JPH111324A - Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material - Google Patents

Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material

Info

Publication number
JPH111324A
JPH111324A JP9190357A JP19035797A JPH111324A JP H111324 A JPH111324 A JP H111324A JP 9190357 A JP9190357 A JP 9190357A JP 19035797 A JP19035797 A JP 19035797A JP H111324 A JPH111324 A JP H111324A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
lithium
particles
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9190357A
Other languages
Japanese (ja)
Other versions
JP4066472B2 (en
Inventor
Shinji Nakahara
慎治 中原
Shigeki Sato
佐藤  茂樹
Masami Nakayama
政美 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP19035797A priority Critical patent/JP4066472B2/en
Publication of JPH111324A publication Critical patent/JPH111324A/en
Application granted granted Critical
Publication of JP4066472B2 publication Critical patent/JP4066472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide platy nickel hydroxide particles each having a large primary particle diameter capable of comfortably be used for producing a positive electrode material of a non-aqueous electrolytic lithium ion secondary cell and a method for producing the platy particles. SOLUTION: This platy nickel hydroxide particle has an average major axis diameter of a primary particle within the range of 1-50 μm and an average thickness within the range of 0.1-10 μm, and a specific surface area by an N2 -BET method within the range of 0.1-5 m<2> /g. The platy nickel hydroxide particle is produced by heating a usual granular (spherical) nickel hydroxide particle or a nickel salt in an aqueous solution of ammonia, an alkali hydroxide and an ammonium salt at 120-350 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池の正極活物質であるリチウム・ニッケル複合酸化
物(ニッケル酸リチウム)の原料として好適に用いるこ
とができる板状水酸化ニッケル粒子、その製造方法及び
これを原料として用いるリチウム・ニッケル複合酸化物
粒子の製造方法に関する。
The present invention relates to plate-like nickel hydroxide particles which can be suitably used as a raw material for a lithium-nickel composite oxide (lithium nickel oxide), which is a positive electrode active material of a lithium ion secondary battery. The present invention relates to a production method and a method for producing lithium-nickel composite oxide particles using the same as a raw material.

【0002】[0002]

【従来の技術】近年の携帯型電子機器の普及に伴い、高
エネルギー密度で且つ高電圧使用の可能なリチウムイオ
ン二次電池が注目を集めている。リチウムイオン二次電
池の正極活物質としては、従来、コバルト酸リチウム、
マンガン酸リチウム又はニッケル酸リチウム等の複合酸
化物が知られている。このうち、コバルト酸リチウム
は、原材料であるコバルトの産地が限定されていて、そ
の安定供給が困難であるうえに、非常に高価であるとい
う問題がある。一方、マンガン酸リチウムは、材料コス
トは比較的低く抑えることができるものの、コバルト酸
リチウムを用いた場合ほどの高エネルギー密度が得られ
ない問題がある。これに対して、ニッケル酸リチウム
は、ニッケル原料が資源的に豊富であり、また、上記の
二つに比べて、良好な容量特性を有し、しかも、最も大
きいエネルギー密度を実現できる点で有望視されてい
る。
2. Description of the Related Art With the spread of portable electronic devices in recent years, lithium ion secondary batteries that can be used at a high energy density and at a high voltage have attracted attention. Conventionally, as a positive electrode active material of a lithium ion secondary battery, lithium cobalt oxide,
Composite oxides such as lithium manganate and lithium nickelate are known. Among them, lithium cobaltate has a problem that the production area of cobalt as a raw material is limited, and it is difficult to stably supply the material and it is very expensive. On the other hand, lithium manganate has a problem that, although the material cost can be suppressed relatively low, a high energy density cannot be obtained as in the case of using lithium cobalt oxide. Lithium nickelate, on the other hand, is promising in that it is rich in resources of nickel, has better capacity characteristics than the above two, and can achieve the largest energy density. Have been watched.

【0003】ニッケル酸リチウムは、リチウム塩とニッ
ケル化合物とを混合し、空気又は酸素気流中、通常、6
00〜1000℃の温度にて焼成することによって得ら
れるが、焼成条件の微妙な相違によって、得られる複合
酸化物におけるLi/Ni比が変動し、リチウムとニッ
ケルが結晶中の各々の層で不規則に配列するという製造
上の困難さがある。この困難さを緩和するために、原料
のニッケル化合物には、従来、主として、水酸化ニッケ
ルが用いられている。
[0003] Lithium nickelate is a mixture of a lithium salt and a nickel compound, which is usually mixed with air or oxygen in a stream of oxygen.
It is obtained by firing at a temperature of 00 to 1000 ° C. However, due to a slight difference in firing conditions, the Li / Ni ratio in the obtained composite oxide fluctuates, and lithium and nickel are not present in each layer in the crystal. There are manufacturing difficulties of arranging in a regular manner. To alleviate this difficulty, nickel hydroxide has been mainly used as a raw material nickel compound.

【0004】この水酸化ニッケル(Ni(OH))は
CdI型構造を有しており、ニッケル酸リチウム(L
iNiO)と構造的な関連を有する。即ち、ニッケル
酸リチウムの層面である(003)面の間隔(=c/
3)と水酸化ニッケルのニッケル層(001)面の間隔
が非常に近い。これは、ニッケル層及び酸素層の配列を
乱すことなく、リチウムイオンを結晶の内部に導入でき
ることを示唆するものであり、このことによって、ニッ
ケル酸リチウムの製造の困難さを緩和することができ
る。更に、加うるに、原料である水酸化ニッケルの形状
も、生成するニッケル酸リチウムにほぼ引き継がれるこ
ととなる。
This nickel hydroxide (Ni (OH) 2 ) has a CdI 2 type structure, and is made of lithium nickel oxide (L
iNiO 2 ). That is, the interval (= c / c) of the (003) plane which is the layer surface of lithium nickelate
The distance between 3) and the nickel layer (001) surface of nickel hydroxide is very close. This suggests that lithium ions can be introduced into the inside of the crystal without disturbing the arrangement of the nickel layer and the oxygen layer, which can alleviate the difficulty of producing lithium nickel oxide. Further, in addition, the shape of the raw material nickel hydroxide is almost succeeded to the produced lithium nickel oxide.

【0005】かかる水酸化ニッケルの製造方法として
は、ニッケル塩の水溶液にアンモニアを加えて、ニッケ
ル−アンモニア錯塩とし、次いで、これに苛性アルカリ
を加えて、水酸化ニッケルを生成させる方法(特開昭5
6−143671号公報)、ニッケル塩の水溶液を苛性
アルカリを用いて同一の槽内で連続中和を行なって、取
り出す方法(特開昭63−16555号公報)や、更
に、アンモニアを連続添加する方法(特公平4−682
49号公報)等が知られている。
[0005] As a method for producing such nickel hydroxide, a method is known in which ammonia is added to an aqueous solution of a nickel salt to form a nickel-ammonia complex, and then a caustic alkali is added thereto to produce nickel hydroxide (Japanese Patent Laid-Open No. 5
No. 6,143,671), a method in which an aqueous solution of a nickel salt is subjected to continuous neutralization in the same tank using caustic alkali and taken out (JP-A-63-16555), or ammonia is added continuously. Method (Tokuhei 4-682)
No. 49) is known.

【0006】しかし、これらの方法で得られる水酸化ニ
ッケルは、微細な一次粒子が強く凝集した粒状(球状)
の粒子であり、このような凝集体は、その粒径は大きい
ものの、これを構成する一次粒子の粒径は小さい。かく
して、従来の水酸化ニッケルは、結晶性の低い比表面積
の大きい粒状(球状)の粒子である。そして、このよう
な水酸化ニッケル粒子を用いて得られるニッケル酸リチ
ウム粒子は、製造工程における焼成によって、一次粒子
の若干の成長はあるものの、原料である水酸化ニッケル
粒子の形状を強く残しており、通常、粒径が1μm以下
の微細粒子よりなる球状の凝集粒子であり、一次粒子径
が1μm以上の分散粒子を得ることは困難である。
However, the nickel hydroxide obtained by these methods has a granular (spherical) shape in which fine primary particles are strongly aggregated.
Although such an aggregate has a large particle diameter, the primary particles constituting the aggregate have a small particle diameter. Thus, the conventional nickel hydroxide is a granular (spherical) particle having low crystallinity and a large specific surface area. Lithium nickelate particles obtained by using such nickel hydroxide particles have a slight growth of primary particles due to firing in the manufacturing process, but strongly retain the shape of the raw material nickel hydroxide particles. Usually, it is spherical aggregated particles composed of fine particles having a particle size of 1 μm or less, and it is difficult to obtain dispersed particles having a primary particle size of 1 μm or more.

【0007】ところで、リチウムイオン二次電池には、
可燃性の非水電解液が用いられているので、何らかの原
因で電池の温度が上昇したとき、これが契機となって発
熱し、更に電池温度が上昇するという悪循環に陥り、場
合によっては、発火、爆発という事態に陥りかねず、そ
こで、従来、自己発熱を抑える努力がなされている。正
極においては、基本的な電池系では、正極電位より高い
分解電圧を有する電解液が選択されるので、通常の状態
では、反応は起こらない。しかし、何らかの原因によっ
て、充電時に所定以上の電気量の電流が流れて、過充電
状態になると、正極電位が上昇し、電解液が酸化され、
発熱が起こる。この際、従来の微細な一次粒子からなる
正極活物質を用いた正極では、このような酸化反応に対
する活性が高く、酸化反応を速めてしまうという欠点を
有している。
By the way, lithium ion secondary batteries include:
Since the flammable non-aqueous electrolyte is used, when the temperature of the battery rises for some reason, this triggers the generation of heat, which leads to a vicious cycle in which the battery temperature further rises, and in some cases, ignition, Explosions can occur, and efforts have been made to limit self-heating. In the positive electrode, in a basic battery system, an electrolyte having a decomposition voltage higher than the positive electrode potential is selected, so that no reaction occurs in a normal state. However, for some reason, when a current of a predetermined amount or more flows during charging and the battery is overcharged, the positive electrode potential increases, and the electrolyte is oxidized.
A fever occurs. At this time, a conventional positive electrode using a positive electrode active material composed of fine primary particles has a high activity against such an oxidation reaction and has a disadvantage that the oxidation reaction is accelerated.

【0008】また、リチウムイオン二次電池では、充電
時には、正極活物質であるリチウム複合酸化物からリチ
ウムが脱ドープすることによって、結晶格子が収縮し、
反対に、放電時には、リチウムがドープすることによっ
て、結晶格子が膨張し、このため、リチウムイオン二次
電池が充放電を繰り返す過程において、結晶格子の収
縮、膨張が繰り返される結果、正極活物質の微粉化が起
こり、容量の低下が引き起こされる。この正極活物質の
微粉化もまた、一次粒子の小さい活物質ほど、起こりや
すいことが知られている(特開平8−69790号公
報、特開平5−151998号公報等)。
In addition, in a lithium ion secondary battery, at the time of charging, lithium is dedoped from lithium composite oxide, which is a positive electrode active material, so that the crystal lattice shrinks,
Conversely, at the time of discharge, the crystal lattice expands by doping with lithium, and therefore, in the process of repeating charge and discharge of the lithium ion secondary battery, the contraction and expansion of the crystal lattice are repeated, resulting in the positive electrode active material Pulverization occurs, causing a reduction in capacity. It is known that the finer powder of the positive electrode active material is more likely to occur as the active material has smaller primary particles (JP-A-8-69790, JP-A-5-151998, etc.).

【0009】そこで、従来、前述したように、コバルト
酸リチウム、マンガン酸リチウム、ニッケル酸リチウム
等の複合酸化物をリチウムイオン二次電池の正極活物質
として用いる非水電解質リチウムイオン二次電池におい
て、例えば、コバルト酸リチウムの場合、充放電サイク
ルの繰返しに伴う容量低下を少なくするために、上記複
合酸化物が2〜10μmの平均粒径(50%)を有する
ことが保存特性や出力特性にすぐれる電池を得るために
望ましいことが指摘されている(特開平5−94822
号公報)。また、ニッケル酸リチウムやニッケル、コバ
ルト等の複合酸化物が10%累積径が3〜15μm、5
0%累積径が8〜35μm、90%累積径が30〜80
μmであるような粒度分布を有するとき、高温環境下で
充放電サイクルを繰り返したときも、容量低下が起こり
難いことが指摘されている(特開平5−151998号
公報)。更に、マンガン酸リチウムの場合には、平均粒
径が30〜100μmの範囲にあることが望ましいと指
摘されている(特開平5−283074号公報)。
Therefore, as described above, in a non-aqueous electrolyte lithium ion secondary battery using a composite oxide such as lithium cobaltate, lithium manganate, lithium nickelate or the like as a positive electrode active material of a lithium ion secondary battery, For example, in the case of lithium cobaltate, the above-mentioned composite oxide has an average particle diameter (50%) of 2 to 10 μm in order to reduce the capacity reduction due to the repetition of the charge / discharge cycle. It is pointed out that this is desirable for obtaining a battery (Japanese Unexamined Patent Publication No. 5-94822).
No.). Further, a composite oxide such as lithium nickelate, nickel, or cobalt has a 10% cumulative diameter of 3 to 15 μm,
0% cumulative diameter is 8 to 35 μm, 90% cumulative diameter is 30 to 80
It has been pointed out that when the particles have a particle size distribution of μm, the capacity is unlikely to decrease even when the charge / discharge cycle is repeated under a high temperature environment (Japanese Patent Laid-Open No. 5-151998). Further, it has been pointed out that in the case of lithium manganate, it is desirable that the average particle size is in the range of 30 to 100 μm (Japanese Patent Laid-Open No. 5-283074).

【0010】また、リチウム・マンガン複合酸化物から
なる正極活物質を用いる非水電解質二次電池において、
リチウム・マンガン複合酸化物の比表面積が0.05〜
5.0m/gの範囲にあるとき、サイクル特性にすぐ
れた電池を得ることができるとも指摘されている(特開
平8−69790号公報)。
In a non-aqueous electrolyte secondary battery using a positive electrode active material comprising a lithium-manganese composite oxide,
Specific surface area of lithium-manganese composite oxide is 0.05 ~
It is pointed out that a battery having excellent cycle characteristics can be obtained when the content is in the range of 5.0 m 2 / g (Japanese Patent Application Laid-Open No. 8-69790).

【0011】[0011]

【発明が解決しようとする課題】本発明は、従来のリチ
ウムイオン二次電池における上述したような事情に鑑
み、特に、リチウムイオン二次電池における正極活物質
における上述したような問題を解決するためになされた
ものであって、リチウムイオン二次電池の正極活物質の
製造に好適に用いることができる一次粒子径の大きい板
状の水酸化ニッケル粒子、その製造方法及びそのような
水酸化ニッケル粒子を出発原料として用いるリチウム・
ニッケル複合酸化物の製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances in a conventional lithium ion secondary battery, and has been made in order to solve the above-mentioned problems in a positive electrode active material in a lithium ion secondary battery. Plate-like nickel hydroxide particles having a large primary particle diameter that can be suitably used for the production of a positive electrode active material of a lithium ion secondary battery, a method for producing the same, and such nickel hydroxide particles Using lithium as a starting material
An object of the present invention is to provide a method for producing a nickel composite oxide.

【0012】[0012]

【課題を解決するための手段】本発明によれば、一次粒
子の平均長軸径が1〜50μmの範囲にあり、平均厚み
が0.1〜10μmの範囲にあると共に、N−BET
法による比表面積が0.1〜5m/gの範囲にある板
状水酸化ニッケル粒子が提供される。
According to the present invention, the primary particles have an average major axis diameter in the range of 1 to 50 μm, an average thickness in the range of 0.1 to 10 μm, and N 2 -BET.
The present invention provides plate-like nickel hydroxide particles having a specific surface area of 0.1 to 5 m 2 / g by the method.

【0013】また、本発明によれば、不定形又は粒状
(球状)水酸化ニッケル粒子又はニッケル塩をアンモニ
ア、水酸化アルカリ及びアンモニウム塩の水溶液中、1
20〜350℃の範囲の温度にて加熱することによる上
記水酸化ニッケル粒子の製造方法が提供される。
Further, according to the present invention, the irregular or granular (spherical) nickel hydroxide particles or nickel salt are dissolved in an aqueous solution of ammonia, alkali hydroxide and ammonium salt.
A method for producing the above-mentioned nickel hydroxide particles by heating at a temperature in the range of 20 to 350 ° C is provided.

【0014】更に、本発明によれば、上記板状水酸化ニ
ッケル粒子をリチウム化合物と混合し、乾式粉砕した
後、酸化性雰囲気下に600〜1000℃の範囲の温度
で焼成することによるリチウム酸ニッケル粒子の製造方
法が提供される。
Further, according to the present invention, the above-mentioned platy nickel hydroxide particles are mixed with a lithium compound, dry-ground, and then calcined at a temperature in the range of 600 to 1000 ° C. in an oxidizing atmosphere. A method for producing nickel particles is provided.

【0015】[0015]

【発明の実施の形態】本発明による板状水酸化ニッケル
粒子は、一次粒子の平均長軸径が1〜50μmの範囲に
あり、平均厚みが0.1〜10μmの範囲にあると共
に、N−BET法による比表面積が0.1〜5m
gの範囲にある。
BEST MODE FOR CARRYING OUT THE INVENTION The plate-like nickel hydroxide particles according to the present invention have an average primary axis in the range of 1 to 50 μm, an average thickness in the range of 0.1 to 10 μm, and N 2. The specific surface area by the BET method is 0.1 to 5 m 2 /
g.

【0016】板状水酸化ニッケル粒子の一次粒子の平均
長軸径が1μmよりも小さいか、又は平均厚みが0.1
μmよりも小さいときは、これを出発原料としてリチウ
ム・ニッケル複合酸化物粒子を製造するとき、得られる
リチウム・ニッケル複合酸化物粒子は、その粒径が小さ
く、リチウムイオン二次電池の正極活物質として用いた
場合、過充電時の酸化反応の速度が大きすぎるので、好
ましくなく、また、充放電の繰返しによって、粒子の微
粉化が起こりやすく、容量低下の要因となる点からも好
ましくない。
The average primary major axis diameter of the plate-like nickel hydroxide particles is smaller than 1 μm, or the average thickness is less than 0.1 μm.
When the particle size is smaller than μm, when producing lithium-nickel composite oxide particles using this as a starting material, the obtained lithium-nickel composite oxide particles have a small particle size, and are used as a positive electrode active material for lithium ion secondary batteries. When used as, the rate of the oxidation reaction at the time of overcharging is too high, which is not preferable. Also, it is not preferable in that the particles are easily pulverized due to repetition of charge and discharge, which causes a reduction in capacity.

【0017】しかしながら、板状水酸化ニッケル粒子の
一次粒子の平均長軸径が50μmよりも大きいか、又は
平均厚みが10μmよりも大きいときは、これを出発原
料としてリチウム・ニッケル複合酸化物を製造すれば、
得られるリチウム・ニッケル複合酸化物は、その粒径が
大きく、従って、このような複合酸化物粒子を活物質と
して、導電剤や結着剤等と混練し、支持体上に塗布した
形態で用いる際に、支持体を破損したり、負極やセパレ
ータと共に巻き込む際にセパレータを傷付けて、ショー
トの原因ともなる。また、電池特性としても、高レート
特性、即ち、放電電流を大きくし、短時間で放電した場
合の放電容量の低下が大きいので好ましくない。このよ
うに、水酸化ニッケル粒子が上記範囲の大きさを有しな
いときは、これより得られるリチウム・ニッケル複合酸
化物からなる正極活物質を備えた非水電解液リチウムイ
オン二次電池は、サイクル特性に劣るものとなるか、又
は塗布性能やレート特性に劣るものとなる。
However, when the average major axis diameter of the primary particles of the plate-like nickel hydroxide particles is larger than 50 μm or the average thickness is larger than 10 μm, a lithium-nickel composite oxide is produced using this as a starting material. if,
The obtained lithium-nickel composite oxide has a large particle size, and thus is used in a form in which such a composite oxide particle is used as an active material, kneaded with a conductive agent or a binder, and applied on a support. In this case, the support may be damaged, or the separator may be damaged when being wound together with the negative electrode or the separator, which may cause a short circuit. In addition, the battery characteristics are not preferable because the battery has high rate characteristics, that is, a large decrease in discharge capacity when the discharge current is increased and discharge is performed in a short time. As described above, when the nickel hydroxide particles do not have the size in the above range, the non-aqueous electrolyte lithium ion secondary battery including the obtained positive electrode active material composed of the lithium-nickel composite oxide has a cycle cycle of The properties are inferior, or the coating performance and rate characteristics are inferior.

【0018】板状水酸化ニッケル粒子のN−BET法
による比表面積が0.1〜5m/gの範囲内にないと
きも、同様に、このような水酸化ニッケルからのリチウ
ム・ニッケル複合酸化物からなる正極活物質を備えた非
水電解質リチウムイオン二次電池は、サイクル特性に劣
るものとなるかか、又は塗布性能やレート特性に劣るも
のとなる。
When the specific surface area of the plate-like nickel hydroxide particles by the N 2 -BET method is not in the range of 0.1 to 5 m 2 / g, the lithium-nickel composite A non-aqueous electrolyte lithium ion secondary battery provided with a positive electrode active material composed of an oxide has poor cycle characteristics or poor coating performance and rate characteristics.

【0019】更に、本発明による板状水酸化ニッケル粒
子は、平均長軸径/平均厚みで規定される平均板状比が
2〜10の範囲にあることが好ましい。
Further, the plate-like nickel hydroxide particles according to the present invention preferably have an average plate-like ratio defined by an average major axis diameter / average thickness in the range of 2 to 10.

【0020】このような本発明による板状水酸化ニッケ
ル粒子は、従来より知られている水酸化ニッケル粒子、
即ち、不定形又は粒状(球状)の水酸化ニッケル粒子
か、又は適宜のニッケル塩をアンモニア、水酸化アルカ
リ及びアンモニウム塩の水溶液中、120℃以上の温度
にて加熱することによって得ることができる。ここに、
上記ニッケル塩としては、例えば、硝酸ニッケル、硫酸
ニッケル、塩化ニッケル、酢酸ニッケル、シュウ酸ニッ
ケル等を用いることができるが、特に、硝酸ニッケルが
好ましく用いられる。水酸化アルカリとしては、例え
ば、水酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム等が好ましく用いられる。上記アンモニウム塩として
は、例えば、硫酸アンモニウム、硝酸アンモニウム、シ
ュウ酸アンモニウム等が好ましく用いられる。
Such plate-like nickel hydroxide particles according to the present invention include the conventionally known nickel hydroxide particles,
That is, it can be obtained by heating amorphous or granular (spherical) nickel hydroxide particles or an appropriate nickel salt in an aqueous solution of ammonia, alkali hydroxide and ammonium salt at a temperature of 120 ° C. or higher. here,
As the nickel salt, for example, nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, nickel oxalate, and the like can be used. In particular, nickel nitrate is preferably used. As the alkali hydroxide, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide and the like are preferably used. As the ammonium salt, for example, ammonium sulfate, ammonium nitrate, ammonium oxalate and the like are preferably used.

【0021】本発明による板状水酸化ニッケル粒子の製
造の一つの好ましい態様として、例えば、前述したよう
に、市販の粒状(球状)や不定形の水酸化ニッケル粒子
をアンモニアのほか、上記水酸化アルカリとアンモニウ
ム塩とを含む水溶液中、上記温度で加熱することによっ
て得ることができる。このように、小さい一次粒子から
なる粒状(球状)や不定形の水酸化ニッケル粒子をこの
ような方法によって水溶液とし、加熱すれば、このよう
な水酸化ニッケル粒子が再溶解と再析出を繰り返すこと
によって、微細粒子が消失すると共に、粒径が大きく、
且つ、板状の一次粒子への成長が起こるものとみられ
る。
As one preferred embodiment of the production of the plate-like nickel hydroxide particles according to the present invention, for example, as described above, commercially available granular (spherical) or amorphous nickel hydroxide particles may be prepared by adding the above-mentioned hydroxide to water in addition to ammonia. It can be obtained by heating at the above temperature in an aqueous solution containing an alkali and an ammonium salt. As described above, when the granular (spherical) or amorphous nickel hydroxide particles composed of small primary particles are formed into an aqueous solution by such a method and heated, such nickel hydroxide particles are repeatedly redissolved and reprecipitated. Due to the disappearance of fine particles, the particle size is large,
In addition, it is considered that growth into plate-like primary particles occurs.

【0022】このようにして、本発明による板状水酸化
ニッケル粒子を製造する場合、通常、水酸化アルカリ、
アンモニア及びアンモニウム塩は、それぞれ水酸化ニッ
ケルに対して0.1当量以上用いられる。また、アンモ
ニア水、水酸化アルカリ及びアンモニウム塩の量を適宜
に選ぶことによって、厚みの増大した大きい粒径を有す
るほぼ粒状の粒子も得ることができる。
When the plate-like nickel hydroxide particles according to the present invention are produced in this manner, usually, an alkali hydroxide,
Ammonia and ammonium salt are each used in an amount of 0.1 equivalent or more based on nickel hydroxide. Further, by appropriately selecting the amounts of the aqueous ammonia, the alkali hydroxide and the ammonium salt, it is possible to obtain substantially granular particles having a large particle diameter and an increased thickness.

【0023】また、別の好ましい態様の一つとして、予
め、反応容器中に水、水酸化アルカリ、アンモニア水及
びアンモニウム塩水溶液の少なくとも1つを仕込み、温
度を120℃以上に維持しつつ、この反応容器中にニッ
ケル塩水溶液と共に、アンモニア水、水酸化アルカリ水
溶液及びアンモニウム塩水溶液の少なくとも1つをそれ
ぞれ連続的に圧入して、これらを120℃以上の温度で
直接反応させてもよい。
In another preferred embodiment, at least one of water, an alkali hydroxide, an aqueous ammonia and an aqueous ammonium salt solution is previously charged into a reaction vessel and the temperature is kept at 120 ° C. or higher. Along with a nickel salt aqueous solution, at least one of an aqueous ammonia solution, an aqueous alkali hydroxide solution and an aqueous ammonium salt solution may be continuously injected into the reaction vessel, and these may be directly reacted at a temperature of 120 ° C. or higher.

【0024】このような方法においては、水酸化アルカ
リ、アンモニア及びアンモニウム塩は、それぞれ水酸化
ニッケルに対して0.1当量以上で、且つ、合計で2当
量以上用いられる。このような方法によれば、初期に生
成した水酸化ニッケルの微細な核が系中で速やかに再溶
解し、再析出し、数を減じるために、粒径の大きい板状
の一次粒子が生成するものとみられる。この方法におい
ては、必要に応じて、反応生成物を連続的に又は間欠的
に反応容器から取り出してもよい。
In such a method, the alkali hydroxide, ammonia and ammonium salt are each used in an amount of 0.1 equivalent or more relative to nickel hydroxide, and a total of 2 equivalents or more. According to such a method, fine nuclei of nickel hydroxide generated at the beginning are rapidly redissolved in the system, re-precipitated, and plate-like primary particles having a large particle size are generated in order to reduce the number. It seems to do. In this method, if necessary, the reaction product may be continuously or intermittently taken out of the reaction vessel.

【0025】上記加熱温度又は反応温度の上限は、特
に、限定されるものではないが、温度を高くすれば、水
蒸気圧も高くなり、反応容器の耐圧性を保つために、装
置コストが高くなる問題が生じる。従って、加熱又は反
応温度は、通常、350℃以下でよい。加熱又は反応温
度が120℃よりも低いときは、従来より知られている
ような粒状(球状)の凝集粒子や微細な粒状の粒子が生
成するのみであって、本発明による大きい板状の一次粒
子を得ることができない。また、上記加熱又は反応の時
間は、加熱又は反応温度によって異なるが、通常、数分
から数十日の範囲である。
The upper limit of the heating temperature or the reaction temperature is not particularly limited, but as the temperature is increased, the steam pressure is increased, and the cost of the apparatus is increased in order to maintain the pressure resistance of the reaction vessel. Problems arise. Therefore, the heating or reaction temperature may be usually 350 ° C. or less. When the heating or reaction temperature is lower than 120 ° C., only conventionally known granular (spherical) aggregated particles and fine granular particles are generated, and the large primary plate according to the present invention is produced. No particles can be obtained. The heating or reaction time varies depending on the heating or reaction temperature, but usually ranges from several minutes to several tens of days.

【0026】反応終了後、得られた混合物を冷却し、濾
過等の分離方法を用いて固体を分離し、十分に水洗し、
乾燥すれば、目的とする本発明による大きい板状の水酸
化ニッケル粒子を得ることができる。
After the completion of the reaction, the obtained mixture is cooled, a solid is separated by using a separation method such as filtration, and the solid is thoroughly washed with water.
When dried, the desired large plate-like nickel hydroxide particles according to the present invention can be obtained.

【0027】更に、本発明によれば、水溶性ニッケル
塩、好ましくは、硝酸ニッケルと共にコバルト塩、マン
ガン塩、鉄塩及びバナジウム塩のうちの1種又は2種以
上を含む水溶液を用いて、前述したようにして、ニッケ
ルと共にこれら元素を含み、一次粒子の平均長軸径が1
〜50μmの範囲にあり、平均厚みが0.1〜10μm
の範囲にあると共に、N−BET法による比表面積が
0.1〜5m/gの範囲にある板状水酸化ニッケル粒
子を得ることができる。
Further, according to the present invention, an aqueous solution containing one or more of a cobalt salt, a manganese salt, an iron salt and a vanadium salt together with a water-soluble nickel salt, preferably nickel nitrate, is used. As described above, these elements are contained together with nickel, and the average major axis diameter of the primary particles is 1
5050 μm, average thickness is 0.1-10 μm
And the specific surface area by the N 2 -BET method in the range of 0.1 to 5 m 2 / g can be obtained.

【0028】但し、このように、Co、Mn、Fe及び
Vよりなる群から選ばれる少なくとも1種の元素を含む
板状水酸化ニッケル粒子を製造する場合、(Co、M
n、Fe及びV)/Ni原子比が0.4以下であること
が好ましい。この原子比が0.4を越えるときは、この
ような水酸化ニッケル粒子を用いてリチウムとの複合酸
化物を製造し、これを正極活物質として用いても、容量
の大きいリチウムイオン二次電池を得ることができな
い。
However, when producing plate-like nickel hydroxide particles containing at least one element selected from the group consisting of Co, Mn, Fe and V, (Co, Mn)
The atomic ratio of n, Fe and V) / Ni is preferably 0.4 or less. When the atomic ratio exceeds 0.4, a composite oxide with lithium is produced using such nickel hydroxide particles, and even when this is used as a positive electrode active material, a lithium ion secondary battery having a large capacity is used. Can not get.

【0029】本発明による板状水酸化ニッケル粒子を用
いることによって、一次粒子の大きいリチウムニッケル
複合酸化物を容易に得ることができる。即ち、本発明に
よる板状水酸化ニッケル粒子とリチウム化合物とを乾式
又は湿式混合し、空気や酸素等の酸化性雰囲気中、60
0〜1000℃の温度にて焼成することによって得るこ
とができる。上記リチウム化合物としては、例えば、炭
酸リチウム、水酸化リチウム一水塩等が好ましく用いら
れる。反応温度が600℃よりも低いときは、リチウム
が十分に複合酸化物の内部までドープされず、他方、1
000℃を越えるときは、リチウムが揮散し、リチウム
/ニッケル比を変動させ、また、不純物としての酸化ニ
ッケルの生成等が起こるので、好ましくない。
By using the plate-like nickel hydroxide particles according to the present invention, a lithium nickel composite oxide having a large primary particle can be easily obtained. That is, the plate-like nickel hydroxide particles of the present invention and a lithium compound are dry- or wet-mixed, and mixed in an oxidizing atmosphere such as air or oxygen.
It can be obtained by firing at a temperature of 0 to 1000 ° C. As the lithium compound, for example, lithium carbonate, lithium hydroxide monohydrate and the like are preferably used. When the reaction temperature is lower than 600 ° C., lithium is not sufficiently doped into the complex oxide, while 1
When the temperature exceeds 000 ° C., lithium volatilizes, fluctuates the lithium / nickel ratio, and generates nickel oxide as an impurity, which is not preferable.

【0030】本発明によれば、このような方法によっ
て、原料である板状水酸化ニッケル粒子の形状を受け継
ぎ、一次粒子径の大きいリチウムニッケル複合酸化物を
容易に得ることができる。
According to the present invention, by such a method, it is possible to easily obtain a lithium nickel composite oxide having a large primary particle diameter while inheriting the shape of plate-like nickel hydroxide particles as a raw material.

【0031】本発明においては、上記リチウムニッケル
複合酸化物と前記水酸化ニッケルは、これらを正極活物
質原料とする電池の特性を向上させるために、従来より
知られているように、マンガン、コバルト、アルミニウ
ム、ホウ素、マグネシウム等の元素を含有させてもよ
い。
In the present invention, the above-mentioned lithium nickel composite oxide and the above-mentioned nickel hydroxide are used as a positive electrode active material. , Aluminum, boron, magnesium and the like.

【0032】[0032]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。以下において、%は、特に別の記載がなければ、重
量%を意味する。また、以下の実施例1〜7、比較例1
〜5及び比較例8において得た水酸化ニッケルの粒子に
ついて、その平均長軸径、平均厚み、平均板状比及び比
表面積を表1に示す。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples. In the following,% means% by weight, unless otherwise stated. Further, the following Examples 1 to 7 and Comparative Example 1
Table 1 shows the average major axis diameter, average thickness, average plate ratio, and specific surface area of the nickel hydroxide particles obtained in Comparative Examples 5 to 5 and Comparative Example 8.

【0033】(水酸化ニッケル粒子の製造) 実施例1 19.6%水酸化ナトリウム水溶液292g、22%ア
ンモニア水溶液38g及び硝酸アンモニウム230gに
純水を加え、容積を700mLとし、この水溶液を3L
容量のオートクレーブ中に移した。この水溶液を250
℃に加熱した後、オートクレーブ中に、攪拌下、23.
6%硝酸ニッケル水溶液を42g/時、19.6%水酸
化ナトリウム水溶液を24g/時の割合で連続的に圧入
しつつ、250℃の温度で22時間反応させた。反応終
了後、オートクレーブ内を冷却し、反応混合物を濾過、
水洗し、この後、105℃で一晩乾燥させて、水酸化ニ
ッケル粉末68gを得た。
(Production of Nickel Hydroxide Particles) Example 1 Pure water was added to 292 g of a 19.6% aqueous sodium hydroxide solution, 38 g of a 22% aqueous ammonia solution and 230 g of ammonium nitrate to make the volume 700 mL, and this aqueous solution was added in 3 L.
Transferred to volume autoclave. 250 parts of this aqueous solution
After heating to 23.degree. C. in an autoclave under stirring.
The reaction was carried out at a temperature of 250 ° C. for 22 hours while continuously injecting a 6% aqueous solution of nickel nitrate at a rate of 42 g / hour and a 19.6% aqueous solution of sodium hydroxide at a rate of 24 g / hour. After the reaction, the inside of the autoclave was cooled, and the reaction mixture was filtered,
After washing with water and drying at 105 ° C. overnight, 68 g of nickel hydroxide powder was obtained.

【0034】このようにして得た水酸化ニッケルの粒子
の走査型電子顕微鏡写真を図1に示す。また、試料台を
傾けて撮影した水酸化ニッケル粒子の厚み方向の走査型
電子顕微鏡写真の一例を図2に示す。これらの走査型電
子顕微鏡写真から一次粒子の形状及び大きさを測定した
(以下の実施例及び比較例において用いる同様に測定し
た。)結果、一次粒子は、板状であって、平均長軸径
6.2μm、平均厚み2.0μmであり、N−BET
法による比表面積は0.9m/gであった。
FIG. 1 shows a scanning electron micrograph of the nickel hydroxide particles thus obtained. FIG. 2 shows an example of a scanning electron microscope photograph in the thickness direction of the nickel hydroxide particles taken with the sample stage tilted. As a result of measuring the shape and size of the primary particles from these scanning electron micrographs (measured similarly in the following Examples and Comparative Examples), the primary particles were plate-shaped and had an average major axis diameter. 6.2 μm, average thickness 2.0 μm, N 2 -BET
The specific surface area by the method was 0.9 m 2 / g.

【0035】実施例2 19.6%水酸化ナトリウム水溶液292g、22%ア
ンモニア水溶液38g及び硝酸アンモニウム38gに純
水を加え、容積を700mLとした。この水溶液を3L
容量のオートクレーブ中に移した。この水溶液を250
℃に加熱した後、オートクレーブ中に、攪拌下、23.
6%硝酸ニッケル水溶液を42g/時、19.6%水酸
化ナトリウム水溶液を24g/時の割合で連続的に圧入
しつつ、250℃の温度で20時間反応させた。
Example 2 Pure water was added to 292 g of a 19.6% aqueous sodium hydroxide solution, 38 g of a 22% aqueous ammonia solution and 38 g of ammonium nitrate to make the volume 700 mL. 3 L of this aqueous solution
Transferred to volume autoclave. 250 parts of this aqueous solution
After heating to 23.degree. C. in an autoclave under stirring.
The reaction was carried out at a temperature of 250 ° C. for 20 hours while continuously injecting a 6% aqueous solution of nickel nitrate at a rate of 42 g / hour and a 19.6% aqueous solution of sodium hydroxide at a rate of 24 g / hour.

【0036】次いで、オートクレーブ中に、23.6%
硝酸ニッケル水溶液を42g/時、19.6%水酸化ナ
トリウム水溶液を24g/時、22%アンモニア水10
0gと硝酸アンモニウム102gを水290gに溶解し
た水溶液を6g/時の割合で連続的に圧入しつつ、且
つ、反応生成物を60mL/時の割合で連続的に取出し
つつ、250℃の温度で80時間反応させた。その後、
反応混合物を冷却し、オートクレーブから取り出し、以
下、実施例1と同様に処理して、水酸化ニッケル粉末9
7gを得た。図3に得られた水酸化ニッケルの粒子の走
査型電子顕微鏡写真を示す。また、図4にCu−Kα線
を用いて測定したX線回折図を示す。得られた粒子が水
酸化ニッケルであることは、このX線回折図によって確
認した。
Then, in an autoclave, 23.6%
42 g / h nickel nitrate aqueous solution, 24 g / h 19.6% sodium hydroxide aqueous solution, 22% ammonia water 10
0 g and an aqueous solution obtained by dissolving 102 g of ammonium nitrate in 290 g of water were continuously injected at a rate of 6 g / hour, and the reaction product was continuously taken out at a rate of 60 mL / hour. Reacted. afterwards,
The reaction mixture was cooled, taken out of the autoclave, and treated in the same manner as in Example 1 to obtain nickel hydroxide powder 9
7 g were obtained. FIG. 3 shows a scanning electron micrograph of the obtained nickel hydroxide particles. FIG. 4 shows an X-ray diffraction diagram measured using Cu-Kα radiation. It was confirmed by the X-ray diffraction diagram that the obtained particles were nickel hydroxide.

【0037】得られた水酸化ニッケルの一次粒子は、板
状であって、平均長軸径3.2μm、平均厚み0.54
μmであり、N−BET法による比表面積は1.7m
/gであった。
The obtained primary particles of nickel hydroxide are plate-shaped, having an average major axis diameter of 3.2 μm and an average thickness of 0.54.
μm, and the specific surface area by the N 2 -BET method is 1.7 m
2 / g.

【0038】実施例3 3L容量のオートクレーブ内に純水500mLを仕込
み、250℃に加熱した後、23.6%硝酸ニッケル水
溶液を42g/時、19.6%水酸化ナトリウム水溶液
を24g/時、22%アンモニア水100gと硝酸アン
モニウム102gを水290gに溶解した水溶液を6g
/時の割合で連続的に圧入しつつ、250℃の温度で2
0時間反応させた。反応終了後、実施例1と同様にし処
理して、水酸化ニッケル粉末100gを得た。
Example 3 500 mL of pure water was charged into an autoclave having a capacity of 3 L and heated to 250 ° C. Then, 42 g / h of a 23.6% nickel nitrate aqueous solution and 24 g / h of a 19.6% sodium hydroxide aqueous solution were used. 6 g of an aqueous solution prepared by dissolving 100 g of 22% ammonia water and 102 g of ammonium nitrate in 290 g of water
/ Hour at a temperature of 250 ° C.
The reaction was performed for 0 hours. After completion of the reaction, the mixture was treated in the same manner as in Example 1 to obtain 100 g of nickel hydroxide powder.

【0039】得られた水酸化ニッケルの一次粒子は、板
状であって、平均長軸径3.9μm、平均厚み0.71
μmであり、N−BET法による比表面積は1.5m
/gであった。
The obtained primary particles of nickel hydroxide are plate-shaped, having an average major axis diameter of 3.9 μm and an average thickness of 0.71.
μm, and the specific surface area by the N 2 -BET method is 1.5 m
2 / g.

【0040】実施例4 実施例1において、硝酸アンモニウム38gを用いると
共に、23.6%硝酸ニッケル水溶液に代えて、硝酸ニ
ッケルの15%を硝酸コバルトで置換した合計濃度2
3.6%の硝酸ニッケルと硝酸コバルトの水溶液を42
g/時で用いた以外は、実施例1と同様に処理して、コ
バルトを含む水酸化ニッケル粉末60gを得た。図5に
得られたコバルトを含む水酸化ニッケルの粒子の走査型
電子顕微鏡写真を示す。
Example 4 In Example 1, 38 g of ammonium nitrate was used, and instead of an aqueous 23.6% nickel nitrate solution, 15% of nickel nitrate was replaced with cobalt nitrate to obtain a total concentration of 2%.
42% aqueous solution of 3.6% nickel nitrate and cobalt nitrate
Except for using g / h, the same treatment as in Example 1 was performed to obtain 60 g of nickel hydroxide powder containing cobalt. FIG. 5 shows a scanning electron micrograph of the obtained cobalt-containing nickel hydroxide particles.

【0041】得られた水酸化ニッケルの一次粒子は、板
状であって、平均長軸径1.1μm、平均厚み0.18
μmであり、N−BET法による比表面積は3.5m
/gであった。また、蛍光X線分析の結果、ニッケル
/コバルト重量比は0.85/0.15であった。
The obtained primary particles of nickel hydroxide are plate-like and have an average major axis diameter of 1.1 μm and an average thickness of 0.18 μm.
μm, and the specific surface area by the N 2 -BET method is 3.5 m
2 / g. As a result of X-ray fluorescence analysis, the nickel / cobalt weight ratio was 0.85 / 0.15.

【0042】実施例5 22%アンモニア水38gと硝酸アンモニウム32gに
水を加え、溶解させて、容積を700mLとした。この
水溶液を3L容量のオートクレーブ内に仕込み、250
℃に加熱した後、オートクレーブ中に、攪拌下、23.
6%硝酸ニッケル水溶液を42g/時、19.6%水酸
化ナトリウム水溶液を24g/時の割合で連続的に圧入
しつつ、250℃の温度で22時間反応させた。反応終
了後、実施例1と同様に処理して、水酸化ニッケル粉末
70gを得た。
Example 5 Water was added to 38 g of 22% aqueous ammonia and 32 g of ammonium nitrate and dissolved to make the volume 700 mL. This aqueous solution was charged into a 3 L autoclave,
After heating to 23.degree. C. in an autoclave under stirring.
The reaction was carried out at a temperature of 250 ° C. for 22 hours while continuously injecting a 6% aqueous solution of nickel nitrate at a rate of 42 g / hour and a 19.6% aqueous solution of sodium hydroxide at a rate of 24 g / hour. After the completion of the reaction, the same treatment as in Example 1 was performed to obtain 70 g of nickel hydroxide powder.

【0043】得られた水酸化ニッケルの一次粒子は、板
状であって、平均長軸径1.7μm、平均厚み0.34
μmであり、N−BET法による比表面積は3.4m
/gであった。
The obtained primary particles of nickel hydroxide are plate-shaped, having an average major axis diameter of 1.7 μm and an average thickness of 0.34.
μm, and the specific surface area by the N 2 -BET method is 3.4 m
2 / g.

【0044】比較例1 (従来の反応晶析法)12L容量のビーカーに純水10
Lを入れ、攪拌羽根にて攪拌しつつ、温度を40℃に維
持しつつ、これに1.6モル/Lの硝酸ニッケル水溶液
を290mL/時、13.34モル/Lのアンモニア水
を52mL/時、8.55モル/Lの水酸化ナトリウム
水溶液を反応系のpHが11〜12となるよう調整しつ
つ(平均割合160mL/時)で、それぞれ連続的に加
え、得られた反応混合物を連続的に取り出した。このよ
うにして得られた反応生成物を純水にて洗浄し、その
後、105℃にて一晩乾燥させて、水酸化ニッケル粉末
を得た。この水酸化ニッケルの粒子の走査型電子顕微鏡
写真を図6に示す。
Comparative Example 1 (Conventional Reaction Crystallization Method) Pure water 10 was placed in a 12 L beaker.
While maintaining the temperature at 40 ° C. while stirring with stirring blades, 290 mL / h of a 1.6 mol / L aqueous nickel nitrate solution and 52 mL / hr of 13.34 mol / L aqueous ammonia were added thereto. At this time, an 8.55 mol / L aqueous sodium hydroxide solution was continuously added while adjusting the pH of the reaction system to be 11 to 12 (average ratio: 160 mL / hour), and the obtained reaction mixture was continuously added. Was taken out. The reaction product thus obtained was washed with pure water, and then dried at 105 ° C. overnight to obtain a nickel hydroxide powder. FIG. 6 shows a scanning electron micrograph of the nickel hydroxide particles.

【0045】得られた水酸化ニッケル粒子は、一次粒子
径0.1μm以下の一次粒子が凝集した二次粒子径10
μmの球状であって、N−BET法による比表面積は
34.1m/gであった。
The obtained nickel hydroxide particles have a secondary particle diameter of 10 μm in which primary particles having a primary particle diameter of 0.1 μm or less are aggregated.
It was spherical and had a specific surface area of 34.1 m 2 / g according to the N 2 -BET method.

【0046】実施例6 比較例1にて得た球状の水酸化ニッケル粒子38.9g
と硫酸アンモニウム111gに純水を加えて、容積を1
50mLとし、これを十分に攪拌した。これに22%ア
ンモニア水263gと19.6%の苛性ソーダ溶液17
1gを加えた後、これを1L容量のオートクレーブ中に
仕込み、250℃で20時間加熱処理を行なった。反応
終了後、反応混合物を冷却し、以下、実施例1と同様に
処理して、水酸化ニッケル粉末5.5gを得た。この水
酸化ニッケルの粒子の走査型電子顕微鏡写真を図7に示
す。
Example 6 38.9 g of the spherical nickel hydroxide particles obtained in Comparative Example 1
To 111 g of ammonium sulfate and pure water to make the volume 1
The volume was made up to 50 mL, and this was thoroughly stirred. 263 g of 22% ammonia water and 19.6% of caustic soda solution 17
After adding 1 g, the mixture was charged into a 1-L autoclave, and heat-treated at 250 ° C. for 20 hours. After the completion of the reaction, the reaction mixture was cooled and treated in the same manner as in Example 1 to obtain 5.5 g of nickel hydroxide powder. FIG. 7 shows a scanning electron micrograph of the nickel hydroxide particles.

【0047】得られた水酸化ニッケル粒子は、一次粒子
径1.8μm、平均厚み0.72μmの板状であって、
−BET法による比表面積は1.6m/gであっ
た。
The obtained nickel hydroxide particles were in the form of a plate having a primary particle size of 1.8 μm and an average thickness of 0.72 μm.
The specific surface area according to the N 2 -BET method was 1.6 m 2 / g.

【0048】実施例7 ディスパー攪拌下、23.6%硝酸ニッケル水溶液32
4g中に19.6%水酸化ナトリウム水溶液273gを
加えて中和し、これに22%アンモニア水13.2gと
硝酸アンモニウム80.7gとを加え、更に、純水を加
えて、全容積を600mLとした後、30分間攪拌し
た。これを1L容量のオートクレーブ中に移し入れ、2
50℃で96時間加熱処理を行なった。反応終了後、得
られた反応混合物を実施例1と同様に処理して、水酸化
ニッケル粉末を得た。
Example 7 A 23.6% nickel nitrate aqueous solution 32 was stirred under a disper.
273 g of a 19.6% aqueous sodium hydroxide solution was added to 4 g to neutralize the solution, 13.2 g of 22% aqueous ammonia and 80.7 g of ammonium nitrate were added thereto, and pure water was further added to bring the total volume to 600 mL. After that, the mixture was stirred for 30 minutes. This was transferred into a 1 L autoclave,
Heat treatment was performed at 50 ° C. for 96 hours. After completion of the reaction, the obtained reaction mixture was treated in the same manner as in Example 1 to obtain a nickel hydroxide powder.

【0049】得られた水酸化ニッケル粒子は、一次粒子
径1.0μm、平均厚み0.14μmの板状であって、
−BET法による比表面積は4.4m/gであっ
た。
The obtained nickel hydroxide particles were in the form of a plate having a primary particle diameter of 1.0 μm and an average thickness of 0.14 μm.
The specific surface area according to the N 2 -BET method was 4.4 m 2 / g.

【0050】比較例2 反応温度を90℃とした以外は、実施例4と同様に反応
を行なった。得られた水酸化ニッケルは、その走査型電
子顕微鏡写真を図8に示すように、一次粒径0.2μm
以下の微細な粒子であって、N−BET法による比表
面積は20.1m/gであった。
Comparative Example 2 A reaction was carried out in the same manner as in Example 4 except that the reaction temperature was 90 ° C. The obtained nickel hydroxide had a primary particle size of 0.2 μm as shown in FIG.
The following fine particles had a specific surface area of 20.1 m 2 / g as determined by the N 2 -BET method.

【0051】比較例3 オートクレーブ中での反応温度を90℃とした以外は、
実施例7と同様に反応を行なって、水酸化ニッケルを一
次粒径0.1μmの微細な一次粒子からなる二次凝集粒
子として得た。この水酸化ニッケル粒子のN−BET
法による比表面積は21.5m/gであった。
Comparative Example 3 A reaction temperature in an autoclave was changed to 90 ° C.
The reaction was carried out in the same manner as in Example 7 to obtain nickel hydroxide as secondary aggregated particles composed of fine primary particles having a primary particle size of 0.1 μm. The N 2 -BET of the nickel hydroxide particles
The specific surface area according to the method was 21.5 m 2 / g.

【0052】[0052]

【表1】 [Table 1]

【0053】(リチウムニッケル複合酸化物の製造) 実施例8 実施例2にて得た水酸化ニッケル粉末30gと自動乳鉢
にて粉砕した水酸化リチウム一水塩13.6gをポリエ
チレン製の袋に入れて、十分に混合した。このようにし
て得た混合物の10gをアルミナ製るつぼに入れ、酸素
雰囲気中、200℃/時の割合で昇温した後、800℃
にて10時間焼成した。この後、200℃/時の割合で
常温まで冷却して、リチウムニッケル複合酸化物粒子を
得た。
(Production of lithium-nickel composite oxide) Example 8 30 g of the nickel hydroxide powder obtained in Example 2 and 13.6 g of lithium hydroxide monohydrate pulverized in an automatic mortar were put in a polyethylene bag. And mixed well. 10 g of the mixture thus obtained was placed in an alumina crucible, heated in an oxygen atmosphere at a rate of 200 ° C./hour, and then heated to 800 ° C.
For 10 hours. Thereafter, the mixture was cooled to room temperature at a rate of 200 ° C./hour to obtain lithium nickel composite oxide particles.

【0054】このリチウムニッケル複合酸化物粒子の走
査型電子顕微鏡写真を図9に示し、また、図10にCu
−Kα線を用いて測定したX線回折図を示す。これよ
り、得られたリチウムニッケル複合酸化物は、ニッケル
酸リチウム単一相であることが確認された。得られた粒
子がニッケル酸リチウムであることは、このX線回折図
によって確認した。得られたリチウムニッケル複合酸化
物の粒子は、一次粒子平均長軸径5μm、平均厚み0.
5μmであって、原料として用いた水酸化ニッケル粒子
の形状を強く引き継いだ大きい粒径の板状粒子であっ
た。
FIG. 9 shows a scanning electron micrograph of the lithium nickel composite oxide particles, and FIG.
1 shows an X-ray diffraction diagram measured using -Kα radiation. This confirmed that the obtained lithium nickel composite oxide was a lithium nickelate single phase. It was confirmed by the X-ray diffraction diagram that the obtained particles were lithium nickelate. The particles of the obtained lithium nickel composite oxide had an average primary particle major axis diameter of 5 μm and an average thickness of 0.1 μm.
Plate-like particles having a diameter of 5 μm and having a large particle size strongly inheriting the shape of the nickel hydroxide particles used as the raw material.

【0055】比較例4 比較例1にて得た水酸化ニッケル粉末を用いた以外は、
実施例8と同様に反応を行なって、リチウムニッケル複
合酸化物粒子を得た。この粒子の走査型電子顕微鏡写真
を図11に示すように、一次粒子の若干の成長はみられ
るものの、原料として用いた水酸化ニッケルの形状を強
く引き継ぎ、表面に微細構造を有する球状の粒子であっ
た。
Comparative Example 4 Except that the nickel hydroxide powder obtained in Comparative Example 1 was used,
The reaction was carried out in the same manner as in Example 8 to obtain lithium nickel composite oxide particles. As shown in FIG. 11, a scanning electron micrograph of the particles shows that although primary particles slightly grow, the shape of the nickel hydroxide used as a raw material is strongly inherited, and the particles are spherical particles having a fine structure on the surface. there were.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、実施例1にて得た水酸化ニッケル粒子の走
査型電子顕微鏡写真(1000倍)である。
FIG. 1 is a scanning electron micrograph (× 1000) of the nickel hydroxide particles obtained in Example 1.

【図2】は、実施例1にて得た水酸化ニッケル粒子の走
査型電子顕微鏡写真の撮影時に試料台を傾けて撮影した
ものである(1000倍)。
FIG. 2 is a photograph (1000 ×) of the nickel hydroxide particles obtained in Example 1 taken with a sample stage tilted when a scanning electron micrograph was taken.

【図3】は、実施例2にて得た水酸化ニッケル粒子の走
査型電子顕微鏡写真(5000倍)である。
FIG. 3 is a scanning electron micrograph (× 5000) of the nickel hydroxide particles obtained in Example 2.

【図4】は、実施例2にて得た水酸化ニッケル粒子のX
線回折図である。縦軸は、X線強度(CPS)であり、
横軸は回折角(2θ)である。
FIG. 4 shows the X of the nickel hydroxide particles obtained in Example 2.
FIG. The vertical axis is X-ray intensity (CPS),
The horizontal axis is the diffraction angle (2θ).

【図5】は、実施例4にて得た水酸化ニッケル粒子の走
査型電子顕微鏡写真(10000倍)である。
FIG. 5 is a scanning electron micrograph (× 10000) of the nickel hydroxide particles obtained in Example 4.

【図6】は、比較例1にて得た水酸化ニッケル粒子の走
査型電子顕微鏡写真(5000倍)である。
6 is a scanning electron micrograph (× 5000) of the nickel hydroxide particles obtained in Comparative Example 1. FIG.

【図7】は、実施例6にて得た水酸化ニッケル粒子の走
査型電子顕微鏡写真(5000倍)である。
FIG. 7 is a scanning electron micrograph (× 5000) of the nickel hydroxide particles obtained in Example 6.

【図8】は、比較例2にて得た水酸化ニッケル粒子の走
査型電子顕微鏡写真(10000倍)である。
FIG. 8 is a scanning electron micrograph (× 10000) of the nickel hydroxide particles obtained in Comparative Example 2.

【図9】は、実施例8にて得たリチウム・ニツケル複合
酸化物粒子の走査型電子顕微鏡写真(5000倍)であ
る。
FIG. 9 is a scanning electron micrograph (× 5000) of the lithium-nickel composite oxide particles obtained in Example 8.

【図10】は、実施例8にて得たリチウム・ニツケル複
合酸化物粒子のX線回折図である。
10 is an X-ray diffraction diagram of the lithium-nickel composite oxide particles obtained in Example 8. FIG.

【図11】は、比較例9にて得たリチウム・ニツケル複
合酸化物粒子の走査型電子顕微鏡写真(5000倍)で
ある。
11 is a scanning electron micrograph (× 5000) of the lithium-nickel composite oxide particles obtained in Comparative Example 9. FIG.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一次粒子の平均長軸径が1〜50μmの範
囲にあり、平均厚みが0.1〜10μmの範囲にあると
共に、N−BET法による比表面積が0.1〜5m
/gの範囲にあることを特徴とする板状水酸化ニッケル
粒子。
1. The primary particles have an average major axis diameter in the range of 1 to 50 μm, an average thickness in the range of 0.1 to 10 μm, and a specific surface area of 0.1 to 5 m 2 by the N 2 -BET method.
/ G of plate-like nickel hydroxide particles.
【請求項2】Co、Mn、Fe及びVよりなる群から選
ばれる少なくとも1種の元素を(Co、Mn、Fe及び
V)/Ni原子比が0.4以下である範囲で含む請求項
1に記載の板状水酸化ニッケル粒子。
2. The method according to claim 1, wherein at least one element selected from the group consisting of Co, Mn, Fe and V is contained in a range where the (Co, Mn, Fe and V) / Ni atomic ratio is 0.4 or less. 2. The plate-like nickel hydroxide particles according to 1.
【請求項3】平均板状比が2〜10の範囲である請求項
1又は2に記載の板状水酸化ニッケル粒子。
3. The tabular nickel hydroxide particles according to claim 1, wherein the average tabular ratio is in the range of 2 to 10.
【請求項4】不定形又は粒状の水酸化ニッケル粒子又は
ニッケル塩をアンモニア、水酸化アルカリ及びアンモニ
ウム塩の水溶液中、120〜350℃の範囲の温度にて
加熱することを特徴とする請求項1又は2に記載の板状
水酸化ニッケル粒子の製造方法。
4. An amorphous or granular nickel hydroxide particle or nickel salt is heated in an aqueous solution of ammonia, alkali hydroxide and ammonium salt at a temperature in the range of 120 to 350 ° C. Or the method for producing plate-like nickel hydroxide particles according to 2.
【請求項5】ニッケル塩が硝酸ニッケル、硫酸ニッケ
ル、塩化ニッケル、酢酸ニッケル又はシュウ酸ニッケル
である請求項4に記載の板状水酸化ニッケル粒子の製造
方法。
5. The method according to claim 4, wherein the nickel salt is nickel nitrate, nickel sulfate, nickel chloride, nickel acetate or nickel oxalate.
【請求項6】アンモニウム塩が硫酸アンモニウム、硝酸
アンモニウム又はシュウ酸アンモニウムである請求項4
に記載の板状水酸化ニッケル粒子の製造方法。
6. The method according to claim 4, wherein the ammonium salt is ammonium sulfate, ammonium nitrate or ammonium oxalate.
The method for producing plate-like nickel hydroxide particles according to the above.
【請求項7】請求項1〜3のいずれかに記載の板状水酸
化ニッケル粒子をリチウム化合物と混合し、乾式粉砕し
た後、酸化性雰囲気下に600〜1000℃の範囲の温
度で焼成することを特徴とするリチウム・ニッケル複合
酸化物粒子の製造方法。
7. The plate-like nickel hydroxide particles according to any one of claims 1 to 3, mixed with a lithium compound, dry milled, and then calcined in an oxidizing atmosphere at a temperature in the range of 600 to 1000 ° C. A method for producing lithium-nickel composite oxide particles, comprising:
JP19035797A 1997-06-10 1997-06-10 Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material Expired - Fee Related JP4066472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19035797A JP4066472B2 (en) 1997-06-10 1997-06-10 Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19035797A JP4066472B2 (en) 1997-06-10 1997-06-10 Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material

Publications (2)

Publication Number Publication Date
JPH111324A true JPH111324A (en) 1999-01-06
JP4066472B2 JP4066472B2 (en) 2008-03-26

Family

ID=16256851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19035797A Expired - Fee Related JP4066472B2 (en) 1997-06-10 1997-06-10 Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material

Country Status (1)

Country Link
JP (1) JP4066472B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194156A (en) * 2004-01-09 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing nickel hydroxide powder
JP2008174444A (en) * 2006-12-22 2008-07-31 Matsushita Electric Ind Co Ltd Nickel hydroxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009173495A (en) * 2008-01-25 2009-08-06 Univ Of Miyazaki Nickel hydroxide nanosheet and its manufacturing method
JP2009215143A (en) * 2008-03-13 2009-09-24 Sumitomo Metal Mining Co Ltd Manufacturing method of planar lithium nickel composite oxide and planar lithium nickel composite oxide using the same
JP2010037163A (en) * 2008-08-06 2010-02-18 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its manufacturing method
JP2010064910A (en) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd Plate-like nickel-containing hydroxide and method for producing the same, and plate-like nickel-containing oxyhydroxide using the hydroxide and method for producing the same
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
CN102134108A (en) * 2011-03-18 2011-07-27 宇辰新能源材料科技无锡有限公司 Preparation method of wrinkled-paper-like nano nickel hydroxide and nickel oxide with high specific surface areas
JP2012176888A (en) * 2012-04-23 2012-09-13 Univ Of Miyazaki Nickel hydroxide nanosheet and manufacturing method thereof
CN103022466A (en) * 2011-09-20 2013-04-03 中国科学院福建物质结构研究所 High capacity solid solution composite positive electrode material preparation method
JP2013075826A (en) * 2012-12-27 2013-04-25 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its production method
WO2013183711A1 (en) * 2012-06-06 2013-12-12 住友金属鉱山株式会社 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
JP2014129188A (en) * 2012-12-28 2014-07-10 Sumitomo Metal Mining Co Ltd Nickel composite hydroxide and production method thereof, cathode active material and production method thereof, and nonaqueous electrolyte secondary battery
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
EP2851980A1 (en) * 2013-09-18 2015-03-25 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
WO2015198710A1 (en) * 2014-06-27 2015-12-30 住友金属鉱山株式会社 Manganese-cobalt compound hydroxide, method for producing same, cathode active material, method for producing same, and non-aqueous electrolyte secondary battery
WO2015198711A1 (en) * 2014-06-27 2015-12-30 住友金属鉱山株式会社 Nickel compound hydroxide, method for producing same, cathode active material, method for producing same, and non-aqueous electrolyte secondary battery
JP2019502016A (en) * 2016-10-21 2019-01-24 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Functional electrode and manufacturing method thereof

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194156A (en) * 2004-01-09 2005-07-21 Ishikawajima Harima Heavy Ind Co Ltd Method of manufacturing nickel hydroxide powder
US8802294B2 (en) 2006-12-22 2014-08-12 Panasonic Corporation Nickel hydroxide, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2008174444A (en) * 2006-12-22 2008-07-31 Matsushita Electric Ind Co Ltd Nickel hydroxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009173495A (en) * 2008-01-25 2009-08-06 Univ Of Miyazaki Nickel hydroxide nanosheet and its manufacturing method
JP2009215143A (en) * 2008-03-13 2009-09-24 Sumitomo Metal Mining Co Ltd Manufacturing method of planar lithium nickel composite oxide and planar lithium nickel composite oxide using the same
JP2010037163A (en) * 2008-08-06 2010-02-18 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its manufacturing method
JP2010064910A (en) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd Plate-like nickel-containing hydroxide and method for producing the same, and plate-like nickel-containing oxyhydroxide using the hydroxide and method for producing the same
JP2010070431A (en) * 2008-09-22 2010-04-02 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide, lithium-mixed nickel oxide and methods for manufacturing them
CN102134108A (en) * 2011-03-18 2011-07-27 宇辰新能源材料科技无锡有限公司 Preparation method of wrinkled-paper-like nano nickel hydroxide and nickel oxide with high specific surface areas
CN103022466A (en) * 2011-09-20 2013-04-03 中国科学院福建物质结构研究所 High capacity solid solution composite positive electrode material preparation method
JP2012176888A (en) * 2012-04-23 2012-09-13 Univ Of Miyazaki Nickel hydroxide nanosheet and manufacturing method thereof
CN104379509A (en) * 2012-06-06 2015-02-25 住友金属矿山株式会社 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
US9882204B2 (en) 2012-06-06 2018-01-30 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
WO2013183711A1 (en) * 2012-06-06 2013-12-12 住友金属鉱山株式会社 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
JP5630593B2 (en) * 2012-06-06 2014-11-26 住友金属鉱山株式会社 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production method thereof
KR20150028804A (en) * 2012-06-06 2015-03-16 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
JP2013075826A (en) * 2012-12-27 2013-04-25 Univ Of Miyazaki Nickel hydroxide hexagonal plate and its production method
JP2014129188A (en) * 2012-12-28 2014-07-10 Sumitomo Metal Mining Co Ltd Nickel composite hydroxide and production method thereof, cathode active material and production method thereof, and nonaqueous electrolyte secondary battery
US10374220B2 (en) 2013-09-18 2019-08-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
EP2851980A1 (en) * 2013-09-18 2015-03-25 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
US11183680B2 (en) 2013-09-18 2021-11-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
EP3404751A1 (en) * 2013-09-18 2018-11-21 Kabushiki Kaisha Toshiba Positive electrode
JP2014156397A (en) * 2014-05-30 2014-08-28 Sumitomo Metal Mining Co Ltd Nickel-containing hydroxide, nickel-containing oxide and methods of producing them
US10573886B2 (en) 2014-06-27 2020-02-25 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
WO2015198710A1 (en) * 2014-06-27 2015-12-30 住友金属鉱山株式会社 Manganese-cobalt compound hydroxide, method for producing same, cathode active material, method for producing same, and non-aqueous electrolyte secondary battery
JP2016011227A (en) * 2014-06-27 2016-01-21 住友金属鉱山株式会社 Nickel complex hydroxide and production method of the same, positive electrode active substance and production method of the same, and non-aqueous electrolyte secondary battery
US10505191B2 (en) 2014-06-27 2019-12-10 Sumitomo Metal Mining Co., Ltd. Manganese-cobalt composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
WO2015198711A1 (en) * 2014-06-27 2015-12-30 住友金属鉱山株式会社 Nickel compound hydroxide, method for producing same, cathode active material, method for producing same, and non-aqueous electrolyte secondary battery
JP2016011226A (en) * 2014-06-27 2016-01-21 住友金属鉱山株式会社 Manganese cobalt complex hydroxide and production method of the same, positive electrode active substance and production method of the same, and non-aqueous electrolyte secondary battery
US11205774B2 (en) 2014-06-27 2021-12-21 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
US11374220B2 (en) 2014-06-27 2022-06-28 Sumitomo Metal Mining Co., Ltd. Manganese-cobalt composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
JP2019502016A (en) * 2016-10-21 2019-01-24 コリア インスティテュート オブ エナジー リサーチKorea Institute Of Energy Research Functional electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JP4066472B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP4100785B2 (en) LITHIUM COMPOUND OXIDE, PROCESS FOR PRODUCING THE SAME AND LITHIUM ION SECONDARY BATTERY HAVING ANODE USING LITHIUM COMPOUND OXIDE
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
KR101421758B1 (en) Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP3033899B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
JP4153125B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP5612392B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP4051771B2 (en) Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
JP2016000681A (en) Lithium titanate powder, active material, and electricity storage device using the same
CN109879333B (en) Method for preparing lithium battery anode material with core-shell structure by secondary molten salt method
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
JP2001202959A (en) Active material for positive electrode of nonaqueous electrolyte secondary battery and its producing method
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR100261509B1 (en) Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
JP4083447B2 (en) Nickel hydroxide for producing lithium nickelate, method for producing the same, lithium nickelate and secondary battery
JP3651022B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP2005029424A (en) Manufacturing method of lithium-manganese multiple oxide granular body
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP3407594B2 (en) Method for producing lithium nickel composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees