere to form cobalt tetraoxide, and then mixed with lithium carbonate in an atomic ratio of 1: 1 and oxidized. LiCoO 2 was synthesized by firing in an atmosphere at 900 ° C. for 10 hours.

【0035】合成されたLiCoO2は、柔らかい凝集
塊状物として得られ、通常の粉砕機のように強い圧縮力
や、衝撃力、せん断力を印可する必要はなく、弱い加圧
力で容易に粉体状にほぐれる物であり、スクリーンメッ
シュにより容易に微粉体を得る事ができる。
The synthesized LiCoO 2 is obtained as a soft agglomerate, and it is not necessary to apply a strong compressive force, impact force or shearing force as in a usual pulverizer, and it is easily powdered with a weak pressing force. It is a loose material, and a fine powder can be easily obtained with a screen mesh.

【0036】図3に本実施例で合成したLiCoO2
SEM写真観察における結晶構造の模式図を示す。図2
のコバルト水酸化物と同様に板状の粒子が形成されてい
る事が明らかにわかる。
FIG. 3 shows a schematic view of the crystal structure of the LiCoO 2 synthesized in this example, observed by an SEM photograph. FIG.
It can be clearly seen that plate-like particles are formed in the same manner as in the cobalt hydroxide of.

【0037】以後、正極板の製造法を説明する。正極板
は、まず正極活物質であるLiCoO2の粉末100重
量部に、アセチレンブラック3重量部、フッ素樹脂系結
着剤7重量部を混合し、カルボキシメチルセルロース水
溶液に懸濁させてペースト状にする。このペーストをア
ルミ箔の両面に塗着し、250℃で熱処理を行った後、
圧延を行った。
Hereinafter, a method for manufacturing the positive electrode plate will be described. The positive electrode plate is prepared by first mixing 100 parts by weight of LiCoO 2 powder, which is a positive electrode active material, with 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder and suspending them in an aqueous carboxymethylcellulose solution to form a paste. . After applying this paste to both sides of aluminum foil and heat treating at 250 ° C,
It was rolled.

【0038】そして正極板と負極板を、セパレータを介
して渦巻き上に巻回し、直径13.8mm、高さ50m
mの電池ケース内に収納した。
Then, the positive electrode plate and the negative electrode plate were spirally wound with a separator interposed therebetween to have a diameter of 13.8 mm and a height of 50 m.
It was stored in the m battery case.

【0039】このようにして作成した電池をそれぞれ電
池A〜Lとした。 (実施例2)第2実施例として、コバルト塩水溶液とし
て硫酸コバルトと、塩化コバルトの混合塩を使用し、コ
バルト金属として60g/l、硫酸イオンと塩酸イオン
のモル比をそれぞれ80:20、60:40、40:6
0、20:80、0:100(Cl-/SO4 2-モル比
0.25、0.66、1.5、5.0、∞)とし、槽内
のpHを11.75〜12.0に調整する他は(実施例
1)と同様に電池を作成した。
The batteries thus produced were designated as batteries A to L, respectively. (Example 2) As a second example, a mixed salt of cobalt sulfate and cobalt chloride was used as an aqueous cobalt salt solution, 60 g / l was used as cobalt metal, and the molar ratio of sulfate ion to hydrochloric acid ion was 80:20 and 60, respectively. : 40, 40: 6
0, 20:80, 0: 100 (Cl / SO 4 2- molar ratio 0.25, 0.66, 1.5, 5.0, ∞), and the pH in the tank is 11.75 to 12. A battery was prepared in the same manner as in (Example 1) except that the battery was adjusted to 0.

【0040】上記実施例2における電池をそれぞれM、
N、O、P、Qとした。 (実施例3)第3実施例として、添加剤として300p
pmの濃度で槽内に硫酸アンモニウムを添加し、槽内の
pHを11.75〜12.0に調整する他は(実施例
1)と同様に電池を作成した。
The batteries in Example 2 were replaced by M,
N, O, P and Q were used. (Example 3) As a third example, 300 p as an additive
A battery was prepared in the same manner as in (Example 1) except that ammonium sulfate was added to the tank at a concentration of pm to adjust the pH in the tank to 11.75 to 12.0.

【0041】上記実施例3における電池をRとした。 (実施例4)第4実施例として、添加剤として300p
pmの濃度で槽内に塩化アンモニウムを用い、槽内のp
Hを11.75〜12.0に調整する他は(実施例1)
と同様に電池を作成した。
The battery in Example 3 was designated as R. (Example 4) As a fourth example, 300 p as an additive
Using ammonium chloride in the tank at a concentration of pm, p in the tank
Except for adjusting H to 11.75 to 12.0 (Example 1)
A battery was created in the same manner as in.

【0042】上記実施例4における電池をSとした。 (実施例5)第5実施例として、添加剤として300p
pmの濃度で槽内に硫酸ナトリウムを用い、槽内のpH
を11.75〜12.0に調整する他は(実施例1)と
同様に電池を作成した。
The battery in Example 4 was designated as S. (Example 5) As a fifth example, 300 p as an additive
Using sodium sulfate in the tank at a concentration of pm, pH in the tank
Was prepared in the same manner as in (Example 1) except that the value was adjusted to 11.75 to 12.0.

【0043】上記実施例5における電池をTとした。 (実施例6)第6実施例として、添加剤として300p
pmの濃度で槽内に塩化ナトリウムを用い、槽内のpH
を11.75〜12.0に調整する他は(実施例1)と
同様に電池を作成した。
The battery in Example 5 was designated as T. (Example 6) As a sixth example, 300 p as an additive
Using sodium chloride in the tank at a concentration of pm, pH in the tank
Was prepared in the same manner as in (Example 1) except that the value was adjusted to 11.75 to 12.0.

【0044】上記実施例6における電池をUとした。 (実施例7)第7実施例として、添加剤として300p
pmの濃度で槽内にヒドラジンを用い、槽内のpHを1
1.75〜12.0に調整する他は(実施例1)と同様
に電池を作成した。
The battery in Example 6 was designated as U. (Example 7) As a seventh example, 300 p as an additive
Use hydrazine in the tank at a concentration of pm and adjust the pH in the tank to 1
A battery was made in the same manner as in (Example 1) except that the battery was adjusted to 1.75 to 12.0.

【0045】上記実施例7における電池をVとした。 (実施例8)第8実施例として、添加剤としてそれぞれ
300ppmの濃度で槽内に硫酸アンモニウムと塩化ア
ンモニウムの混合物を用い、槽内のpHを11.75〜
12.0に調整する他は(実施例1)と同様に電池を作
成した。
The battery in Example 7 was set to V. (Embodiment 8) As an eighth embodiment, a mixture of ammonium sulfate and ammonium chloride was used as an additive at a concentration of 300 ppm in each tank, and the pH in the tank was 11.75 to.
A battery was made in the same manner as in (Example 1) except that the adjustment was made to 12.0.

【0046】上記実施例8における電池をWとした。 (実施例9)第9実施例として、添加剤としてそれぞれ
300ppmの濃度で槽内に塩化ナトリウムとヒドラジ
ンの混合物を用い、槽内のpHを11.75〜12.0
に調整する他は(実施例1)と同様に電池を作成した。
The battery in Example 8 was designated as W. (Example 9) As a ninth example, a mixture of sodium chloride and hydrazine was used in the tank at a concentration of 300 ppm as an additive, and the pH in the tank was 11.75 to 12.0.
A battery was prepared in the same manner as in (Example 1) except that the adjustment was made to.

【0047】上記実施例9における電池をXとした。 (実施例10)第10実施例として、コバルト塩水溶液
として硝酸コバルト塩を使用し、コバルト金属として6
0g/lとし、槽内のpHを11.75〜12.0に調
整する他は(実施例1)と同様に電池を作成した。
The battery in Example 9 was designated as X. (Embodiment 10) As a tenth embodiment, a cobalt nitrate salt is used as an aqueous solution of cobalt salt, and a cobalt metal of 6 is used.
A battery was made in the same manner as in (Example 1) except that the pH in the tank was adjusted to 11.75 to 12.0 and the pH in the tank was adjusted to 0 g / l.

【0048】上記実施例10における電池をYとした。 (比較例1)比較例1として、粒子の形状が塊状である
炭酸コバルトを原材料とする他は(実施例1)と同様に
LiCoO2を合成した。原料に塊状の物を用いた場
合、合成により得られるLiCoO2も図4に示したよ
うに、ほぼ塊状の物が得られる事が確認できた。
The battery in Example 10 was designated as Y. (Comparative Example 1) As Comparative Example 1, LiCoO 2 was synthesized in the same manner as in (Example 1) except that cobalt carbonate having a lumpy particle shape was used as a raw material. It was confirmed that when a lumpy material was used as the raw material, a substantially lumpy material was obtained as shown in FIG. 4 for LiCoO 2 obtained by synthesis.

【0049】上記比較例1で説明したLiCoO2を正
極活物質として用いる他は実施例1と同様に電池を作成
した。
A battery was prepared in the same manner as in Example 1 except that LiCoO 2 described in Comparative Example 1 was used as the positive electrode active material.

【0050】上記比較例1における電池を電池AAとし
た。 (比較例2)比較例2として、硫酸コバルトを熱処理し
て合成した、粒子の形状が塊状である四酸化三コバルト
を原材料とする他は(実施例1)と同様にLiCoO2
を合成した。この場合においても、合成により得られる
LiCoO2もほぼ塊状の物が得られる事が確認でき
た。
The battery in Comparative Example 1 was designated as battery AA. (Comparative Example 2) As Comparative Example 2, LiCoO 2 was used in the same manner as in (Example 1) except that tricobalt tetraoxide, which was synthesized by heat-treating cobalt sulfate and had a lumpy particle shape, was used as the raw material.
Was synthesized. Also in this case, it was confirmed that LiCoO 2 obtained by the synthesis also had a substantially lumpy form.

【0051】上記比較例2で説明したLiCoO2を正
極活物質として用いる他は実施例1と同様に電池を作成
した。
A battery was prepared in the same manner as in Example 1 except that LiCoO 2 described in Comparative Example 2 was used as the positive electrode active material.

【0052】上記比較例2における電池を電池ABとし
た。本発明の実施例および比較例の製造条件と粉体物性
を(表1)および(表2)に示す。
The battery in Comparative Example 2 was designated as Battery AB. The production conditions and powder physical properties of Examples and Comparative Examples of the present invention are shown in (Table 1) and (Table 2).

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】このようにして作成した電池A〜Vを20
℃、充電終止電圧4.1V、放電終止電圧3.0V、1
00mAで充放電を繰り返し行い、サイクル充放電試験
を行った。
The batteries A to V prepared in this manner were used for 20 times.
℃, charge end voltage 4.1V, discharge end voltage 3.0V, 1
The charging / discharging was repeated at 00 mA to perform a cycle charging / discharging test.

【0056】また、同時に1Aでの高率放電試験を行
い、放電容量の測定を行った。本発明の実施例および比
較例の電池のサイクル試験、高率放電試験の結果を(表
3)に示す。
At the same time, a high rate discharge test at 1 A was conducted to measure the discharge capacity. The results of the cycle test and the high rate discharge test of the batteries of Examples and Comparative Examples of the present invention are shown in (Table 3).

【0057】[0057]

【表3】 [Table 3]

【0058】尚、電池A〜ABはそれぞれ30個組み立て
て試験を行い、(表3)には平均値を示した。
30 batteries A to AB were assembled and tested, and the average values are shown in (Table 3).

【0059】槽内におけるコバルト水酸化物の核生成速
度kは(化1)で示すように、溶液中のコバルト、水酸
化物イオンの濃度によって決定される。
The nucleation rate k of the cobalt hydroxide in the tank is determined by the concentrations of cobalt and hydroxide ions in the solution, as shown in (Chemical formula 1).

【0060】[0060]

【化1】 Embedded image

【0061】(表1)からわかるように、コバルト水酸
化物の粒径はpHが低い領域で生成する程大きくなる。
これはpHが低いほど反応槽内のOH-濃度が小さく、
コバルト水酸化物の槽内での核生成速度が小さいため、
核生成よりもわずかに生成したコバルト水酸化物の結晶
核の成長が優先されるためである。
As can be seen from (Table 1), the particle size of the cobalt hydroxide becomes larger as it is formed in the low pH region.
The lower the pH, the lower the OH - concentration in the reaction tank,
Since the rate of nucleation of cobalt hydroxide in the tank is low,
This is because the growth of the crystal nuclei of the slightly formed cobalt hydroxide is prioritized over the nucleation.

【0062】逆にpHが高くなると小さな結晶核が多量
に生成するため、得られるコバルト水酸化物の粒径は小
さくなる。このため、反応槽内のpH制御は非常に重要
な品質管理のポイントとなる。
On the other hand, when the pH is high, a large amount of small crystal nuclei are produced, so that the particle size of the obtained cobalt hydroxide is small. Therefore, pH control in the reaction tank is a very important quality control point.

【0063】(実施例1)における電池AのようにpH
を11.0より低い領域でコバルト水酸化物を製造した
場合、得られるコバルト水酸化物の粒径が10μm以上
と非常に大きくなる。このようなコバルト水酸化物を原
料として合成されたLiCoO2も同様に大きな粒径の
物が得られ、電池集電体への充填性は大きくなるため、
(表2)に示したように100mA放電での容量は大き
くなり、500サイクルの充放電を繰り返しても、初期
容量の70%以上を示し、サイクル特性が良好である事
がわかる。
As in the battery A in (Example 1), the pH was
When cobalt hydroxide is produced in a region of less than 11.0, the particle size of the obtained cobalt hydroxide is as large as 10 μm or more. LiCoO 2 synthesized using such a cobalt hydroxide as a raw material also has a large particle size, and the filling property in the battery current collector is increased.
As shown in (Table 2), the capacity at 100 mA discharge becomes large, and even after repeating 500 cycles of charging and discharging, it shows 70% or more of the initial capacity, indicating that the cycle characteristics are good.

【0064】しかし、1Aでの高率放電を行うと、Aの
電池のように粒径の大きい物では、比表面積が小さいた
めに活物質と電解液の接触できる面積が小さく、放電時
の分極が大きくなり、放電容量が著しく小さくなる。こ
のため、コバルト水酸化物を製造するpHは11.0以
上が望ましく、コバルト水酸化物の粒径は10μm以下
である事が望ましい。
However, when high-rate discharge at 1 A is performed, in the case of a battery having a large particle size such as the battery A, the area where the active material and the electrolytic solution can come into contact is small and the polarization during discharge is small. Becomes larger and the discharge capacity becomes significantly smaller. Therefore, the pH for producing cobalt hydroxide is preferably 11.0 or higher, and the particle size of cobalt hydroxide is preferably 10 μm or less.

【0065】槽内のpHが高くなると、逆に粒径が小さ
いために比表面積が大きくなり、1Aでの高率放電特性
は良好になるが、pHが13.5以上で製造した電池L
のような場合、粒径が小さすぎるために集電体への充填
性が悪く、放電容量自体が小さくなる。
On the contrary, when the pH in the tank becomes high, the specific surface area becomes large due to the small particle size, and the high rate discharge characteristic at 1 A becomes good, but the battery L manufactured at a pH of 13.5 or higher is obtained.
In such a case, since the particle size is too small, the filling property in the current collector is poor and the discharge capacity itself becomes small.

【0066】このため、コバルト水酸化物を製造するp
Hは13.5以下が望ましく、コバルト水酸化物の粒径
は0.1μm以上である事が望ましい。
Therefore, p for producing cobalt hydroxide
H is preferably 13.5 or less, and the particle size of cobalt hydroxide is preferably 0.1 μm or more.

【0067】(実施例2)に示したように、コバルト水
溶液の原料塩として硫酸コバルトと塩化コバルトの混合
塩を用いた場合でも、電池M,N,O,Pに示したよう
に硫酸コバルト単独で製造した場合と同様に、サイクル
特性、高率放電特性の良好な電池が実現できた。
As shown in (Example 2), even when a mixed salt of cobalt sulfate and cobalt chloride was used as the raw material salt of the cobalt aqueous solution, the cobalt sulfate alone was used as shown in the batteries M, N, O, and P. As in the case of the battery manufactured in 1., a battery having good cycle characteristics and high rate discharge characteristics could be realized.

【0068】しかし、塩化コバルト単独で用いた場合
は、粒径が大きくなり(表3)の電池Qに示すように、
高率放電特性が低下している。
However, when cobalt chloride is used alone, the particle size becomes large, as shown in battery Q in (Table 3),
The high rate discharge characteristics are degraded.

【0069】これは、コバルト水酸化物が生成する際
に、塩素濃度が大きすぎると塩素が特異吸着して核生成
を抑制する効果がある物と考えられ、好ましくない。こ
のため、硫酸コバルトと塩化コバルトの混合塩水溶液に
おける硫酸イオンと塩素イオンのモル比(Cl-/SO4
2-)は0〜5の範囲である事が好ましい。
This is not preferable since it is considered that when the cobalt hydroxide is produced, if the chlorine concentration is too high, chlorine is specifically adsorbed to suppress the nucleation. Therefore, the molar ratio of sulfate ion to chloride ion (Cl / SO 4 in a mixed salt aqueous solution of cobalt sulfate and cobalt chloride) is
2- ) is preferably in the range of 0-5.

【0070】また、(実施例3)〜(実施例7)に示し
たように反応槽内に添加剤として硫酸アンモニウム、塩
化アンモニウム、硫酸ナトリウム、塩化ナトリウム、ヒ
ドラジンをそれぞれ300ppm添加した場合、表2の
電池R,S,T,U,Vに示したようにサイクル特性が
更に向上した。
Further, as shown in (Example 3) to (Example 7), when 300 ppm of ammonium sulfate, ammonium chloride, sodium sulfate, sodium chloride and hydrazine were added to the reaction vessel as additives, respectively, The cycle characteristics were further improved as shown in the batteries R, S, T, U and V.

【0071】これは、これらの添加剤を加える事によっ
て、槽内のコバルトイオンや、コバルト水酸化物が化学
的に安定化するため、添加剤を加えない場合よりもより
結晶性の良好なコバルト水酸化物が得られ、この結果結
晶粒界が少なくなり、よりサイクル特性が向上した物で
ある。
This is because the addition of these additives chemically stabilizes the cobalt ions and the cobalt hydroxide in the tank, so that cobalt having better crystallinity than the case where no additives are added is used. A hydroxide is obtained, and as a result, the number of crystal grain boundaries is reduced, and the cycle characteristics are further improved.

【0072】また、(実施例8)、(実施例9)に示し
たようにこれらの添加剤を複合して添加した電池W,X
では更に良好なサイクル特性が得られ、より好ましい事
がわかる。
Further, as shown in (Example 8) and (Example 9), batteries W and X to which these additives were added in combination were added.
It can be seen that in the case of (1), even better cycle characteristics are obtained, and it is more preferable.

【0073】このように本発明における添加剤を用いて
製造したコバルト水酸化物を原料としてLiCoO2
正極活物質として用いた電池は、よりサイクル特性の良
好な電池が実現できる。
As described above, a battery using LiCoO 2 as a positive electrode active material with cobalt hydroxide as a raw material manufactured by using the additive in the present invention can realize a battery having better cycle characteristics.

【0074】(実施例10)のように原料塩として硝酸
コバルトを用いた場合においても、同様にサイクル特
性、高率放電特性の良好な電池が実現できる。
Even when cobalt nitrate is used as the raw material salt as in (Example 10), a battery having good cycle characteristics and high rate discharge characteristics can be realized.

【0075】このように、本発明による製造法で得られ
た板状のコバルト水酸化物を原料に用いた電池は、優れ
たサイクル特性を示すのに対し、比較例で示したように
通常の用いられる炭酸コバルトや、硫酸コバルト等の塩
を原料に用いた場合、結晶がランダムに配列した多結晶
体となり、結晶粒界が多数存在し、比較例1、2に示し
た電池AA,ABのようにサイクル特性が著しく悪い結果と
なる。
As described above, the battery using the plate-shaped cobalt hydroxide obtained by the manufacturing method according to the present invention as the raw material exhibits excellent cycle characteristics, while the battery obtained by the ordinary method as shown in the comparative example. When a salt such as cobalt carbonate or cobalt sulfate to be used is used as a raw material, it becomes a polycrystalline body in which crystals are randomly arranged, and a large number of crystal grain boundaries exist, so that the batteries AA and AB shown in Comparative Examples 1 and 2 have As a result, the cycle characteristics are extremely poor.

【0076】以上に示したように、本発明によるLiC
oO2の製造方法を用いる事により、サイクル特性、高
率放電特性に優れた電池を実現する事ができる。
As shown above, the LiC according to the present invention
By using the oO 2 manufacturing method, a battery having excellent cycle characteristics and high rate discharge characteristics can be realized.

【0077】本実施例では反応槽温度を40℃で制御し
たが、20〜60℃の範囲内であれば同様の効果が得ら
れる。
In the present embodiment, the reaction tank temperature was controlled at 40 ° C., but the same effect can be obtained if it is within the range of 20-60 ° C.

【0078】本実施例7では反応槽への添加剤としてヒ
ドラジンを用いたが、塩酸ヒドラジンや、硫酸ヒドラジ
ンなどのヒドラジン塩でも同様の効果が得られる。
In Example 7, hydrazine was used as an additive to the reaction tank, but hydrazine salts such as hydrazine hydrochloride and hydrazine sulfate can also provide the same effect.

【0079】また、(実施例8)、(実施例9)では複
合添加剤の組み合わせとして硫酸アンモニウムと塩化ア
ンモニウム、塩化ナトリウムとヒドラジンの混合物をそ
れぞれ示したが、その他本発明に明示した添加剤であれ
ばどの組み合わせでも同様の効果が得られる。
Further, in (Example 8) and (Example 9), a mixture of ammonium sulfate and ammonium chloride and a mixture of sodium chloride and hydrazine were shown as the combination of the composite additives, but any other additive specified in the present invention may be used. The same effect can be obtained with any combination.

【0080】更に3種類以上の複合系でも同様の効果が
得られる事は言うまでもない。本実施例ではアルカリ溶
液として水酸化ナトリウムを使用したが、水酸化リチウ
ム、水酸化カリウムを用いても同様の効果が得られる事
を確認した。
Needless to say, the same effect can be obtained with a composite system of three or more types. Although sodium hydroxide was used as the alkaline solution in this example, it was confirmed that the same effect can be obtained by using lithium hydroxide or potassium hydroxide.

【0081】また、上記実施例においては円筒型の電池
を用いて評価を行ったが、角型やコイン型など電池形状
が異なっても同様の効果が得られる。
Further, in the above-mentioned embodiment, the evaluation was carried out using a cylindrical battery, but the same effect can be obtained even if the battery shape is different such as a prismatic type or a coin type.

【0082】更に、上記実施例において負極には炭素質
材料を用いたが、本発明における効果は正極板において
作用するため、リチウム金属や、リチウム合金、Fe2
3、WO2、WO3等の酸化物など、他の負極材料を用
いても同様の効果が得られる。
Further, although a carbonaceous material was used for the negative electrode in the above examples, since the effect of the present invention works on the positive electrode plate, lithium metal, lithium alloy, Fe 2
Similar effects can be obtained by using other negative electrode materials such as oxides of O 3 , WO 2 , WO 3 and the like.

【0083】また、上記実施例において電解質として六
フッ化リン酸リチウムを使用したが、他のリチウム含有
塩、例えば過塩素酸リチウム、四フッ化ホウ酸リチウ
ム、トリフルオロメタンスルホン酸リチウム、六フッ化
ヒ酸リチウムなどでも同様の効果が得られた。
Further, although lithium hexafluorophosphate was used as the electrolyte in the above examples, other lithium-containing salts such as lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and hexafluorofluoride were used. Similar effects were obtained with lithium arsenate and the like.

【0084】さらに、上記実施例では炭酸エチレンと炭
酸ジエチルの混合溶媒を用いたが、他の非水溶媒例え
ば、プロピレンカーボネートなどの環状エステル、テト
ラヒドロフランなどの環状エーテル、ジメトキシエタン
などの鎖状エーテル、プロピオン酸メチルなどの鎖状エ
ステルなどの非水溶媒や、これらの多元系混合溶媒を用
いても同様の効果が得られた。
Furthermore, although a mixed solvent of ethylene carbonate and diethyl carbonate was used in the above examples, other non-aqueous solvents such as cyclic ester such as propylene carbonate, cyclic ether such as tetrahydrofuran, chain ether such as dimethoxyethane, Similar effects were obtained using a non-aqueous solvent such as a chain ester such as methyl propionate or a multi-component mixed solvent thereof.

【0085】[0085]

【発明の効果】以上のように、本発明では非水電解液電
池用活物質の原料であるコバルト水酸化物の製造時に供
給塩濃度、供給塩流量、槽内温度を一定にして槽内のp
H値を11.0〜13.5にすることにより、結晶構造
の良好なコバルト水酸化物を得ることができ、このコバ
ルト水酸化物を用いて四酸化三コバルトを経てLiCo
2を得ることにより放電特性、サイクル特性に優れた
非水電解液電池を提供することができる。
As described above, according to the present invention, the concentration of the supplied salt, the flow rate of the supplied salt, and the temperature in the tank are kept constant during the production of the cobalt hydroxide, which is the raw material of the active material for the non-aqueous electrolyte battery. p
By setting the H value to 11.0 to 13.5, a cobalt hydroxide having a good crystal structure can be obtained. Using this cobalt hydroxide, tricobalt tetroxide and LiCo
By obtaining O 2 , it is possible to provide a non-aqueous electrolyte battery having excellent discharge characteristics and cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型電池の縦断面図FIG. 1 is a vertical sectional view of a cylindrical battery.

【図2】本発明による製造法で作成したコバルト水酸化
物の結晶構造図
FIG. 2 is a crystal structure diagram of cobalt hydroxide prepared by the manufacturing method according to the present invention.

【図3】本発明による製造法で作成したLiCoO2
結晶構造図
FIG. 3 is a crystal structure diagram of LiCoO 2 prepared by a manufacturing method according to the present invention.

【図4】炭酸コバルトを原料として比較例1の方法で合
成したLiCoO2の結晶構造図
FIG. 4 is a crystal structure diagram of LiCoO 2 synthesized by the method of Comparative Example 1 using cobalt carbonate as a raw material.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極板 5a 正極リード 6 負極板 6a 負極リード 7 セパレータ 8 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulating packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulating ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 豊次 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 北 秀行 福井県福井市白方町45字砂浜割5番10号 株式会社田中化学研究所内 (72)発明者 飯田 得代志 福井県福井市白方町45字砂浜割5番10号 株式会社田中化学研究所内 (72)発明者 宮川 敏夫 兵庫県尼崎市道意町5丁目30番地 株式会 社田中化学研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toyoji Sugimoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Hideyuki Kita 45-10 Sunahama, 45, Shirakata, Fukui, Fukui Prefecture Issue Tanaka Chemical Research Institute Co., Ltd. (72) Inventor Tokuyo Iida 45-10 Shirakata-cho, Fukui City, Fukui Prefecture, No. 5-10 Sand Beach Division, Tanaka Chemical Research Institute Co., Ltd. (72) Toshio Miyagawa Amagasaki City, Hyogo 5-30, Machi Stock Company Tanaka Chemical Research Institute

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】コバルト塩の水溶液と、か性アルカリ溶液
を同一槽内に連続的に供給、撹拌し、供給塩濃度、供給
塩流量、槽内温度を一定にして槽内のpH値を11.0
〜13.5の範囲に制御することによりコバルト水酸化
物を得る非水電解液電池活物質用コバルト水酸化物の製
造法。
1. A cobalt salt aqueous solution and a caustic alkaline solution are continuously supplied and stirred in the same tank, and the pH value of the tank is adjusted to 11 by keeping the supplied salt concentration, the supplied salt flow rate and the tank temperature constant. .0
The manufacturing method of the cobalt hydroxide for nonaqueous electrolyte battery active materials which obtains a cobalt hydroxide by controlling in the range of 13.5.
【請求項2】コバルト水酸化物を空気中で熱処理して非
水電解液電池活物質用四酸化三コバルトを得る工程にお
いて、前記コバルト水酸化物としてコバルト塩の水溶液
と、か性アルカリ溶液を同一槽内に連続的に供給、撹拌
し、供給塩濃度、供給塩流量、槽内温度を一定にして槽
内のpH値を11.0〜13.5の範囲に制御すること
により得たものを用いる非水電解液電池活物質用四酸化
三コバルトの製造法。
2. In the step of heat-treating cobalt hydroxide in air to obtain tricobalt tetroxide for a non-aqueous electrolyte battery active material, an aqueous solution of a cobalt salt as the cobalt hydroxide and a caustic alkaline solution are used. Obtained by continuously supplying and stirring in the same tank and controlling the pH value in the tank within the range of 11.0 to 13.5 while keeping the supplied salt concentration, the supplied salt flow rate and the tank temperature constant. Method for producing tricobalt tetroxide for non-aqueous electrolyte battery active material using.
【請求項3】コバルト水酸化物を200℃〜700℃の
温度範囲で熱処理する請求項2記載の非水電解液電池活
物質用四酸化三コバルトの製造法。
3. The method for producing tricobalt tetroxide for a non-aqueous electrolyte battery active material according to claim 2, wherein the cobalt hydroxide is heat-treated in a temperature range of 200 ° C. to 700 ° C.
【請求項4】コバルト塩の水溶液は、硫酸コバルトの水
溶液または硫酸コバルトと塩化コバルトの混合水溶液で
ある請求項2記載の非水電解液電池活物質用四酸化三コ
バルトの製造法。
4. The method for producing tricobalt tetraoxide for a non-aqueous electrolyte battery active material according to claim 2, wherein the aqueous solution of the cobalt salt is an aqueous solution of cobalt sulfate or a mixed aqueous solution of cobalt sulfate and cobalt chloride.
【請求項5】硫酸コバルトと塩化コバルトの混合水溶液
において、硫酸イオンと塩素イオンのモル比(Cl-
SO4 2-)が0より大きく5以下である請求項4記載の
非水電解液電池活物質用四酸化三コバルトの製造法。
5. In a mixed aqueous solution of cobalt sulfate and cobalt chloride, the molar ratio of sulfate ion to chloride ion (Cl /
The method for producing tricobalt tetroxide for a non-aqueous electrolyte battery active material according to claim 4, wherein SO 4 2− ) is greater than 0 and 5 or less.
【請求項6】槽内に塩化ナトリウム,硫酸ナトリウム,
ヒドラジン,ヒドラジン塩,硫酸アンモニウム,塩化ア
ンモニウムからなる群のうちの少なくとも1種類以上を
添加する請求項2記載の非水電解液電池活物質用四酸化
三コバルト(Co34)の製造法。
6. A sodium chloride, sodium sulfate,
The method for producing tricobalt tetroxide (Co 3 O 4 ) for a non-aqueous electrolyte battery active material according to claim 2, wherein at least one selected from the group consisting of hydrazine, hydrazine salts, ammonium sulfate and ammonium chloride is added.
【請求項7】コバルト塩の水溶液と、か性アルカリ溶液
を同一槽内に連続的に供給、撹拌し、供給塩濃度、供給
塩流量、槽内温度を一定にして槽内のpH値を11.0
〜13.5の範囲に制御することにより得た粒子であ
り、SEM写真観察における定方向径(Feret d
iameter)が0.1〜10μmの範囲にある非水
電解液電池活物質用コバルト水酸化物。
7. An aqueous solution of cobalt salt and a caustic alkaline solution are continuously supplied and stirred in the same tank, and the pH value of the tank is adjusted to 11 by keeping the supplied salt concentration, the supplied salt flow rate and the tank temperature constant. .0
The particles are particles obtained by controlling the particle size in the range of 13.5 to 13.5, and have a fixed diameter (Feret d) in SEM photograph observation.
cobalt hydroxide for a non-aqueous electrolyte battery active material having an iatter) of 0.1 to 10 μm.
【請求項8】粒子形状が板状である請求項7記載の非水
電解液活物質用コバルト水酸化物。
8. The cobalt hydroxide for a non-aqueous electrolyte active material according to claim 7, wherein the particle shape is a plate shape.
【請求項9】コバルト塩の水溶液と、か性アルカリ溶液
を同一槽内に連続的に供給、撹拌し、供給塩濃度、供給
塩流量、槽内温度を一定にして槽内のpH値を11.0
〜13.5の範囲に制御することにより得たコバルト水
酸化物を空気中で熱処理することによって得た粒子であ
り、SEM写真観察における定方向径(Feret d
iameter)が0.1〜10μmの範囲にある非水
電解液電池活物質用四酸化三コバルト。
9. An aqueous solution of cobalt salt and a caustic alkaline solution are continuously supplied and stirred in the same tank, and the pH value of the tank is adjusted to 11 by keeping the supplied salt concentration, the supplied salt flow rate and the tank temperature constant. .0
Particles obtained by heat-treating cobalt hydroxide obtained by controlling in the range of 13.5 to 13.5, and having a unidirectional diameter (Feret d) in SEM photograph observation.
tricobalt tetroxide for a non-aqueous electrolyte battery active material having an iatter) in the range of 0.1 to 10 μm.
【請求項10】コバルト水酸化物を200℃〜700℃
の温度範囲で熱処理して得た請求項9記載の非水電解液
活物質用四酸化三コバルト。
10. Cobalt hydroxide at 200 ° C. to 700 ° C.
The tricobalt tetroxide for a non-aqueous electrolyte active material according to claim 9, which is obtained by heat treatment in the temperature range of 10.
JP16848995A 1995-07-04 1995-07-04 Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same Expired - Fee Related JP3394364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16848995A JP3394364B2 (en) 1995-07-04 1995-07-04 Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16848995A JP3394364B2 (en) 1995-07-04 1995-07-04 Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0922692A true JPH0922692A (en) 1997-01-21
JP3394364B2 JP3394364B2 (en) 2003-04-07

Family

ID=15869043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16848995A Expired - Fee Related JP3394364B2 (en) 1995-07-04 1995-07-04 Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same

Country Status (1)

Country Link
JP (1) JP3394364B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211971A (en) * 1999-01-26 2000-08-02 Toyota Central Res & Dev Lab Inc Thermoelement material and its production
JP2001332257A (en) * 1999-10-08 2001-11-30 Hitachi Maxell Ltd Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2002249320A (en) * 2001-02-16 2002-09-06 Tanaka Chemical Corp High-density nickel hydroxide particle containing aluminum and method for producing the same
JP2002321922A (en) * 2001-04-23 2002-11-08 Toyota Central Res & Dev Lab Inc Cobalt hydroxide oxide lamellar particle and its manufacturing method
JP2006024406A (en) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd Tricobalt tetroxide for activator of nonaqueous electrolyte solution battery and its manufacturing method
JP2006291215A (en) * 2006-05-29 2006-10-26 C I Kasei Co Ltd Cobalt-base black pigment and method for producing the same
JP2007284340A (en) * 2006-03-24 2007-11-01 Mitsui Mining & Smelting Co Ltd Method for producing granular cobalt oxide black pigment, and granular cobalt oxide black pigment
US7438754B2 (en) 2004-09-17 2008-10-21 Mitsui Mining & Smelting Co., Ltd. Cobalt-containing black pigment particulates
US7755182B2 (en) 2001-02-06 2010-07-13 Renesas Technology Corp. Hybrid integrated circuit device, and method for fabricating the same, and electronic device
WO2012029729A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
US8337727B2 (en) 2007-06-29 2012-12-25 Umicore High density lithium cobalt oxide for rechargeable batteries
KR20150145471A (en) * 2014-06-19 2015-12-30 삼성에스디아이 주식회사 Lithium cobalt oxide for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode comprising the same
CN105329954A (en) * 2014-08-11 2016-02-17 荆门市格林美新材料有限公司 Large-particle size cobalt hydroxide and preparation method thereof
WO2018198967A1 (en) * 2017-04-27 2018-11-01 株式会社村田製作所 Positive electrode active material, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
US10230105B2 (en) 2014-02-05 2019-03-12 Sumitomo Metal Mining Co., Ltd. Cobalt hydroxide particles and manufacturing process therefor and positive electrode active material and manufacturing process therefor
CN113292106A (en) * 2020-02-24 2021-08-24 荆门市格林美新材料有限公司 Three-time calcination preparation method of large-particle-size aluminum-doped cobaltosic oxide

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211971A (en) * 1999-01-26 2000-08-02 Toyota Central Res & Dev Lab Inc Thermoelement material and its production
JP2001332257A (en) * 1999-10-08 2001-11-30 Hitachi Maxell Ltd Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode
JP4604347B2 (en) * 2000-12-27 2011-01-05 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2002198051A (en) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
US8581395B2 (en) 2001-02-06 2013-11-12 Renesas Electronics Corporation Hybrid integrated circuit device and electronic device
US8222734B2 (en) 2001-02-06 2012-07-17 Renesas Electronics Corporation Hybrid integrated circuit device and electronic device
US8084852B2 (en) 2001-02-06 2011-12-27 Renesas Electronics Corporation Hybrid integrated circuit device, and method for fabricating the same, and electronic device
US7902656B2 (en) 2001-02-06 2011-03-08 Renesas Electronics Corporation Hybrid integrated circuit device, and method for fabricating the same, and electronic device
US7755182B2 (en) 2001-02-06 2010-07-13 Renesas Technology Corp. Hybrid integrated circuit device, and method for fabricating the same, and electronic device
JP4683741B2 (en) * 2001-02-16 2011-05-18 株式会社田中化学研究所 High density aluminum-containing nickel hydroxide particles and method for producing the same
JP2002249320A (en) * 2001-02-16 2002-09-06 Tanaka Chemical Corp High-density nickel hydroxide particle containing aluminum and method for producing the same
JP2002321922A (en) * 2001-04-23 2002-11-08 Toyota Central Res & Dev Lab Inc Cobalt hydroxide oxide lamellar particle and its manufacturing method
JP4694799B2 (en) * 2004-07-07 2011-06-08 パナソニック株式会社 Method for producing tricobalt tetroxide for active material of non-aqueous electrolyte battery
JP2006024406A (en) * 2004-07-07 2006-01-26 Matsushita Electric Ind Co Ltd Tricobalt tetroxide for activator of nonaqueous electrolyte solution battery and its manufacturing method
US7438754B2 (en) 2004-09-17 2008-10-21 Mitsui Mining & Smelting Co., Ltd. Cobalt-containing black pigment particulates
KR101313045B1 (en) * 2006-03-24 2013-09-30 미쓰이금속광업주식회사 Process for production of granular cobalt oxide black pigment, and granular cobalt oxide black pigment
JP2007284340A (en) * 2006-03-24 2007-11-01 Mitsui Mining & Smelting Co Ltd Method for producing granular cobalt oxide black pigment, and granular cobalt oxide black pigment
JP2006291215A (en) * 2006-05-29 2006-10-26 C I Kasei Co Ltd Cobalt-base black pigment and method for producing the same
US8608987B2 (en) 2007-06-29 2013-12-17 Umicore High density lithium cobalt oxide for rechargeable batteries
US8337727B2 (en) 2007-06-29 2012-12-25 Umicore High density lithium cobalt oxide for rechargeable batteries
CN103201222A (en) * 2010-09-02 2013-07-10 日本化学工业株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
JP2012072050A (en) * 2010-09-02 2012-04-12 Nippon Chem Ind Co Ltd Cobalt hydroxide, method for producing the same, cobalt oxide and method for producing the same
WO2012029729A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same
US10230105B2 (en) 2014-02-05 2019-03-12 Sumitomo Metal Mining Co., Ltd. Cobalt hydroxide particles and manufacturing process therefor and positive electrode active material and manufacturing process therefor
KR20150145471A (en) * 2014-06-19 2015-12-30 삼성에스디아이 주식회사 Lithium cobalt oxide for lithium secondary battery, preparing method thereof, and lithium secondary battery including positive electrode comprising the same
CN105329954A (en) * 2014-08-11 2016-02-17 荆门市格林美新材料有限公司 Large-particle size cobalt hydroxide and preparation method thereof
WO2018198967A1 (en) * 2017-04-27 2018-11-01 株式会社村田製作所 Positive electrode active material, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
CN110546795A (en) * 2017-04-27 2019-12-06 株式会社村田制作所 Positive electrode active material, positive electrode, battery pack, electronic device, electric vehicle, power storage device, and power system
JPWO2018198967A1 (en) * 2017-04-27 2020-02-27 株式会社村田製作所 Positive electrode active material, positive electrode, battery, battery pack, electronic equipment, electric vehicle, power storage device and power system
CN113292106A (en) * 2020-02-24 2021-08-24 荆门市格林美新材料有限公司 Three-time calcination preparation method of large-particle-size aluminum-doped cobaltosic oxide

Also Published As

Publication number Publication date
JP3394364B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
KR101644258B1 (en) Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
KR102161044B1 (en) Nickel-cobalt composite hydroxide and process for manufacturing same
JP3394364B2 (en) Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same
KR101696524B1 (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP3362564B2 (en) Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
WO2012164752A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
KR101217453B1 (en) Method of producing Ni- composite metal hydroxide, Ni-composite metal hydroxide obtained thereby
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
JPH09129230A (en) Nonaqueous electrolytic battery and manufacture of positive active material
JP4984593B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2011116580A5 (en)
JP7121283B2 (en) Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2021501980A (en) Manufacturing method of positive electrode active material
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6910697B2 (en) Manufacturing method of positive electrode active material
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JP6968844B2 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and their manufacturing methods, and non-aqueous electrolyte secondary batteries
JP7167540B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3229544B2 (en) Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
WO2021039120A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110131

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120131

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130131

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140131

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140131

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees