JP4604347B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4604347B2
JP4604347B2 JP2000397667A JP2000397667A JP4604347B2 JP 4604347 B2 JP4604347 B2 JP 4604347B2 JP 2000397667 A JP2000397667 A JP 2000397667A JP 2000397667 A JP2000397667 A JP 2000397667A JP 4604347 B2 JP4604347 B2 JP 4604347B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
additive element
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000397667A
Other languages
Japanese (ja)
Other versions
JP2002198051A (en
Inventor
真司 有元
彰 橋本
高弘 奥山
雅敏 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000397667A priority Critical patent/JP4604347B2/en
Publication of JP2002198051A publication Critical patent/JP2002198051A/en
Application granted granted Critical
Publication of JP4604347B2 publication Critical patent/JP4604347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池における正極活物質の製造方法に関するものである。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源を担う小型・軽量で、高エネルギー密度を有する二次電池への要望も高まっている。このような観点から、非水電解質二次電池、特にリチウム二次電池は、とりわけ高電圧・高エネルギー密度を有する電池としてその期待は大きく、開発が急がれている。
【0003】
近年、リチウム含有複合酸化物を正極活物質とし、負極に炭素質材料を用いた電池系が高エネルギー密度を得られるリチウム二次電池として注目を集めている。このリチウム含有複合酸化物としてLiCoO2を用いた電池が実用化され、さらに高容量を目指したLiNiO2を実用化する試みも盛んに行われている。しかしながら、LiNiO2は熱安定性が低いという問題点を有しており実用化が困難である。
【0004】
これらの正極活物質は充放電を行うことにより、膨張収縮を繰り返す。この際正極活物質には格子歪や構造破壊および粒子の割れ等が発生し、充放電サイクルに伴い放電容量の低下が生じていた。そこでこの課題を解決するためにコバルトおよびニッケルの一部を他の元素で置換することにより結晶格子の安定化を図り、サイクル特性の改善を行う報告がなされてきた。
【0005】
例えば、特開平5−242891号公報、特開平6−168722号公報、特開平11−7958号公報に見られるように、コバルトの一部を添加元素と置換することにより、充放電サイクル特性や安全性を向上することを目的とした報告がある。これらの発明においては、コバルトの一部を添加元素との置換によりサイクル特性を向上することができるが、その反面、充放電サイクルを繰り返すことによって除々に電池の厚みが大きくなることが確認された。特に角型やラミネート型非水電解質二次電池においては、電池ケースの強度が弱いために充放電サイクルによる電池厚みの増加を抑制する考慮が必要であった。また、特開平7−226201号公報においては、添加元素をリチウムと置換することによる効果について報告されている。この方法においても同様にサイクル経過後の電池厚みの増加が問題となる。この充放電サイクルを行うことによる電池厚みの増加の原因は現在のところ確かではないが、添加元素とコバルトから構成される金属酸化物層とリチウムから構成される層との間の相互作用が弱く、充放電サイクルを繰り返すことによりこれら層間の歪の増加、層間距離の増加により正極活物質の結晶格子の膨張が増加すると考えられる。
【0006】
上記のように添加元素を置換するサイトによって得られる電池特性が異なるため、置換したいサイトにきちんと置換する技術が求められている。
【0007】
現在、添加元素の添加方法としては、リチウム化合物、酸化コバルトおよび添加元素を含む化合物を混合し、加熱する方法が一般的である。
【0008】
【発明が解決しようとする課題】
しかしながら、上記方法では添加元素を置換したいサイトに置換することが困難であった。そのため、合計の添加量をきちんと制御していても、予想していた電池特性を得ることができないという問題が生じていた。本発明はこのような課題を解決するもので、添加元素の添加方法を改良することにより、活物質比容量が高く、優れた充放電サイクル特性を有し、電池厚み増加を抑制する非水電解質二次電池用正極活物質の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するために本発明の非水電解質二次電池用正極活物質の製造方法は、リチウム化合物と添加元素Mを共沈することにより得られた添加元素共沈酸化コバルトと平均粒子径が1〜15μmである添加元素Mを含む化合物(ただし、添加元素MはMg、Al、Cu、Znの中から選ばれる少なくとも1種)を混合し加熱することにより得られるものである。リチウム、コバルトおよび添加元素Mの原子モル比の合計に占める添加元素Mの原子モル比の割合は1〜8%が好ましい。また、添加元素Mを含む化合物により添加する添加元素Mの原子モル比が添加元素共沈酸化コバルトに含まれる添加元素Mの原子モル比を超えないのが好ましい。さらに、加熱温度は750〜1000℃が好ましい。
【0011】
添加元素を含んだリチウム複合コバルト酸化物の合成方法として、出発原料であるリチウム化合物、酸化コバルトおよび添加元素を含んだ化合物の所定量を定比混合して高温で焼成する方法は従来からよく知られた合成法である。
【0012】
この方法を用いると添加元素の一部はコバルトのサイトに置換されるが、大部分はリチウムのサイトに置換されてしまう。これは酸化コバルトにリチウムが挿入される際に添加元素がコバルトと置換されることが困難なためである。特に添加元素として1A族、2A族のようなリチウムと類似の元素を選択した場合、添加元素はリチウムのサイトに置換されやすい。この結果、添加元素を置換してもリチウムのサイトに置換したことによる効果しか得られず、期待した効果を得ることが困難である。
【0013】
これに対して、本発明の製造方法では、添加元素Mを共沈させた酸化コバルトとリチウム化合物を混合し、加熱することにより合成するので、コバルトの一部を添加元素Mで確実に置換することが可能となる。
【0014】
添加元素Mを共沈させた酸化コバルトはコバルト原材料と添加元素Mを含んだ原材料を水溶液中に溶解させる。この時これらの原材料は硫酸塩が好ましい。この混合溶液中に溶液のpHを制御しながらアルカリ水溶液を連続的に滴下し、コバルトと添加元素Mの共沈物である水酸化物を合成する。そして、この水酸化物を乾燥酸化することにより添加元素Mがコバルトの一部に置換している添加元素共沈酸化コバルトを得る。この添加元素共沈酸化コバルトとリチウム化合物を混合し、加熱することにより合成すると、リチウム化合物と添加元素Mに一部置換された酸化コバルトの反応が進行する。そのため、添加元素共沈酸化コバルト中の添加元素の一部が移動しリチウムのサイトに置換されるが、大部分はコバルトのサイトに置換された状態となる。
【0015】
さらに、本発明の製造方法では、リチウム化合物、添加元素Mを共沈させた添加元素共沈酸化コバルトおよび添加元素Mを含む化合物を混合し、加熱することにより合成するので、コバルト、リチウムのそれぞれ一部を置換する添加元素Mの割合を制御することが可能となる。添加元素共沈酸化コバルト、添加元素Mを含む化合物およびリチウム化合物を混合し、加熱することにより合成すると、リチウム化合物と添加元素を含む化合物の反応、リチウム化合物と添加元素に一部置換された酸化コバルトの反応が平行して進行する。すなわち、コバルト、リチウム両方のサイトに添加元素を置換することが可能となる。リチウム化合物、添加元素共沈酸化コバルト、添加元素を含んだ化合物の割合を制御することにより、コバルト、リチウムそれぞれのサイトに置換される添加元素の割合を決定することができるのである。
【0016】
以上のことから充放電サイクルを行った後の電池の厚み増加を抑制し、この特異的な相乗効果からサイクル寿命が格段に向上させることができ、活物質比容量の高い非水電解質二次電池用正極活物質を供給することができる。
【0017】
【発明の実施の形態】
本発明は、リチウム複合コバルト酸化物であって、リチウム化合物と添加元素Mを共沈することにより得られた添加元素共沈酸化コバルト(ただし、添加元素MはMg、Al、Cu、Znの中から選ばれる少なくとも1種)を混合し加熱することにより得られることを特徴とする非水電解質二次電池用正極活物質の製造方法である。
【0018】
また、本発明は、リチウム複合コバルト酸化物であって、リチウム化合物と添加元素Mを共沈することにより得られた添加元素共沈酸化コバルトと添加元素Mを含む化合物(ただし、添加元素MはMg、Al、Cu、Znの中から選ばれる少なくとも1種)を混合し加熱することにより得られることを特徴とする非水電解質二次電池用正極活物質の製造方法である。
【0019】
添加元素共沈酸化コバルトとしては一酸化一コバルト(CoO)、三酸化二コバルト(Co23)、四酸化三コバルト(Co34)等がよい。中でも、添加元素共沈酸化コバルト酸化物としては、四酸化三コバルトが好ましい。その理由は四酸化三コバルトが空気中で安定であり、コスト的にも最も有利なためである。
【0020】
また、リチウム化合物としては炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸化リチウム等を用いることができる。中でも炭酸リチウムおよび水酸化リチウムが環境面、コスト面で有利なため好ましい。
【0021】
添加物Mを含む化合物としては、以下のものが用いられる。マグネシウム塩としては、水酸化マグネシウム、酸化マグネシウム、塩基性炭酸マグネシウム、塩化マグネシウム、フッ化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネシウム、蓚酸マグネシウム、硫化マグネシウム等が用いられる。また、アルミニウム源としては、水酸化アルミニウム、硝酸アルミニウム、酸化アルミニウム、フッ化アルミニウム、硫酸アルミニウム等が用いられる。また、銅源としては、炭酸銅、酸化銅、硫酸銅、酢酸銅、蓚酸銅、塩化銅、硫化銅等が用いられる。また、亜鉛源としては、酸化亜鉛、酢酸亜鉛、塩化亜鉛、フッ化亜鉛、硫酸亜鉛、硝酸亜鉛、硫化亜鉛等を用いられる。
【0022】
また、リチウム、コバルト、添加元素Mの原子モル比の合計に占める添加元素Mの原子モル比の割合が1〜8%であることが好ましい。1%以下では添加元素で置換した効果があまり得られず、8%以上では活物質比容量が低下するためである。
【0023】
また、上記添加元素Mを含む化合物に含まれる添加元素Mの原子モル比が添加元素共沈酸化コバルトに含まれる添加元素Mの原子モル比を超えないことが好ましい。超えると十分なサイクル容量維持率を得ることができないためである。
【0024】
また、リチウム化合物の平均粒子径が2〜15であるのが好ましい。2μm以下では合成後のリチウム複合コバルト酸化物の密度が低下してしまい電池容量が低下するためであり、15μm以上では粒子が大きすぎ添加元素共沈酸化コバルトとの反応性が低下、また反応も不均一になってしまうためである。
【0025】
また、添加元素共沈酸化コバルト酸化合物の粒子径が3〜15μmであるのが好ましい。3μm以下では合成後のリチウム複合コバルト酸化物の密度が低下してしまい電池容量が低下するためであり、15μm以上では合成後のリチウム複合コバルト酸化物の粒子径が大きくなりすぎ高負荷特性が低下するためである。
【0026】
また、添加元素を含んだ化合物の粒子径が1〜15μmであるのが好ましい。
1μm以下でも15μm以上でも添加元素共沈酸化コバルト、リチウム化合物と混合する際に均一な混合ができず不均一な材料ができてしまうためである。
【0027】
また、加熱温度は750〜1000℃とする。750℃以下では結晶性が低くなり十分な放電容量が得られないためであり、1000℃以上では比表面積が低下しすぎ高負荷特性が悪くなるためである。加熱は上記温度を一段で行っても良いが、一段目を650〜750℃の比較的低温で行った後、二段目を750〜1000℃の高温で行う2段焼成法が結晶性が高く、未反応物質を少なくする点においてより好ましい。さらに、一段目をロータリーキルンを用いて行うのが好ましい。ロータリーキルンは混合した材料を混合、流動させながら加熱することが可能であり、これにより原材料同士の接触回数を増加させることができ、反応性を上げることができるため未反応物質を減少させ結晶性の高い非水電解質二次電池用正極活物質を得ることができる。
【0028】
また、非水電解質二次電池用正極活物質の粒子径が3〜15μmであるのが好ましい。3μm以下では密度の低下により電池容量が低下するためであり、15μm以上では高負荷特性が低下するためである。
【0029】
また、非水電解質二次電池用正極活物質の比表面積が0.3〜1.2m2/gであるのが好ましい。0.3m2/g以下では高負荷特性が低下するためであり、1.2m2/g以上では電解液との接触面積の増加により正極中からのガス発生量が多くなるためである。
【0030】
【実施例】
以下、本発明の実施例を図面を参照しながら説明する。
【0031】
図1に本実施例で用いた角型非水電解質二次電池(幅34mm、高さ50mm)を示す。図1より、セパレータを介して、帯状正極板と負極板を複数回渦巻状に巻回して、極板群1が構成される。正極板と負極板にはそれぞれアルミニウム製正極リード2およびニッケル製負極リード3を溶接している。極板群の上部にポリエチレン樹脂製絶縁リングを装着し、アルミニウム製電池ケース4内に収容し、正極リード2の他端をアルミニウム製封口板5にスポット溶接し、また負極リード3の他端は封口板5の中心部にあるニッケル製負極端子6の下部にスポット溶接する。電池ケース4の周囲において封口板5とレーザ溶接し、所定量の非水電解液を注入口7から含浸させる。最後に注入口7をアルミニウム製の栓を用いてレーザー溶接し、電池が完成する。ここでは角型電池を用いて説明を行ったが、電池の形状はコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。
【0032】
(実施例1)
正極活物質は以下のように合成し、正極板を作製した。
【0033】
マグネシウム共沈酸化コバルトは硫酸コバルトと硫酸マグネシウムの混合水溶液に水酸化ナトリウムを滴下することにより得られるマグネシウム共沈水酸化コバルトを空気雰囲気で乾燥、酸化させたものを用いた。マグネシウム共沈量は硫酸コバルトと硫酸マグネシウムの混合比により制御しマグネシウム共沈酸化コバルトを得た。
【0034】
このようにして得たマグネシウム共沈酸化コバルト1〜5と炭酸リチウムをリチウム、コバルト、マグネシウムの原子モル比が表1に示す割合になるようにそれぞれ混合した。この混合物を容器に入れ、空気雰囲気、電気炉内で900℃まで2時間で昇温し、900℃で10時間保持することにより正極活物質1〜5を合成した。
【0035】
【表1】

Figure 0004604347
【0036】
正極活物質1〜5を100重量部に導電材としてアセチレンブラック3重量部、結着剤としてポリ四フッ化エチレン7重量部を混合し、正極活物質に対し1%カルボキシメチルセルロ−ス水溶液100重量部を加え、撹拌混合しペースト状の正極合剤を得た。そして、厚さ20μmのアルミニウム箔を集電体とし、その両面に前記ペースト状正極合剤を塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して正極板1〜5を得た。
【0037】
また、負極板は以下のように作製した。まず、平均粒子径が約20μmになるように粉砕、分級した鱗片状黒鉛と結着剤のスチレン/ブタジエンゴム3重量部を混合した後、黒鉛に対し1%カルボキシメチルセルロ−ス水溶液100重量部に加え、撹拌混合しペ−スト状負極合剤とした。厚さ15μmの銅箔を集電体とし、その両面にペースト状の負極合剤を塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して負極板とした。
【0038】
そして、上述のように作製した帯状の正極板、負極板および厚さ25μmの微多孔性ポリエチレン樹脂製セパレータを渦巻状に巻回し、非水電解液としてはエチレンカーボネートとエチルメチルカーボネートの体積比1:3の混合溶媒に1.0mol/lのLiPF6を溶解したものを用い、これを注液した後密封栓した。
【0039】
このようにして作製した電池を本発明の電池1〜5とした。
【0040】
(比較例1)
炭酸リチウム、酸化コバルト、水酸化マグネシウムをリチウム、コバルト、マグネシウムの原子モル比が表2に示す割合になるようにそれぞれ混合した。この混合物を容器に入れ、空気雰囲気、電気炉内で900℃まで2時間で昇温し、900℃で10時間保持することにより合成して正極活物質を得た。これら正極活物質を用いて、実施例1と同様にし比較例の電池1〜6を作製した。
【0041】
【表2】
Figure 0004604347
【0042】
本発明の電池1〜5および比較例の電池1〜6を環境温度20℃で充放電サイクルを行った。なお、充放電条件は充電時の最大電流値600mA、充電終止電位を4.2Vとした2時間の定電圧充電、また放電電流値600mA、放電終止電位3.0Vの定電流放電で行った。1サイクル目の電池容量を正極活物質量で割ることにより算出できる活物質比容量と、300サイクル経過後の1サイクル目の電池容量に対する容量維持率と充放電サイクル前後での電池厚みの変化を表3に示す。
【0043】
【表3】
Figure 0004604347
【0044】
表3より、マグネシウムを添加していない比較例の電池1に対してマグネシウムを添加した本発明の電池1〜5および比較例の電池2〜6はいずれも容量維持率、電池厚み変化ともに向上していることがわかる。このことからマグネシウムを添加することにより正極活物質の構造安定化が進んでいると考えられる。
【0045】
また、本発明の電池1〜5と比較例の電池2〜6を比較すると、マグネシウムの添加量は同じでも電池A〜Eの方が活物質比容量、容量維持率は大きく、電池厚み変化は小さい。すなわち、マグネシウム添加の方法として、マグネシウムを含む化合物を活物質合成時の原材料として用いるより、マグネシウム共沈酸化コバルトを原材料として用いた方がマグネシウム添加の効果が高いことがわかった。酸化コバルトに共沈したマグネシウムは主としてコバルトと置換し、マグネシウム化合物中のマグネシウムは主としてリチウムと置換している考えられることから、コバルトの一部をマグネシウムで置換することにより、容量維持率はより向上し、活物質比容量の低下も小さくなると考えられる。
【0046】
また、本発明の電池1〜5を比較すると、容量維持率、電池厚み変化はマグネシウム添加量が大きくなるほど向上しているが、活物質比容量は低下していることがわかる。活物質比容量、容量維持率、電池厚み変化のバランスが良いのは本発明の電池1〜4、すなわちリチウム、コバルト、マグネシウムの原子モル比の合計に占めるマグネシウムの原子モル比が1〜8%であることがわかった。
【0047】
(実施例2)
マグネシウム共沈酸化コバルトと水酸化マグネシウム、炭酸リチウムをリチウム、コバルト、マグネシウムの原子モル比が表4に示す割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で本発明の電池6〜10を作製し、評価を行った。本発明の電池6〜10の活物質比容量と、300サイクル後容量維持率と充放電サイクル前後での電池厚みの変化を表5に示す。
【0048】
【表4】
Figure 0004604347
【0049】
【表5】
Figure 0004604347
【0050】
表5より、本発明の電池9、10と本発明の電池6〜8を比較すると、本発明の電池6〜8の方が容量維持率、電池厚み変化ともに大きく改善されていることがわかる。すなわち、マグネシウム源として、マグネシウム共沈酸化コバルトのみを原材料で用いるよりも、マグネシウムを含む化合物とマグネシウム共沈酸化コバルトを同時に使用した方がマグネシウム添加の効果が高いと言える。酸化コバルトに共沈したマグネシウムは主としてコバルトと置換し、マグネシウム化合物中のマグネシウムは主としてリチウムと置換していると考えられることから、コバルトの一部およびリチウムの一部をマグネシウムで置換することにより、活物質比容量の低下は小さく、容量維持率はより向上し、電池厚み変化においては格段に小さくなったと考えられる。
【0051】
また、本発明の電池6〜8を比較すると、本発明の電池8の活物質比容量が小さくなっていることがわかる。このことから、マグネシウムモル比でマグネシウムを含む化合物がマグネシウム共沈酸化コバルトを超えると活物質比容量が低下すると考えられる。
【0052】
(実施例3)
コバルトとマグネシウムの原子モル比が0.90:0.10としたマグネシウム共沈酸化コバルトと水酸化マグネシウム、炭酸リチウムをリチウム、コバルト、マグネシウムの原子モル比が表6の割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質11とし、実施例1と同様の方法で本発明の電池11を作製し、評価を行った。また、マグネシウム源として硝酸マグネシウム、炭酸マグネシウムを使用した他は同様に作製し、本発明の電池12および13とし、同様の評価を行った。本発明の電池11〜13の活物質比容量と、300サイクル後容量維持率と充放電サイクル前後での電池厚み変化を表7に示す。
【0053】
【表6】
Figure 0004604347
【0054】
【表7】
Figure 0004604347
【0055】
表7より、マグネシウムを含む化合物として、炭酸マグネシウム、硝酸マグネシウムのいずれを使用しても、水酸化マグネシウムを使用したものと同様の効果が得られることがわかった。
【0056】
(実施例4)
コバルトとマグネシウムの原子モル比が0.90:0.10としたマグネシウム共沈酸化コバルトと水酸化マグネシウム、炭酸リチウムをリチウム、コバルト、マグネシウムの原子モル比が表6の割合になるようにそれぞれ混合した。この混合物を表8に示した合成温度で、その他は実施例1と同様にして合成を行い、正極活物質14〜20を得た。得られた正極活物質14〜20を用いて、実施例1と同様の方法で本発明の電池14〜20を作製し、評価を行った。電池14〜20の活物質比容量と、300サイクル後容量維持率と充放電サイクル前後での電池厚み変化を表8に示す。
【0057】
【表8】
Figure 0004604347
【0058】
表8より、合成温度は750〜1000℃の時、活物質比容量、容量維持率、電池厚み変化のバランスが良いことがわかる。なかでも、800〜950℃の時がさらにバランスが良い。これは750℃より低温では、結晶性が悪いため、活物質比容量、容量維持率が悪く、比表面積が大きいため、電池厚み変化が大きくなると考えられる。1000℃より高温では比表面積が低くなりすぎ、活物質比容量、容量維持率が低下すると考えられる。
【0059】
(実施例5)
アルミニウム共沈酸化コバルトは硫酸コバルトと硫酸アルミニウムの混合水溶液に水酸化ナトリウムを滴下することにより得られるアルミニウム共沈水酸化コバルトを空気雰囲気で乾燥、酸化させたものを用いた。アルミニウム共沈量は硫酸コバルトと硫酸アルミニウムの混合比により制御しアルミニウム共沈酸化コバルトを得た。
【0060】
このようにして得たアルミニウム共沈酸化コバルトと炭酸リチウムをリチウム、コバルト、アルミニウムの原子モル比が表9に示す割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で本発明の電池21を作製した。
【0061】
【表9】
Figure 0004604347
【0062】
(実施例6)
銅共沈酸化コバルトは硫酸コバルトと硫酸銅の混合水溶液に水酸化ナトリウムを滴下することにより得られる銅共沈水酸化コバルトを空気雰囲気で乾燥、酸化させたものを用いた。銅共沈量は硫酸コバルトと硫酸銅の混合比により制御し銅共沈酸化コバルトを得た。
【0063】
このようにして得た銅共沈酸化コバルトと炭酸リチウムをリチウム、コバルト、銅の原子モル比が表9に示す割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で本発明の電池22を作製した。
【0064】
(実施例7)
亜鉛共沈酸化コバルトは硫酸コバルトと硫酸亜鉛の混合水溶液に水酸化ナトリウムを滴下することにより得られる亜鉛共沈水酸化コバルトを空気雰囲気で乾燥、酸化させたものを用いた。亜鉛共沈量は硫酸コバルトと硫酸亜鉛の混合比により制御し亜鉛共沈酸化コバルトを得た。
【0065】
このようにして得た亜鉛共沈酸化コバルトと炭酸リチウムをリチウム、コバルト、亜鉛の原子モル比が表9に示す割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で本発明の電池23を作製した。
【0066】
(実施例8)
アルミニウム共沈酸化コバルトは硫酸コバルトと硫酸アルミニウムの混合水溶液に水酸化ナトリウムを滴下することにより得られるアルミニウム共沈水酸化コバルトを空気雰囲気で乾燥、酸化させたものを用いた。アルミニウム共沈量は硫酸コバルトと硫酸アルミニウムの混合比により制御しアルミニウム共沈酸化コバルトを得た。
【0067】
このようにして得たアルミニウム共沈酸化コバルト13と水酸化アルミニウム、炭酸リチウムをリチウム、コバルト、アルミニウムの原子モル比が表10に示す割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で本発明の電池24を作製した。
【0068】
【表10】
Figure 0004604347
【0069】
(実施例9)
銅共沈酸化コバルトは硫酸コバルトと硫酸銅の混合水溶液に水酸化ナトリウムを滴下することにより得られる銅共沈水酸化コバルトを空気雰囲気で乾燥、酸化させたものを用いた。銅共沈量は硫酸コバルトと硫酸銅の混合比により制御し銅共沈酸化コバルトを得た。
【0070】
このようにして得た銅共沈酸化コバルトと炭酸銅、炭酸リチウムをリチウム、コバルト、銅の原子モル比が表10に示す割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で本発明の電池25を作製した。
【0071】
(実施例10)
亜鉛共沈酸化コバルトは硫酸コバルトと硫酸亜鉛の混合水溶液に水酸化ナトリウムを滴下することにより得られる亜鉛共沈水酸化コバルトを空気雰囲気で乾燥、酸化させたものを用いた。亜鉛共沈量は硫酸コバルトと硫酸亜鉛の混合比により制御し亜鉛共沈酸化コバルトを得た。
【0072】
このようにして得た亜鉛共沈酸化コバルトと炭酸亜鉛、炭酸リチウムをリチウム、コバルト、亜鉛の原子モル比が表10に示す割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で本発明の電池26を作製した。
【0073】
(比較例2)
炭酸リチウム、酸化コバルト、水酸化アルミニウムをリチウム、コバルト、アルミニウムの原子モル比が表11の割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で比較例の電池7を作製した。
【0074】
【表11】
Figure 0004604347
【0075】
(比較例3)
炭酸リチウム、酸化コバルト、炭酸銅をリチウム、コバルト、銅の原子モル比が表11の割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で比較例の電池8を作製した。
【0076】
(比較例4)
炭酸リチウム、酸化コバルト、酸化亜鉛をリチウム、コバルト、亜鉛の原子モル比が表11の割合になるようにそれぞれ混合した。この混合物を実施例1と同様に合成して正極活物質とし、実施例1と同様の方法で比較例の電池9を作製した。
【0077】
上記得られた実施例の電池21〜26および比較例の電池7〜9を実施例1と同様の方法で評価を行った。本発明の電池21〜27および比較例の電池7〜9の活物質比容量と、300サイクル後容量維持率と充放電サイクル前後での電池厚み変化を表12に示す。
【0078】
【表12】
Figure 0004604347
【0079】
表12より、本発明の電池21、24および比較例の電池27を比較すると、活物質比容量はアルミニウム共沈酸化コバルトを使用した本発明の電池21および24が高く、容量維持率と電池厚み変化はアルミニウム共沈酸化コバルトとアルミニウムを含む化合物の両方を使用した本発明の電池24が優れていることがわかる。これは前述したマグネシウムの系と同様の傾向を示している。本発明の電池22、25および比較例の電池8、また本発明の電池23、26および比較例の電池9の結果から、同様のことが銅、亜鉛の系においても言える。
【0080】
さらに、本実施例において、アルミニウム、銅、亜鉛についても、マグネシウムの系と同様の他の実験を行なったところ同様の傾向を示した。
【0081】
なお、負極としては、リチウム金属、リチウムの吸蔵・放出が可能な種々の炭素質材、リチウム合金、インターカレーションが可能な無機物系材料を用いた電池においても同様の効果が得られる。さらに、電解質として本実施例で用いたエチレンカーボネートとエチルメチルカーボネートの混合溶媒に六フッ化リン酸リチウムを溶解したもの以外にも、公知の材料を組合せた溶媒にリチウム塩を溶解した電解液、ポリマ電解質を用いた電池においても同様の効果が得られる。
【0082】
【発明の効果】
以上のように本発明によれば、リチウム化合物と添加元素Mを共沈することにより得られた添加元素共沈酸化コバルトと添加元素Mを含む化合物(ただし、添加元素MはMg、Al、Cu、Znのうちから少なくとも1つ)を混合し加熱することにより、コバルトの一部およびリチウムの一部を添加元素で置換し、さらに置換量を制御することができ、活物質比容量が高く、優れた充放電サイクル特性を有し、電池厚み増加を抑制する非水電解質二次電池用正極活物質を得ることができる。
【図面の簡単な説明】
【図1】本発明における角型電池の縦断面図
【符号の説明】
1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 注入口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a positive electrode active material in a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, consumer electronic devices have become increasingly portable and cordless, and there is an increasing demand for secondary batteries that are compact, lightweight, and have a high energy density as the driving power source. From such a point of view, non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries, are particularly expected as batteries having high voltage and high energy density, and development is urgently required.
[0003]
In recent years, a battery system using a lithium-containing composite oxide as a positive electrode active material and a carbonaceous material as a negative electrode has attracted attention as a lithium secondary battery capable of obtaining a high energy density. As this lithium-containing composite oxide, LiCoO2LiNiO aimed at higher capacity2There have been many attempts to put this into practical use. However, LiNiO2Has the problem of low thermal stability and is difficult to put into practical use.
[0004]
These positive electrode active materials repeat expansion and contraction by charging and discharging. At this time, lattice distortion, structural destruction, particle cracking, and the like occurred in the positive electrode active material, and the discharge capacity decreased with the charge / discharge cycle. Therefore, in order to solve this problem, reports have been made to stabilize the crystal lattice by substituting a part of cobalt and nickel with other elements to improve the cycle characteristics.
[0005]
For example, as shown in JP-A-5-242891, JP-A-6-168722, and JP-A-11-7958, by replacing a part of cobalt with an additive element, charge / discharge cycle characteristics and safety can be improved. There are reports aimed at improving the performance. In these inventions, the cycle characteristics can be improved by substituting a part of cobalt with an additive element, but on the other hand, it was confirmed that the thickness of the battery gradually increased by repeating the charge / discharge cycle. . In particular, in the case of a prismatic or laminated nonaqueous electrolyte secondary battery, since the strength of the battery case is weak, it is necessary to consider the increase in battery thickness due to the charge / discharge cycle. Japanese Patent Application Laid-Open No. 7-226201 reports the effect of replacing the additive element with lithium. In this method as well, an increase in battery thickness after the passage of a cycle becomes a problem. Although the cause of the increase in battery thickness due to this charge / discharge cycle is not certain at present, the interaction between the additive element, the metal oxide layer composed of cobalt, and the layer composed of lithium is weak. It is considered that the expansion of the crystal lattice of the positive electrode active material is increased by increasing the strain between these layers by repeating the charge / discharge cycle and by increasing the interlayer distance.
[0006]
As described above, since the battery characteristics obtained by the site for replacing the additive element are different, there is a need for a technique for properly replacing the site to be replaced.
[0007]
At present, as a method for adding an additive element, a method in which a lithium compound, cobalt oxide and a compound containing the additive element are mixed and heated is common.
[0008]
[Problems to be solved by the invention]
However, in the above method, it is difficult to replace the additive element with a site to be replaced. For this reason, there has been a problem that the expected battery characteristics cannot be obtained even if the total amount added is properly controlled. The present invention solves such a problem. By improving the addition method of the additive element, the non-aqueous electrolyte has a high active material specific capacity, excellent charge / discharge cycle characteristics, and suppresses an increase in battery thickness. It aims at providing the manufacturing method of the positive electrode active material for secondary batteries.
[0009]
[Means for Solving the Problems]
  In order to solve the above problems, a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is as follows.Compound containing additive element coprecipitated cobalt oxide obtained by coprecipitation of lithium compound and additive element M and additive element M having an average particle diameter of 1 to 15 μm (however, additive element M is Mg, Al, Cu, It is obtained by mixing and heating at least one selected from Zn. The ratio of the atomic molar ratio of the additive element M to the total atomic molar ratio of lithium, cobalt, and the additive element M is preferably 1 to 8%. Moreover, it is preferable that the atomic molar ratio of the additive element M added by the compound containing the additive element M does not exceed the atomic molar ratio of the additive element M contained in the additive element coprecipitated cobalt oxide. Furthermore, the heating temperature is preferably 750 to 1000 ° C.
[0011]
As a method of synthesizing a lithium composite cobalt oxide containing an additive element, a method of mixing a predetermined amount of a starting material lithium compound, cobalt oxide and a compound containing an additive element at a specific ratio and firing at a high temperature has been well known. It is a synthesized method.
[0012]
When this method is used, some of the additive elements are replaced with cobalt sites, but most of them are replaced with lithium sites. This is because it is difficult to replace the additive element with cobalt when lithium is inserted into cobalt oxide. In particular, when an element similar to lithium, such as Group 1A or Group 2A, is selected as the additive element, the additive element is easily replaced with a lithium site. As a result, even if the additive element is replaced, only the effect of replacing the lithium site is obtained, and it is difficult to obtain the expected effect.
[0013]
On the other hand, in the manufacturing method of the present invention, cobalt oxide in which the additive element M is coprecipitated and a lithium compound are mixed and heated, so that a part of cobalt is surely replaced with the additive element M. It becomes possible.
[0014]
The cobalt oxide in which the additive element M is coprecipitated dissolves the cobalt raw material and the raw material containing the additive element M in an aqueous solution. At this time, these raw materials are preferably sulfates. An alkaline aqueous solution is continuously dropped into the mixed solution while controlling the pH of the solution to synthesize a hydroxide that is a coprecipitate of cobalt and the additive element M. Then, the additive element coprecipitated cobalt oxide in which the additive element M is replaced with a part of cobalt is obtained by dry oxidation of the hydroxide. When this additive element coprecipitated cobalt oxide and lithium compound are mixed and heated to synthesize, the reaction of the lithium compound and cobalt oxide partially substituted by the additive element M proceeds. Therefore, some of the additive elements in the additive element coprecipitated cobalt oxide move and are replaced with lithium sites, but most of them are replaced with cobalt sites.
[0015]
Further, in the production method of the present invention, the lithium compound, the additive element coprecipitated cobalt oxide in which the additive element M is coprecipitated, and the compound containing the additive element M are mixed and heated to synthesize each of cobalt and lithium. It becomes possible to control the ratio of the additional element M that partially replaces. When the additive element coprecipitated cobalt oxide, the compound containing the additive element M, and the lithium compound are mixed and heated, the reaction of the lithium compound and the compound containing the additive element, the oxidation partially substituted by the lithium compound and the additive element Cobalt reactions proceed in parallel. That is, it becomes possible to substitute an additive element at both the cobalt and lithium sites. By controlling the ratio of the lithium compound, the additive element coprecipitated cobalt oxide, and the compound containing the additive element, the ratio of the additive element substituted at each site of cobalt and lithium can be determined.
[0016]
From the above, the non-aqueous electrolyte secondary battery with a high active material specific capacity can be obtained by suppressing the increase in battery thickness after performing the charge / discharge cycle, and the cycle life can be remarkably improved from this specific synergistic effect. The positive electrode active material can be supplied.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a lithium composite cobalt oxide, which is an additive element coprecipitated cobalt oxide obtained by coprecipitation of a lithium compound and an additive element M (wherein the additive element M is Mg, Al, Cu, Zn). It is obtained by mixing and heating at least one selected from the group consisting of a positive electrode active material for a non-aqueous electrolyte secondary battery.
[0018]
Further, the present invention is a lithium composite cobalt oxide, a compound containing an additive element coprecipitated cobalt oxide and additive element M obtained by coprecipitation of a lithium compound and additive element M (however, additive element M is It is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is obtained by mixing and heating at least one selected from Mg, Al, Cu, and Zn.
[0019]
As the additive element coprecipitated cobalt oxide, cobalt monoxide (CoO), dicobalt trioxide (Co2OThree), Tricobalt tetroxide (CoThreeOFour) Etc. are good. Among these, as the additive element coprecipitated cobalt oxide, tricobalt tetroxide is preferable. The reason is that tricobalt tetroxide is stable in air and is most advantageous in terms of cost.
[0020]
As the lithium compound, lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide, or the like can be used. Of these, lithium carbonate and lithium hydroxide are preferable because they are advantageous in terms of environment and cost.
[0021]
As the compound containing the additive M, the following are used. As the magnesium salt, magnesium hydroxide, magnesium oxide, basic magnesium carbonate, magnesium chloride, magnesium fluoride, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium oxalate, magnesium sulfide and the like are used. As the aluminum source, aluminum hydroxide, aluminum nitrate, aluminum oxide, aluminum fluoride, aluminum sulfate or the like is used. Moreover, as a copper source, copper carbonate, copper oxide, copper sulfate, copper acetate, copper oxalate, copper chloride, copper sulfide, etc. are used. As the zinc source, zinc oxide, zinc acetate, zinc chloride, zinc fluoride, zinc sulfate, zinc nitrate, zinc sulfide and the like are used.
[0022]
Moreover, it is preferable that the ratio of the atomic molar ratio of the additive element M in the total atomic molar ratio of lithium, cobalt, and the additive element M is 1 to 8%. If the content is less than 1%, the effect of substitution with the additive element cannot be obtained so much.
[0023]
Moreover, it is preferable that the atomic molar ratio of the additive element M contained in the compound containing the additive element M does not exceed the atomic molar ratio of the additive element M contained in the additive element coprecipitated cobalt oxide. This is because a sufficient cycle capacity retention rate cannot be obtained if the ratio is exceeded.
[0024]
Moreover, it is preferable that the average particle diameter of a lithium compound is 2-15. If it is 2 μm or less, the density of the lithium composite cobalt oxide after synthesis is reduced and the battery capacity is reduced, and if it is 15 μm or more, the particles are too large and the reactivity with the additive element coprecipitated cobalt oxide is reduced, and the reaction also occurs. This is because it becomes non-uniform.
[0025]
Moreover, it is preferable that the particle diameter of an additive element coprecipitation cobalt oxide compound is 3-15 micrometers. If it is 3 μm or less, the density of the lithium composite cobalt oxide after synthesis will decrease and the battery capacity will decrease, and if it is 15 μm or more, the particle size of the lithium composite cobalt oxide after synthesis will be too large and the high load characteristics will deteriorate. It is to do.
[0026]
Moreover, it is preferable that the particle diameter of the compound containing an additive element is 1-15 micrometers.
This is because even if it is 1 μm or less or 15 μm or more, when it is mixed with the additive element coprecipitated cobalt oxide and lithium compound, uniform mixing cannot be performed and a non-uniform material is formed.
[0027]
Moreover, heating temperature shall be 750-1000 degreeC. This is because the crystallinity is low at 750 ° C. or lower and sufficient discharge capacity cannot be obtained, and the specific surface area is too low at 1000 ° C. or higher, resulting in poor high load characteristics. The above-mentioned temperature may be performed in one stage, but the two-stage firing method in which the first stage is performed at a relatively low temperature of 650 to 750 ° C. and then the second stage is performed at a high temperature of 750 to 1000 ° C. has high crystallinity. More preferable in terms of reducing the amount of unreacted substances. Furthermore, the first stage is preferably performed using a rotary kiln. The rotary kiln can be heated while mixing and flowing the mixed materials, which can increase the number of contacts between the raw materials and increase the reactivity, thereby reducing the unreacted substances and reducing the crystallinity. A high positive electrode active material for a non-aqueous electrolyte secondary battery can be obtained.
[0028]
Moreover, it is preferable that the particle diameter of the positive electrode active material for nonaqueous electrolyte secondary batteries is 3-15 micrometers. This is because the battery capacity decreases due to a decrease in density at 3 μm or less, and the high load characteristics decrease at 15 μm or more.
[0029]
The specific surface area of the positive electrode active material for nonaqueous electrolyte secondary batteries is 0.3 to 1.2 m.2/ G is preferred. 0.3m2This is because the high load characteristic is reduced at / g or less, and 1.2 m2This is because the amount of gas generated from the positive electrode is increased due to an increase in the contact area with the electrolytic solution at / g or more.
[0030]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0031]
FIG. 1 shows a prismatic nonaqueous electrolyte secondary battery (width 34 mm, height 50 mm) used in this example. As shown in FIG. 1, the electrode plate group 1 is configured by winding a strip-like positive electrode plate and a negative electrode plate in a spiral shape through a separator. An aluminum positive electrode lead 2 and a nickel negative electrode lead 3 are welded to the positive electrode plate and the negative electrode plate, respectively. An insulating ring made of polyethylene resin is attached to the upper part of the electrode plate group, accommodated in the aluminum battery case 4, the other end of the positive electrode lead 2 is spot welded to the aluminum sealing plate 5, and the other end of the negative electrode lead 3 is Spot welding is performed on the lower part of the nickel negative electrode terminal 6 at the center of the sealing plate 5. Laser welding is performed with the sealing plate 5 around the battery case 4, and a predetermined amount of non-aqueous electrolyte is impregnated from the injection port 7. Finally, the inlet 7 is laser welded using an aluminum stopper to complete the battery. Here, the explanation was made using a square battery. However, the shape of the battery can be any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large type used for an electric vehicle, etc. Is also applicable.
[0032]
Example 1
The positive electrode active material was synthesized as follows to produce a positive electrode plate.
[0033]
Magnesium coprecipitated cobalt oxide was obtained by drying and oxidizing magnesium coprecipitated cobalt hydroxide obtained by dropping sodium hydroxide into a mixed aqueous solution of cobalt sulfate and magnesium sulfate in an air atmosphere. Magnesium coprecipitation amount was controlled by the mixing ratio of cobalt sulfate and magnesium sulfate to obtain magnesium coprecipitation cobalt oxide.
[0034]
The thus obtained magnesium coprecipitated cobalt oxides 1 to 5 and lithium carbonate were mixed so that the atomic molar ratios of lithium, cobalt, and magnesium were as shown in Table 1. The mixture was placed in a container, heated to 900 ° C. in an air atmosphere and an electric furnace in 2 hours, and held at 900 ° C. for 10 hours to synthesize positive electrode active materials 1 to 5.
[0035]
[Table 1]
Figure 0004604347
[0036]
100 parts by weight of the positive electrode active materials 1 to 5 are mixed with 3 parts by weight of acetylene black as a conductive material and 7 parts by weight of polytetrafluoroethylene as a binder, and a 1% carboxymethyl cellulose aqueous solution 100 is added to the positive electrode active material. Part by weight was added and mixed by stirring to obtain a paste-like positive electrode mixture. Then, an aluminum foil having a thickness of 20 μm is used as a current collector, the paste-like positive electrode mixture is applied to both surfaces thereof, dried and then rolled using a rolling roller, and cut into predetermined dimensions to form positive electrode plates 1 to 5. Obtained.
[0037]
Moreover, the negative electrode plate was produced as follows. First, flaky graphite ground and classified to an average particle diameter of about 20 μm and 3 parts by weight of styrene / butadiene rubber as a binder were mixed, and then 100 parts by weight of 1% carboxymethyl cellulose aqueous solution with respect to graphite. In addition, the mixture was stirred and mixed to obtain a paste-like negative electrode mixture. A copper foil having a thickness of 15 μm was used as a current collector, a paste-like negative electrode mixture was applied to both surfaces thereof, dried and then rolled using a rolling roller, and cut into a predetermined size to obtain a negative electrode plate.
[0038]
Then, the strip-shaped positive electrode plate, negative electrode plate and 25 μm-thick microporous polyethylene resin separator prepared as described above were spirally wound, and the volume ratio of ethylene carbonate to ethyl methyl carbonate was 1 as the non-aqueous electrolyte. : 1.0 mol / l LiPF in a mixed solvent of 3:6A solution in which was dissolved was poured and sealed.
[0039]
The batteries thus produced were designated as batteries 1 to 5 of the present invention.
[0040]
(Comparative Example 1)
Lithium carbonate, cobalt oxide, and magnesium hydroxide were mixed so that the molar molar ratios of lithium, cobalt, and magnesium were as shown in Table 2. The mixture was placed in a container, heated to 900 ° C. in an air atmosphere and in an electric furnace in 2 hours, and held at 900 ° C. for 10 hours to synthesize and obtain a positive electrode active material. Using these positive electrode active materials, Comparative Examples Batteries 1 to 6 were produced in the same manner as in Example 1.
[0041]
[Table 2]
Figure 0004604347
[0042]
The batteries 1 to 5 of the present invention and the batteries 1 to 6 of the comparative example were subjected to a charge / discharge cycle at an environmental temperature of 20 ° C. In addition, charging / discharging conditions were performed by the constant current discharge for 2 hours which made the maximum electric current value 600mA and the charge end potential at the time of charge 4.2V, and the constant current discharge of the discharge current value 600mA and the discharge end potential 3.0V. The active material specific capacity that can be calculated by dividing the battery capacity of the first cycle by the amount of the positive electrode active material, the capacity retention ratio with respect to the battery capacity of the first cycle after 300 cycles, and the change in battery thickness before and after the charge / discharge cycle Table 3 shows.
[0043]
[Table 3]
Figure 0004604347
[0044]
From Table 3, the batteries 1 to 5 of the present invention and the batteries 2 to 6 of the comparative example in which magnesium is added to the battery 1 of the comparative example to which no magnesium is added both improve both the capacity retention ratio and the battery thickness change. You can see that From this, it is thought that the structural stabilization of the positive electrode active material is progressing by adding magnesium.
[0045]
Moreover, when comparing the batteries 1 to 5 of the present invention with the batteries 2 to 6 of the comparative example, the batteries A to E have a larger active material specific capacity and a larger capacity retention ratio even though the amount of magnesium added is the same, and the change in battery thickness is small. That is, as a method of adding magnesium, it was found that using magnesium coprecipitated cobalt oxide as a raw material has a higher effect of adding magnesium than using a compound containing magnesium as a raw material during active material synthesis. It is considered that magnesium coprecipitated in cobalt oxide is mainly replaced with cobalt, and magnesium in the magnesium compound is considered to be mainly replaced with lithium. Therefore, the capacity retention rate is further improved by replacing part of cobalt with magnesium. In addition, the decrease in the specific capacity of the active material is considered to be small.
[0046]
Moreover, when comparing the batteries 1 to 5 of the present invention, it is understood that the capacity retention ratio and the battery thickness change are improved as the magnesium addition amount is increased, but the active material specific capacity is decreased. The balance of active material specific capacity, capacity retention rate, and battery thickness change is good for the batteries 1 to 4 of the present invention, that is, the atomic molar ratio of magnesium in the total atomic molar ratio of lithium, cobalt and magnesium is 1 to 8%. I found out that
[0047]
(Example 2)
Magnesium coprecipitated cobalt oxide, magnesium hydroxide, and lithium carbonate were mixed such that the atomic molar ratio of lithium, cobalt, and magnesium was the ratio shown in Table 4. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and batteries 6 to 10 of the present invention were produced and evaluated in the same manner as in Example 1. Table 5 shows changes in the active material specific capacity of the batteries 6 to 10 of the present invention, the capacity retention after 300 cycles, and the battery thickness before and after the charge / discharge cycle.
[0048]
[Table 4]
Figure 0004604347
[0049]
[Table 5]
Figure 0004604347
[0050]
From Table 5, comparing the batteries 9 and 10 of the present invention with the batteries 6 to 8 of the present invention, it can be seen that the batteries 6 to 8 of the present invention are greatly improved in both capacity retention rate and battery thickness change. That is, it can be said that the effect of magnesium addition is higher when a magnesium-containing compound and magnesium coprecipitated cobalt oxide are used simultaneously as a magnesium source than when only magnesium coprecipitated cobalt oxide is used as a raw material. Magnesium coprecipitated in cobalt oxide is mainly replaced with cobalt, and magnesium in the magnesium compound is considered to be mainly replaced with lithium. Therefore, by replacing a part of cobalt and a part of lithium with magnesium, The decrease in the specific capacity of the active material is small, the capacity retention rate is further improved, and it is considered that the change in battery thickness has become much smaller.
[0051]
Moreover, when comparing the batteries 6 to 8 of the present invention, it can be seen that the specific capacity of the active material of the battery 8 of the present invention is small. From this, when the compound containing magnesium by magnesium molar ratio exceeds magnesium coprecipitated cobalt oxide, it is thought that an active material specific capacity falls.
[0052]
Example 3
Co-precipitated magnesium cobalt oxide, magnesium hydroxide, and lithium carbonate with an atomic molar ratio of cobalt to magnesium of 0.90: 0.10 were mixed so that the atomic molar ratio of lithium, cobalt, and magnesium would be the ratios shown in Table 6. did. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material 11, and a battery 11 of the present invention was produced in the same manner as in Example 1 and evaluated. Moreover, it produced similarly except having used magnesium nitrate and magnesium carbonate as a magnesium source, and it was set as the batteries 12 and 13 of this invention, and performed the same evaluation. Table 7 shows the active material specific capacities of the batteries 11 to 13 of the present invention, the capacity retention after 300 cycles, and the battery thickness change before and after the charge / discharge cycle.
[0053]
[Table 6]
Figure 0004604347
[0054]
[Table 7]
Figure 0004604347
[0055]
From Table 7, it was found that the same effect as that using magnesium hydroxide can be obtained by using either magnesium carbonate or magnesium nitrate as the compound containing magnesium.
[0056]
(Example 4)
Co-precipitated magnesium cobalt oxide, magnesium hydroxide, and lithium carbonate with an atomic molar ratio of cobalt to magnesium of 0.90: 0.10 were mixed so that the atomic molar ratio of lithium, cobalt, and magnesium would be the ratios shown in Table 6. did. This mixture was synthesized in the same manner as in Example 1 at the synthesis temperature shown in Table 8, and positive electrode active materials 14 to 20 were obtained. Using the obtained positive electrode active materials 14 to 20, batteries 14 to 20 of the present invention were produced and evaluated in the same manner as in Example 1. Table 8 shows the active material specific capacities of the batteries 14 to 20, the capacity retention after 300 cycles, and the change in battery thickness before and after the charge / discharge cycle.
[0057]
[Table 8]
Figure 0004604347
[0058]
From Table 8, it can be seen that when the synthesis temperature is 750 to 1000 ° C., the active material specific capacity, capacity retention ratio, and battery thickness change are well balanced. In particular, the balance is better at 800 to 950 ° C. This is considered to be because the crystallinity is poor at a temperature lower than 750 ° C., the active material specific capacity and capacity retention rate are poor, and the specific surface area is large, so that the battery thickness change is increased. When the temperature is higher than 1000 ° C., the specific surface area becomes too low, and the specific capacity of the active material and the capacity retention rate are considered to decrease.
[0059]
(Example 5)
As the aluminum coprecipitated cobalt oxide, an aluminum coprecipitated cobalt hydroxide obtained by dropping sodium hydroxide into a mixed aqueous solution of cobalt sulfate and aluminum sulfate was dried and oxidized in an air atmosphere. The amount of aluminum coprecipitated was controlled by the mixing ratio of cobalt sulfate and aluminum sulfate to obtain aluminum coprecipitated cobalt oxide.
[0060]
The aluminum coprecipitated cobalt oxide and lithium carbonate thus obtained were mixed so that the atomic molar ratio of lithium, cobalt, and aluminum was the ratio shown in Table 9. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a battery 21 of the present invention was produced in the same manner as in Example 1.
[0061]
[Table 9]
Figure 0004604347
[0062]
(Example 6)
The copper coprecipitated cobalt oxide was obtained by drying and oxidizing copper coprecipitated cobalt hydroxide obtained by dropping sodium hydroxide into a mixed aqueous solution of cobalt sulfate and copper sulfate in an air atmosphere. Copper coprecipitation amount was controlled by the mixing ratio of cobalt sulfate and copper sulfate to obtain copper coprecipitation cobalt oxide.
[0063]
The copper coprecipitated cobalt oxide and lithium carbonate thus obtained were mixed so that the atomic molar ratio of lithium, cobalt, and copper was the ratio shown in Table 9. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a battery 22 of the present invention was produced in the same manner as in Example 1.
[0064]
(Example 7)
The zinc coprecipitated cobalt oxide was obtained by drying and oxidizing zinc coprecipitated cobalt hydroxide obtained by dropping sodium hydroxide into a mixed aqueous solution of cobalt sulfate and zinc sulfate in an air atmosphere. The amount of zinc coprecipitation was controlled by the mixing ratio of cobalt sulfate and zinc sulfate to obtain zinc coprecipitated cobalt oxide.
[0065]
The zinc coprecipitated cobalt oxide and lithium carbonate thus obtained were mixed such that the atomic molar ratio of lithium, cobalt, and zinc was the ratio shown in Table 9. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a battery 23 of the present invention was produced in the same manner as in Example 1.
[0066]
(Example 8)
As the aluminum coprecipitated cobalt oxide, an aluminum coprecipitated cobalt hydroxide obtained by dropping sodium hydroxide into a mixed aqueous solution of cobalt sulfate and aluminum sulfate was dried and oxidized in an air atmosphere. The amount of aluminum coprecipitated was controlled by the mixing ratio of cobalt sulfate and aluminum sulfate to obtain aluminum coprecipitated cobalt oxide.
[0067]
The thus obtained aluminum coprecipitated cobalt oxide 13, aluminum hydroxide, and lithium carbonate were mixed such that the atomic molar ratio of lithium, cobalt, and aluminum was the ratio shown in Table 10. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a battery 24 of the present invention was produced in the same manner as in Example 1.
[0068]
[Table 10]
Figure 0004604347
[0069]
Example 9
The copper coprecipitated cobalt oxide was obtained by drying and oxidizing copper coprecipitated cobalt hydroxide obtained by dropping sodium hydroxide into a mixed aqueous solution of cobalt sulfate and copper sulfate in an air atmosphere. Copper coprecipitation amount was controlled by the mixing ratio of cobalt sulfate and copper sulfate to obtain copper coprecipitation cobalt oxide.
[0070]
The copper coprecipitated cobalt oxide, copper carbonate, and lithium carbonate thus obtained were mixed such that the atomic molar ratio of lithium, cobalt, and copper was the ratio shown in Table 10. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a battery 25 of the present invention was produced in the same manner as in Example 1.
[0071]
(Example 10)
The zinc coprecipitated cobalt oxide was obtained by drying and oxidizing zinc coprecipitated cobalt hydroxide obtained by dropping sodium hydroxide into a mixed aqueous solution of cobalt sulfate and zinc sulfate in an air atmosphere. The amount of zinc coprecipitation was controlled by the mixing ratio of cobalt sulfate and zinc sulfate to obtain zinc coprecipitated cobalt oxide.
[0072]
The zinc coprecipitated cobalt oxide, zinc carbonate, and lithium carbonate thus obtained were mixed so that the atomic molar ratios of lithium, cobalt, and zinc were as shown in Table 10. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a battery 26 of the present invention was produced in the same manner as in Example 1.
[0073]
(Comparative Example 2)
Lithium carbonate, cobalt oxide, and aluminum hydroxide were mixed so that the molar molar ratio of lithium, cobalt, and aluminum was the ratio shown in Table 11. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and Comparative Example Battery 7 was produced in the same manner as in Example 1.
[0074]
[Table 11]
Figure 0004604347
[0075]
(Comparative Example 3)
Lithium carbonate, cobalt oxide, and copper carbonate were mixed so that the atomic molar ratio of lithium, cobalt, and copper was the ratio shown in Table 11. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a comparative battery 8 was produced in the same manner as in Example 1.
[0076]
(Comparative Example 4)
Lithium carbonate, cobalt oxide, and zinc oxide were mixed so that the molar molar ratio of lithium, cobalt, and zinc was the ratio shown in Table 11. This mixture was synthesized in the same manner as in Example 1 to obtain a positive electrode active material, and a comparative battery 9 was produced in the same manner as in Example 1.
[0077]
The batteries 21 to 26 of Examples obtained above and the batteries 7 to 9 of Comparative Examples were evaluated in the same manner as in Example 1. Table 12 shows the active material specific capacities of the batteries 21 to 27 of the present invention and the batteries 7 to 9 of the comparative examples, the capacity retention after 300 cycles, and the change in battery thickness before and after the charge / discharge cycle.
[0078]
[Table 12]
Figure 0004604347
[0079]
From Table 12, when comparing the batteries 21 and 24 of the present invention and the battery 27 of the comparative example, the specific capacity of the active material is higher in the batteries 21 and 24 of the present invention using aluminum coprecipitated cobalt oxide, and the capacity retention ratio and battery thickness. The change shows that the battery 24 of the present invention using both the aluminum coprecipitated cobalt oxide and the compound containing aluminum is superior. This shows the same tendency as the magnesium system described above. From the results of the batteries 22 and 25 of the present invention and the battery 8 of the comparative example, and the batteries 23 and 26 of the present invention and the battery 9 of the comparative example, the same can be said for the copper and zinc systems.
[0080]
Furthermore, in this example, aluminum, copper, and zinc also showed the same tendency when other experiments similar to the magnesium system were performed.
[0081]
The same effect can be obtained in a battery using lithium metal, various carbonaceous materials capable of inserting and extracting lithium, lithium alloys, and inorganic materials capable of intercalation as the negative electrode. Furthermore, in addition to those obtained by dissolving lithium hexafluorophosphate in a mixed solvent of ethylene carbonate and ethyl methyl carbonate used in this example as an electrolyte, an electrolytic solution in which a lithium salt is dissolved in a solvent in which known materials are combined, The same effect can be obtained in a battery using a polymer electrolyte.
[0082]
【The invention's effect】
As described above, according to the present invention, a compound containing additive element coprecipitated cobalt oxide and additive element M obtained by coprecipitation of a lithium compound and additive element M (however, additive element M is Mg, Al, Cu). , At least one of Zn) is mixed and heated, whereby a part of cobalt and a part of lithium are substituted with an additive element, and the substitution amount can be controlled, and the active material specific capacity is high. A positive electrode active material for a nonaqueous electrolyte secondary battery that has excellent charge / discharge cycle characteristics and suppresses an increase in battery thickness can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a prismatic battery according to the present invention.
[Explanation of symbols]
1 plate group
2 Positive lead
3 Negative lead
4 Battery case
5 Sealing plate
6 Negative terminal
7 Inlet

Claims (10)

リチウム複合コバルト酸化物であって、リチウム化合物と添加元素Mを共沈することにより得られた添加元素共沈酸化コバルトと平均粒子径が1〜15μmである添加元素Mを含む化合物(ただし、添加元素MはMg、Al、Cu、Znの中から選ばれる少なくとも1種)を混合し加熱することにより得られることを特徴とする非水電解質二次電池用正極活物質の製造方法。Lithium composite cobalt oxide, a compound containing additive element coprecipitated cobalt oxide obtained by coprecipitation of a lithium compound and additive element M and additive element M having an average particle size of 1 to 15 μm (however, added The element M is obtained by mixing and heating at least one selected from Mg, Al, Cu, and Zn, and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. 前記リチウム、コバルトおよび添加元素Mの原子モル比の合計に占める添加元素Mの原子モル比の割合が1〜8%である請求項1に記載の非水電解質二次電池用正極活物質の製造方法。2. The production of a positive electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein a ratio of an atomic molar ratio of the additive element M to a total atomic molar ratio of the lithium, cobalt, and the additive element M is 1 to 8%. Method. 前記添加元素Mを含む化合物により添加する添加元素Mの原子モル比が添加元素共沈酸化コバルトに含まれる添加元素Mの原子モル比を超えない請求項記載の非水電解質二次電池用正極活物質の製造方法。The non-aqueous electrolyte secondary battery positive electrode of the additive atomic molar ratio of the additional element M to be added by a compound element containing M does not exceed the atomic molar ratio of the additional element M contained in the additive element coprecipitated cobalt claim 1, wherein A method for producing an active material. 前記加熱温度が750〜1000℃である請求項1からのいずれかに記載の非水電解質二次電池用正極活物質の製造方法。The said heating temperature is 750-1000 degreeC, The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries in any one of Claim 1 to 3 . 前記加熱前に、ロータリーキルンを用い650〜750℃で混合物を予備加熱する請求項記載の非水電解質二次電池用正極活物質の製造方法。The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries of Claim 4 which preheats a mixture at 650-750 degreeC using a rotary kiln before the said heating. 前記リチウム化合物の平均粒子径が2〜15μmである請求項1からのいずれかに記載の非水電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5 mean particle size of the lithium compound is 2 to 15 [mu] m. 前記添加元素共沈酸化コバルトの平均粒子径が3〜15μmである請求項1からのいずれかに記載の非水電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 6 , wherein the additive element coprecipitated cobalt oxide has an average particle size of 3 to 15 µm. 前記添加元素共沈酸化コバルトが四酸化三コバルトである請求項1からのいずれかに記載の非水電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 7 , wherein the additive element coprecipitated cobalt oxide is tricobalt tetroxide. 前記非水電解質二次電池用正極活物質の平均粒子径が3〜20μmである請求項1からのいずれかに記載の非水電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 8 , wherein an average particle diameter of the positive electrode active material for a nonaqueous electrolyte secondary battery is 3 to 20 µm. 前記非水電解質二次電池用正極活物質の比表面積が0.3〜1.2m2/gである請求項1からのいずれかに記載の非水電解質二次電池用正極活物質の製造方法。The specific surface area of the positive electrode active material for a nonaqueous electrolyte secondary battery is 0.3 to 1.2 m 2 / g. Production of a positive electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 9. Method.
JP2000397667A 2000-12-27 2000-12-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP4604347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000397667A JP4604347B2 (en) 2000-12-27 2000-12-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000397667A JP4604347B2 (en) 2000-12-27 2000-12-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002198051A JP2002198051A (en) 2002-07-12
JP4604347B2 true JP4604347B2 (en) 2011-01-05

Family

ID=18862766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000397667A Expired - Fee Related JP4604347B2 (en) 2000-12-27 2000-12-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4604347B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567111B1 (en) * 2001-10-29 2006-03-31 마쯔시다덴기산교 가부시키가이샤 Lithium ion secondary battery
US7179565B2 (en) 2001-12-06 2007-02-20 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell
WO2003098722A1 (en) * 2002-05-16 2003-11-27 Matsushita Electric Industrial Co., Ltd. Active material of positive electrode for nonaqueous electrolyte secondary battery and process for producing the same
JP2004119172A (en) * 2002-09-26 2004-04-15 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte rechargeable battery, its manufacturing method, and nonaqueous electrolyte rechargeable battery
JP4274801B2 (en) 2003-01-09 2009-06-10 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4492058B2 (en) * 2003-07-30 2010-06-30 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
TWI286849B (en) 2003-03-25 2007-09-11 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4518865B2 (en) 2003-09-30 2010-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4703111B2 (en) * 2003-11-17 2011-06-15 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4651279B2 (en) 2003-12-18 2011-03-16 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US9190647B2 (en) 2005-03-17 2015-11-17 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery with high temperature and storage characteristics
CN101176226B (en) 2005-05-17 2010-07-21 Agc清美化学股份有限公司 Process for producing lithium-containing composite oxide for positive electrode in lithium rechargeable battery
JP4963819B2 (en) * 2005-09-30 2012-06-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5019892B2 (en) 2007-01-23 2012-09-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5235307B2 (en) * 2007-01-23 2013-07-10 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2009259798A (en) * 2008-03-19 2009-11-05 Panasonic Corp Non-aqueous electrolyte secondary battery
JP2011076891A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
WO2014069469A1 (en) * 2012-10-29 2014-05-08 旭硝子株式会社 Production method for positive electrode active material
CN108862404A (en) * 2017-05-08 2018-11-23 江苏凯力克钴业股份有限公司 A kind of preparation method and device of the doping small particle cobalt oxide for cobalt acid lithium battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262995A (en) * 1994-03-17 1995-10-13 Nippon Chem Ind Co Ltd Cobalt acid lithium positive electrode active material for lithium secondary battery and manufacture thereof
JPH0922692A (en) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd Cobalt hydroxide and tricobalt tetraoxide for active material of nonaqueous electrolyte battery and manufacture thereof
JPH09283114A (en) * 1996-04-12 1997-10-31 Toshiba Corp Electrolyte filling device and electrolyte filling method
JPH10144315A (en) * 1996-09-13 1998-05-29 Sumitomo Metal Mining Co Ltd Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material
JPH11111290A (en) * 1997-10-06 1999-04-23 Mitsui Mining & Smelting Co Ltd Positive electrode material for lithium secondary battery and manufacture therefor
JP2000058054A (en) * 1998-08-11 2000-02-25 Sumitomo Metal Mining Co Ltd Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, and positive- electrode active material for nonaqueous-electrolyte secondary battery obtained by the method
JP2001035492A (en) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd Positive electrode active material for lithium secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203867B2 (en) * 1993-04-02 2001-08-27 三菱電機株式会社 Lithium secondary battery
JPH09190818A (en) * 1995-12-29 1997-07-22 Fuji Chem Ind Co Ltd Positive electrode active material for secondary battery and its manufacture, and positive electrode including such an active material
JPH1027613A (en) * 1996-07-08 1998-01-27 Sumitomo Metal Mining Co Ltd Positive electrode active substance for nonaqueous electrolyte secondary battery and manufacture thereof
KR20000049093A (en) * 1996-10-11 2000-07-25 자르밀라 제트. 흐르벡 Polymer electrolyte, intercalation compounds and electrodes for batteries
JP3633223B2 (en) * 1997-04-25 2005-03-30 ソニー株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4246283B2 (en) * 1997-05-19 2009-04-02 昭和電工株式会社 Lithium-containing composite metal oxide, its production method and use
JPH11233113A (en) * 1998-02-19 1999-08-27 Sony Corp Manufacture of li-co complex oxide for secondary battery
JP3446639B2 (en) * 1998-12-10 2003-09-16 松下電器産業株式会社 Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
JP3088716B1 (en) * 1999-04-30 2000-09-18 同和鉱業株式会社 Positive electrode active material and lithium secondary battery using the positive electrode active material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262995A (en) * 1994-03-17 1995-10-13 Nippon Chem Ind Co Ltd Cobalt acid lithium positive electrode active material for lithium secondary battery and manufacture thereof
JPH0922692A (en) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd Cobalt hydroxide and tricobalt tetraoxide for active material of nonaqueous electrolyte battery and manufacture thereof
JPH09283114A (en) * 1996-04-12 1997-10-31 Toshiba Corp Electrolyte filling device and electrolyte filling method
JPH10144315A (en) * 1996-09-13 1998-05-29 Sumitomo Metal Mining Co Ltd Active material for positive electrode of nonaqueous electrolyte secondary battery and its manufacture
JPH1173958A (en) * 1997-06-18 1999-03-16 Sony Corp Manufacture of positive electrode active material
JPH11111290A (en) * 1997-10-06 1999-04-23 Mitsui Mining & Smelting Co Ltd Positive electrode material for lithium secondary battery and manufacture therefor
JP2000058054A (en) * 1998-08-11 2000-02-25 Sumitomo Metal Mining Co Ltd Manufacture of positive-electrode active material for nonaqueous-electrolyte secondary battery, and positive- electrode active material for nonaqueous-electrolyte secondary battery obtained by the method
JP2001035492A (en) * 1999-07-23 2001-02-09 Seimi Chem Co Ltd Positive electrode active material for lithium secondary battery

Also Published As

Publication number Publication date
JP2002198051A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
JP4604347B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5095098B2 (en) Nonaqueous electrolyte secondary battery
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP3782058B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and battery using the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2003142101A (en) Positive electrode for secondary battery and secondary battery using the same
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP5052161B2 (en) Nonaqueous electrolyte secondary battery
JP4055241B2 (en) Nonaqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP3637344B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR101966494B1 (en) Lithium ion secondary battery
JPH0737576A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive pole active material
JP2001345101A (en) Secondary battery
JP5691315B2 (en) Positive electrode for lithium ion battery and lithium ion battery using the same
JP2007095534A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4626058B2 (en) Non-aqueous electrolyte secondary battery
JP2006127848A (en) Aqueous lithium secondary battery
JP2002104827A (en) Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP3835235B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR100637998B1 (en) Active material of positive electrode for nonaqueous electrolyte secondary battery and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R151 Written notification of patent or utility model registration

Ref document number: 4604347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141015

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees