JP4620926B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4620926B2
JP4620926B2 JP2002075919A JP2002075919A JP4620926B2 JP 4620926 B2 JP4620926 B2 JP 4620926B2 JP 2002075919 A JP2002075919 A JP 2002075919A JP 2002075919 A JP2002075919 A JP 2002075919A JP 4620926 B2 JP4620926 B2 JP 4620926B2
Authority
JP
Japan
Prior art keywords
particle diameter
lithium manganate
particle
positive electrode
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002075919A
Other languages
Japanese (ja)
Other versions
JP2003272629A (en
Inventor
典幹 杉山
昌市 藤野
浩康 渡邊
英明 前田
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2002075919A priority Critical patent/JP4620926B2/en
Publication of JP2003272629A publication Critical patent/JP2003272629A/en
Application granted granted Critical
Publication of JP4620926B2 publication Critical patent/JP4620926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、非水電解液二次電池用の正極活物質として二次電池の充放電サイクル特性に優れたマンガン酸リチウム粒子粉末に関するものである。
【0002】
【従来の技術】
近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。
【0003】
従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、岩塩型構造のLiMnO、LiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOは高電圧と高容量を有する点で優れているが、コバルト原料の供給量が少ないことによる製造コスト高の問題や廃棄電池の環境安全上の問題を含んでいる。そこで、供給量が多く低コストで環境適性の良いマンガンを原料として作られるスピネル構造型のマンガン酸リチウム粒子粉末(基本組成:LiMn−以下、同じ−)の研究が盛んに行われている。
【0004】
周知の通り、マンガン酸リチウム粒子粉末は、マンガン化合物とリチウム化合物とを所定の割合で混合し、700〜800℃の温度範囲で焼成することによって得ることができる。
【0005】
しかしながら、マンガン酸リチウム粒子粉末をリチウムイオン二次電池の正極活物質として用いた場合、高電圧と高エネルギー密度を有するものの、充放電サイクル特性が劣るという問題がある。この原因は、充放電の繰り返しに伴う結晶構造中のリチウムイオンの脱離・挿入挙動によって結晶格子が伸縮して、結晶の体積変化によって格子破壊が生じることや電解液中へMnが溶解することとされている。
【0006】
マンガン酸リチウム粒子粉末を用いたリチウムイオン二次電池にあっては、充放電の繰り返しによる充放電容量の劣化を抑制し、充放電サイクル特性を向上させることが現在最も要求されている。
【0007】
充放電サイクル特性を向上させるためには、マンガン酸リチウム粒子粉末からなる正極活物質が充填性に優れ、適度な大きさを有することが必要である。その手段としては、マンガン酸リチウム粒子の粒子径及び粒度分布を制御する方法、焼成温度を制御して高結晶のマンガン酸リチウム粒子粉末を得る方法、異種元素を添加して結晶の結合力を強化する方法、表面処理を行ってMnの溶出を抑制する方法等が行われている。
【0008】
適度な大きさのマンガン酸リチウム粒子粉末を得る方法として、特開平10−162826号公報、特開平10−172567号公報、特開平10−321227号公報、特開平11−1323号公報、特開平11−45710号公報、特開平11−71115号公報、特開平11−219705号公報、特開2000−12031号公報、特開2000−143247号公報、特開2001−122626号公報及び特開2001−240417号公報記載の各方法が知られている。
【0009】
【発明が解決しようとする課題】
非水電解液二次電池用の正極活物質として二次電池の充放電サイクル特性に優れたマンガン酸リチウム粒子粉末は未だ得られていない。
【0010】
即ち、前出特開平10−162826号公報には噴霧熱分解法によって粒度分布に優れたマンガン酸リチウム粒子粉末を得る製造法が開示されているが、得られるマンガン酸リチウム粒子粉末は多孔性であり比表面積が大きくなるため、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0011】
また、前出特開平10−172567号公報には、マンガン化合物とリチウム化合物とのスラリーをスプレードライヤーで乾燥した後、焼成する製造法が開示されているが、多数の一次粒子からなる凝集体を構成しており、比表面積が大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0012】
また、前出特開平10−321227号公報には一次粒子と二次粒子の平均粒子径を特定したマンガン酸リチウム粒子粉末が開示されているが、一次粒子が小さいため、二次粒子は多数の一次粒子によって構成されており、比表面積が大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、充填密度についても十分とは言い難いものである。
【0013】
また、前出特開平11−1323号公報には一次粒子と二次粒子の平均粒子径を特定したマンガン酸リチウム粒子粉末が記載されているが、凝集体であって、比表面積が大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また実施例では平均一次粒子径2.0μmであって平均二次粒子径2.0μmであるマンガン酸リチウム粒子粉末が記載されているが、平均粒子径が小さく充填性が十分とは言い難いものである。
【0014】
また、前出特開平11−45710号公報には、Fを含有するマンガン酸リチウム粒子粉末が開示されているが、各種原料を混合、焼成して得られるものであり、マンガン酸リチウム粒子粉末の一次粒子については考慮されておらず、Mnの溶出抑制及び充填性が十分とは言い難いものである。
【0015】
また、特開平11−71115号公報には平均凝集粒子径が1〜50μmであって平均一次粒子径が3.0μm以下であるマンガン酸リチウム粒子粉末が開示されているが、実施例で得られているマンガン酸リチウム粒子の平均一次粒子径は1.0μm以下と小さく比表面積が大きくなるため、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0016】
また、前出特開平11−219705号公報には平均粒子径が1.0μm以下の微細粒子の含有量が少ないマンガン酸リチウム粒子粉末が開示されているが、一次粒子については考慮されておらず、マンガン原料に電解MnOを用いている点及び平均粒子径に対する比表面積が大きいことから、凝集粒子であると推測される。そのため、Mnの溶出を抑制することは困難であり、結果として、二次電池の充放電サイクル特性が低下する。
【0017】
また、前出特開2000−12031号公報には平均粒子径が1〜45μmのマンガン酸リチウム粒子粉末が開示されているが、一次粒子については考慮されておらず、得られたマンガン酸リチウム粒子は小さな一次粒子が凝集した二次粒子であるため、比表面積が大きくMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0018】
また、前出特開2000−143247号公報には一次粒子径が0.5〜2.0μmであるマンガン酸リチウム粒子粉末が開示されているが、一次粒子が小さいため、充填密度が低くなり、また、比表面積も大きくなるためMnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。
【0019】
また、前出特開2001−122626号公報には粒度分布を特定したマンガン酸リチウム粒子粉末が開示されているが、一次粒子については考慮されておらず、マンガン原料に電解二酸化マンガン(EMD)又はCMDを用いている点及び平均粒子径に対する比表面積が大きいことから、凝集粒子であると推測される。従って、Mnの溶出を抑制することが困難となり、結果として充放電サイクル特性が低下する。
【0020】
また、前出特開2001−240417号公報にはマンガン水酸化物を酸化して酸化マンガンとした後、粒子成長させ、次いで、リチウム化合物と混合した後、加熱焼成する製造法が開示されているが、得られたマンガン酸リチウム粒子粉末の比表面積が大きいことから、Mnの溶出を抑制することが困難となり、結果として、二次電池の充放電サイクル特性が低下する。また、水熱合成するため工業的とは言い難い。
【0021】
そこで本発明は、非水電解液二次電池用の正極活物質として二次電池の充放電サイクル特性に優れたマンガン酸リチウム粒子粉末を提供することを技術的課題とする。
【0022】
【課題を解決するための手段】
前記技術的課題は、次の通りの本発明によって達成できる。
【0023】
即ち、本発明は、平均一次粒子径が3.0〜20.0μmであって平均二次粒子径D50(マンガン酸リチウム粒子粉末の全体積を100%として粒子径に対する累積割合を求めたときの累積割合が50%となる粒子径)が3.0〜40.0μmであり、前記平均一次粒子径と平均二次粒子径との比(平均一次粒子径/平均二次粒子径)が0.5〜1.2であり、粒子形状が粒状であるマンガン酸リチウム粒子粉末からなることを特徴とする非水電解質二次電池用正極活物質である。
【0024】
また、本発明は、マンガン酸リチウム粒子粉末の平均二次粒子径D50に対するD10(マンガン酸リチウム粒子粉末の全体積を100%として粒子径に対する累積割合を求めたときの累積割合が10%となる粒子径)の比(D10/D50)が0.50以上であってD50に対するD90(マンガン酸リチウム粒子粉末の全体積を100%として累積体積で表した粒子径を求めたときの累積割合が90%となる粒子径)の比(D90/D50)が2.0以下である前記非水電解質二次電池用正極活物質である。
【0025】
また、本発明は、マンガン塩を含有する反応溶液を中和し、次いで熟成した後、酸化反応を行って酸化マンガン粒子粉末を得、該酸化マンガン粒子粉末とリチウム化合物とを混合し、該混合物を700〜1000℃の温度範囲で加熱することを特徴とする前記非水電解質二次電池用正極活物質の製造法である。
【0026】
次に、本発明の構成をより詳しく説明すれば次の通りである。
【0027】
先ず、本発明に係る非水電解質二次電池用正極活物質(以下、単に「正極活物質」と言う。)について述べる。
【0028】
なお、本発明において、「一次粒子」とは単独で存在することができる最小粒子を表し、「二次粒子」とは複数の一次粒子が凝集して形成された通常挙動する上での最小粒子のことを意味する。
【0029】
本発明に係る正極活物質は、平均一次粒子径が3.0〜20.0μmである。平均一次粒子径が3.0μm未満の場合には、二次電池の正極を製造する際に充填密度が低くなり、また、バインダ量を増加させる必要があるなど、二次電池のエネルギー密度の低下を招く。一方、20.0μmを超える場合には、電流密度を増加させた場合にLiの脱挿入反応が低下する傾向がある。好ましくは4.0〜18.0μmである。
【0030】
本発明に係る正極活物質の平均二次粒子径(D50)は3.0〜40.0μmである。平均二次粒子径が3.0μm未満の場合には、二次電池の正極を製造する際に充填密度が低くなり、また、バインダ量を増加させる必要があるなど、二次電池のエネルギー密度の低下を招く。一方、40.0μmを超える場合には、電流密度を増加させた場合にLiの脱挿入反応が低下する傾向がある。好ましくは5.0〜30.0μmである。
【0031】
前記平均一次粒子径と前記平均二次粒子径(D50)との比(平均一次粒子径/平均二次粒子径)は0.5〜1.2であり、0.5未満の場合には、凝集粒子が多数存在するため充填密度が低下し、1.0であれば、一次粒子と二次粒子の粒子径が同一であり凝集しておらず一次粒子として挙動しているものであるが、測定誤差を考慮すると上限値は1.2である。好ましくは0.5〜1.0である。
【0032】
レーザー散乱・回折方式により、マンガン酸リチウム粒子粉末の全体積を100%として粒子径に対する体積の累積割合を求めたときの体積の累積割合が10%、50%、90%となる点の粒子径をそれぞれD10、50、D90として示した場合、本発明に係る正極活物質の粒度分布は、平均二次粒子径D50に対するD10の比(D10/D50)が0.50以上であってD50に対するD90の比(D90/D50)が2.0以下である。D10/D50及びD90/D50が前記範囲外の場合には、粒度分布が広いことを意味しており、充填性が低下する。D10/D50は0.6以上が好ましく、より好ましくは0.64以上である。その上限値は0.85程度である。また、D90/D50は1.7以下が好ましく、より好ましくは1.6以下である。その下限値は1.15程度である。
【0033】
本発明に係る正極活物質の粒子形状は粒状である。鋭角部を有する粒子形状の場合には、電解液との反応性が高まるため好ましくない。
【0034】
本発明に係る正極活物質はLi1+xMn2−xの組成式で表されるマンガン酸リチウム粒子粉末であり、Li/Mnはモル比で0.525〜0.62であることが好ましい。0.525未満の場合には、充放電容量は高いがJahn−Teller効果による歪みの発生のためサイクル特性が低下する。また、0.62を越える場合には、初期放電容量が十分ではないため好ましくない。前記組成式において、原子番号が11以上の金属元素又は遷移金属元素をMnに対するモル比で0〜20%含有してもよい。
【0035】
なお、充放電容量及びサイクル特性に寄与しないMn、Mn、MnO2、LiMnO等の異相を含んでいても良い。
【0036】
本発明に係る正極活物質のBET比表面積値は、0.04〜1.5m/gが好ましい。0.04m/g未満の場合には、電流密度を増加させた場合にLiの脱挿入反応が低下すると考えられ電池特性が低下する。1.5m/gを超える場合には、正極活物質の充填密度が低下することや電解液との反応性が過剰となり安全性が低下する。
【0037】
本発明に係る正極活物質のタップ密度は2.0g/ml以上が好ましい。その上限値は3.0g/ml程度である。
【0038】
次に、本発明に係る正極活物質の製造法について述べる。
【0039】
本発明におけるマンガン塩としては、硫酸マンガン、硝酸マンガン、蓚酸マンガン、酢酸マンガン等が挙げられ、これらは単独で又は必要に応じて2種以上組み合わせて用いてもよい。
【0040】
前記の各種マンガン塩を含有する反応溶液を中和する場合には、水酸化ナトリウム水溶液、水酸化カリウム水溶液、アンモニア等のアルカリ溶液を使用することができる。アルカリ溶液はマンガン塩の当量よりも過剰に添加することによって粒子サイズの大きな酸化マンガンを容易に得ることができる。前記マンガン塩の中和分を除くアルカリ溶液の添加量は0〜20モル/Lで行え、1.0から10モル/Lが好ましい。
【0041】
熟成反応は、中和反応後の懸濁液に対して、20〜100℃の温度範囲、好ましくは50〜90℃の温度範囲で行う。熟成反応を行うことによって粒度分布の狭い酸化マンガンが得られ、よって粒度分布の狭いマンガン酸リチウム粒子粉末を得ることができる。熟成時間は0.1〜10時間が好ましく、より好ましくは1〜3時間である。
【0042】
酸化反応は、反応溶液に酸化性ガスを通気するか、或いは、酸化剤を添加することによって行うことができ、例えば空気の通気が好ましい。
【0043】
酸化反応の終了後、水洗、乾燥を行って酸化マンガン粒子粉末とする。
【0044】
得られる酸化マンガン粒子粉末はMnからなり、粒子形状は粒状であり、平均粒子径が2.0〜20.0μmであり、BET比表面積値が0.04〜2.0m/gであることが好ましい。また、Mnを含んでいてもよい。
【0045】
リチウム原料としては炭酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウムなどが使用出来るが、炭酸リチウムが好ましい。
【0046】
酸化マンガン粒子粉末とリチウム原料との混合割合は、モル比でLi/Mn=0.525〜0.62程度とするのが好ましい。0.525以下の場合には容量は高いがJahn―Teller効果による歪みの発生のため充放電サイクル特性が低下する。また、0.62を越える場合には初期容量が十分ではない。
【0047】
酸化マンガン粒子粉末とリチウム原料は均一な混合状態とする必要がある。均一に混合されていないと、部分的に組成比のズレが生じ容量及び可逆性の異なるマンガン酸リチウムが合成されることになり、また、マンガン酸リチウム以外の異相の発生原因にもなる。
【0048】
混合物の焼成温度は700〜1000℃である。700℃未満の場合には、高い結晶性を有するマンガン酸リチウム粒子粉末を得ることができない。1000℃以上では一次粒子の平均粒子径が大きくなりすぎLiイオンの脱挿入が生じ難くなる。
【0049】
焼成雰囲気は、酸素含有ガス、例えば空気中でよい。焼成時間は反応が均一に進行するように選択すればよいが、1〜48時間が好ましく、より好ましくは10〜24時間である。
【0050】
焼成後、粉砕してマンガン酸リチウム粒子粉末を得る。
【0051】
本発明に係るマンガン酸リチウム粒子粉末を非水電解液二次電池用の正極活物質として用いて正極材を製造する場合には、アセチレンブラック、カーボンブラック等の導電剤及びポリテトラフルオロエチレン、ポリフッ化ビニリデン等の結着材などと混合して、所定の形状に成形して正極材とする。
【0052】
また、負極活物質は特に制限されないが、例えば、リチウム金属、リチウム合金、リチウムを吸蔵放出可能な物質を用いることができ、例えば、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等が挙げられる。
【0053】
また、電解質も特に制限されないが、例えば、炭酸プロピレン、炭酸ジエチル、炭酸ジメチル等のカーボネート類やジメトキシエタン等のエーテル類の少なくとも1種類の有機溶媒中に、過塩素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム等のリチウム塩の少なくとも1種を溶解したものを用いることができる。
【0054】
本発明に係る正極活物質を用いて製造した二次電池は、初期放電容量が85〜135mAh/g、60℃での50サイクル後の容量維持率が93%以上である。
【0055】
【発明の実施の形態】
本発明の代表的な実施の形態は次の通りである。
【0056】
正極活物質の粒子径は下記2種類の方法で測定した。
【0057】
レーザー散乱・回折方式「NIKKISO MICROTRAC HRA、MODEL9320−X100:日機装社製」を用いて各粒子粉末の体積換算の粒度分布から二次粒子のD10、D50、D90を測定した。平均二次粒子径はD50の値とした。
【0058】
平均一次粒子径は走査型電子顕微鏡(日立製作所製)で測定した。走査型電子顕微鏡写真の対角線上に存在する粒子から任意に一次粒子を10個選び、粒径を測定して、その平均値を平均一次粒子径とした。走査型電子顕微鏡写真は対角線上に20〜40個の粒子が存在する倍率が粒径を測定精度の点から好ましい。
【0059】
正極活物質の同定及び結晶構造及び結晶子サイズは、X線回折(RIGAKU
Cu−Kα 40kV 40mA)により調べた。
【0060】
また、前駆体の粒子の形態については走査型電子顕微鏡(日立製作所製)により観察した。
【0061】
BET比表面積はBET法により測定した。
【0062】
タップ密度は、「SEISHIN TAPDENSER KYT−3000:(株)セイシン企業製」を用いて測定した。
【0063】
<正極の作製>
マンガン酸リチウム粒子粉末と導電剤であるアセチレンブラックと結着材であるポリフッ化ビニリデンとを重量比85:10:5の割合で混合し、N−メチル−2−ピロリドンを加えペースト化し、該ペーストをアルミニウム箔に0.15mm厚で塗布し、乾燥後、直径16mmの円盤に打ち抜いて正極を作製した。
【0064】
負極にはリチウム箔を用い、これを16mmの円盤状に打ち抜いた。
【0065】
<二次電池の作製>
セパレータはポリエチレン製からなり、これを19mmの円盤状に打ち抜いた。電解液にはLiPFを支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:1で混合したものを用いた。そして、アルゴン雰囲気のグローブボックス中でコイン型セル電池を作製した。
【0066】
二次電池の充放電サイクル試験は、前記コイン型電池セルを用いて、正極に対する電流密度を0.5mA/cmとし、カットオフ電圧が4.5Vから3.0Vの間、60℃の温度下で充放電を50サイクル繰り返した後、放電容量を測定して初期放電容量に対する割合を求めた。
【0067】
<マンガン酸リチウム粒子粉末の製造>
窒素通気のもと、3.5モルの水酸化ナトリウムに0.5モルの硫酸マンガンを加え全量を1Lとし、得られた水酸化マンガンを90℃で1時間熟成させた。熟成後、空気を通気させ90℃で酸化させ、水洗、乾燥後、酸化マンガン粒子粉末を得た。
【0068】
得られた酸化マンガン粒子粉末はMnであり、粒子形状は粒状であり、平均粒子径4.8μm、BET比表面積が0.6m/gであった。
【0069】
前記Mn粒子粉末と炭酸リチウムとをLi/Mnが0.55の割合になるように1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、750℃、空気雰囲気で10時間保持してマンガン酸リチウム粒子粉末を得た。得られたマンガン酸リチウム粒子粉末をボールミルで1時間解砕した。
【0070】
得られたマンガン酸リチウム粒子粉末は平均一次粒子径5.0μmであって平均二次粒子径(D50)7.0μmであって平均一次粒子径/平均二次粒子径が0.71であり、D10/D50が0.74であってD90/D50が1.39であり、BET比表面積値が0.4m/g、タップ密度が2.1g/mlであった。得られたマンガン酸リチウム粒子粉末の走査型電子顕微鏡写真の観察結果を図1に示す。同図に示す通り、その粒子形状は鋭角部を有していない粒状であった。
【0071】
ここで得たマンガン酸リチウム粒子粉末からなる正極活物質を用いて作製したコイン型電池は、初期放電容量が120mAh/g、60℃での50サイクル後の容量維持率が97%/50cycleであった。
【0072】
【作用】
本発明において最も重要な点は、本発明に係る正極活物質は、大きな一次粒子径を有し、しかも、凝集せず分散性に優れているという点である。
【0073】
本発明においては、マンガン塩を中和した後、熟成工程を設けたこと、高アルカリ、且つ、高温下で酸化反応を行ったことによって、粒度分布が均一で大きな酸化マンガン粒子を得ることができる。
【0074】
マンガン酸リチウム粒子の粒径は前駆体になる酸化マンガン粒子の粒径に大きく依存するから、前記酸化マンガン粒子を用いることによって、マンガン酸リチウム粒子粉末からなる正極活物質も大きな一次粒子となり、粒度分布も優れている。
【0075】
本発明に係る正極活物質を用いた二次電池の充放電サイクル特性が優れているのは、正極活物質の比表面積が小さく、また、粒状であり鋭角部を有さない粒子形状であるため電解液との反応性が押さえられ、塗料化時の分散性及び充填性に優れることによるものと推定している。
【0076】
【実施例】
次に、実施例及び比較例を示す。
【0077】
実施例1〜6:
実施例1は反応温度を80℃とした以外は、前記発明の実施の形態と同様にして、マンガン酸リチウム粒子粉末を得た。実施例2は水酸化ナトリウムの添加量を4.0モルとした以外は前記発明の実施の形態と同様にして、マンガン酸リチウム粒子粉末を得た。実施例3はLi/Mn比を0.60とした以外は実施例2と同様にしてマンガン酸リチウム粒子粉末を得た。実施例4はボールミル解砕時間を20分とした以外は、実施例2と同様にしてマンガン酸リチウム粒子粉末を得た。実施例5は水酸化ナトリウムの添加量を6.0モルとした以外は前記発明の実施の形態と同様にして、マンガン酸リチウム粒子粉末を得た。実施例6はボールミル解砕時間を20分とした以外は、実施例5と同様にしてマンガン酸リチウム粒子粉末を得た。
【0078】
比較例1〜4:
比較例1として、前駆体のMn粒子の代わりに電解MnOを用いた以外は、前記発明の実施の形態と同様にして、マンガン酸リチウム粒子粉末を得た。比較例2として、水酸化ナトリウムの添加量を1.05モルとした以外は、前記発明の実施の形態と同様にして、マンガン酸リチウム粒子粉末を得た。比較例3として、熟成及び酸化反応温度を60℃とした以外は、比較例2と同様にして、マンガン酸リチウム粒子粉末を得た。比較例4として、水酸化ナトリウムの添加量を2.0モルとした以外は、比較例2と同様にして、マンガン酸リチウム粒子粉末を得た。
【0079】
このときの製造条件を表1に、得られたマンガン酸リチウム粒子粉末の諸特性及び前記発明の実施の形態と同様にして行った電池評価の結果を表2に示す。
【0080】
【表1】

Figure 0004620926
【0081】
【表2】
Figure 0004620926
【0082】
表2から明らかなように、比較例1〜4の電池は充放電サイクル時の容量が大きく劣化しているのに対して、前記発明の実施の形態の電池及び実施例1〜6の各電池は容量の劣化が押さえられ、より良好な充放電サイクル維持率を示している。また、充填密度に関しても、比較例1〜4では低いのに対して、前記発明の実施の形態及び実施例1〜6では2.0g/mlより高く、良好な充填密度を示している。これは、大粒子で分散性の良い粒子であるため、比表面積が小さく粒状であることが影響しているものと考えられる。
【0083】
【発明の効果】
本発明に係る正極活物質は分散性及び充填性が優れているので、充放電サイクル特性に優れた非水電解液二次電池を提供することができる。
【図面の簡単な説明】
【図1】発明の実施の形態で得られたマンガン酸リチウム粒子粉末からなる正極活物質の電子顕微鏡写真(1500倍)を示す。
【図2】比較例1で作製したマンガン酸リチウム粒子粉末の電子顕微鏡写真(3500倍)を示す。
【図3】比較例3で作製したマンガン酸リチウム粒子粉末の電子顕微鏡写真(30000倍)を示す。[0001]
[Industrial application fields]
The present invention relates to a lithium manganate particle powder excellent in charge / discharge cycle characteristics of a secondary battery as a positive electrode active material for a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.
[0003]
Conventionally, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4 V class, LiMn having a spinel structure is used. 2 O 4 , LiMnO with rock salt structure 2 LiCoO 2 LiCo 1-X Ni X O 2 , LiNiO 2 Etc. are generally known, and in particular, LiCoO 2 Is superior in that it has a high voltage and a high capacity, but it includes the problem of high production costs due to the small supply of cobalt raw material and the environmental safety problem of waste batteries. Therefore, spinel structure type lithium manganate particles (basic composition: LiMn) made from manganese, which is supplied at a low cost and has good environmental suitability. 2 O 4 -The following is the same-) is being actively researched.
[0004]
As is well known, the lithium manganate particle powder can be obtained by mixing a manganese compound and a lithium compound at a predetermined ratio and firing at a temperature range of 700 to 800 ° C.
[0005]
However, when lithium manganate particle powder is used as a positive electrode active material of a lithium ion secondary battery, although it has a high voltage and a high energy density, there is a problem that charge / discharge cycle characteristics are inferior. This is due to the fact that the crystal lattice expands and contracts due to the lithium ion desorption / insertion behavior in the crystal structure with repeated charge and discharge, resulting in lattice breakage due to the volume change of the crystal and the dissolution of Mn in the electrolyte. It is said that.
[0006]
In lithium ion secondary batteries using lithium manganate particles, it is currently most demanded to suppress deterioration of charge / discharge capacity due to repeated charge / discharge and improve charge / discharge cycle characteristics.
[0007]
In order to improve the charge / discharge cycle characteristics, it is necessary that the positive electrode active material made of lithium manganate particles has excellent filling properties and an appropriate size. As the means, a method of controlling the particle size and particle size distribution of lithium manganate particles, a method of obtaining a highly crystalline lithium manganate particle powder by controlling the firing temperature, and strengthening the bonding power of crystals by adding different elements And a method of suppressing the elution of Mn by performing a surface treatment.
[0008]
As methods for obtaining lithium manganate particles having an appropriate size, JP-A-10-162826, JP-A-10-172567, JP-A-10-32227, JP-A-11-1323, JP-A-11 -45710, JP-A-11-71115, JP-A-11-219705, JP-A-2000-12031, JP-A-2000-143247, JP-A-2001-122626, and JP-A-2001-240417. Each method described in the publication is known.
[0009]
[Problems to be solved by the invention]
As a positive electrode active material for a non-aqueous electrolyte secondary battery, a lithium manganate particle powder excellent in charge / discharge cycle characteristics of the secondary battery has not been obtained yet.
[0010]
That is, the above-mentioned JP-A-10-162826 discloses a production method for obtaining lithium manganate particles having an excellent particle size distribution by spray pyrolysis, but the obtained lithium manganate particles are porous. Since the specific surface area increases, it becomes difficult to suppress the elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. Further, it is difficult to say that the packing density is sufficient.
[0011]
In addition, the above-mentioned JP-A-10-172567 discloses a production method in which a slurry of a manganese compound and a lithium compound is dried with a spray dryer and then fired, but an aggregate composed of a large number of primary particles is disclosed. Since the specific surface area is large, it is difficult to suppress elution of Mn. As a result, the charge / discharge cycle characteristics of the secondary battery are deteriorated. Further, it is difficult to say that the packing density is sufficient.
[0012]
In addition, the above-mentioned JP-A-10-32227 discloses lithium manganate particle powder in which the average particle diameter of primary particles and secondary particles is specified. However, since the primary particles are small, there are many secondary particles. Since it is composed of primary particles and has a large specific surface area, it becomes difficult to suppress elution of Mn. As a result, the charge / discharge cycle characteristics of the secondary battery are deteriorated. Further, it is difficult to say that the packing density is sufficient.
[0013]
Further, in the above-mentioned Japanese Patent Application Laid-Open No. 11-1323, lithium manganate particle powder specifying the average particle diameter of primary particles and secondary particles is described, but it is an aggregate and has a large specific surface area. It becomes difficult to suppress elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate. In the examples, lithium manganate particles having an average primary particle size of 2.0 μm and an average secondary particle size of 2.0 μm are described, but it is difficult to say that the average particle size is small and the filling property is sufficient. It is.
[0014]
In addition, the above-mentioned JP-A-11-45710 discloses a lithium manganate particle powder containing F, which is obtained by mixing and firing various raw materials. The primary particles are not taken into consideration, and it is difficult to say that Mn elution suppression and filling properties are sufficient.
[0015]
JP-A-11-71115 discloses lithium manganate particles having an average aggregate particle size of 1 to 50 μm and an average primary particle size of 3.0 μm or less. The average primary particle size of the lithium manganate particles is as small as 1.0 μm or less and the specific surface area is large, so that it is difficult to suppress elution of Mn, resulting in deterioration of charge / discharge cycle characteristics of the secondary battery. .
[0016]
In addition, the above-mentioned Japanese Patent Application Laid-Open No. 11-219705 discloses lithium manganate particles having a small content of fine particles having an average particle size of 1.0 μm or less, but primary particles are not taken into consideration. Electrolytic MnO as manganese raw material 2 Since the specific surface area with respect to the average particle diameter is large, it is presumed that the particles are aggregated particles. Therefore, it is difficult to suppress elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.
[0017]
In addition, the above-mentioned JP 2000-12031 A discloses lithium manganate particles having an average particle size of 1 to 45 μm, but primary particles are not taken into consideration, and the obtained lithium manganate particles Is a secondary particle in which small primary particles are agglomerated, and therefore, it is difficult to suppress elution of Mn with a large specific surface area. As a result, the charge / discharge cycle characteristics of the secondary battery deteriorate.
[0018]
Moreover, although the above-mentioned JP 2000-143247 A discloses a lithium manganate particle powder having a primary particle diameter of 0.5 to 2.0 μm, the primary particle is small, so the packing density is low, Moreover, since the specific surface area also increases, it becomes difficult to suppress elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery are deteriorated.
[0019]
In addition, in the above-mentioned Japanese Patent Application Laid-Open No. 2001-122626, lithium manganate particles having a specified particle size distribution are disclosed, but primary particles are not considered, and manganese manganese (EMD) or Since the specific surface area with respect to the point which uses CMD, and an average particle diameter is large, it is estimated that it is an aggregated particle. Therefore, it becomes difficult to suppress elution of Mn, and as a result, charge / discharge cycle characteristics are deteriorated.
[0020]
JP-A-2001-240417 mentioned above discloses a production method in which manganese hydroxide is oxidized to manganese oxide, then particles are grown, then mixed with a lithium compound, and then heated and fired. However, since the obtained lithium manganate particle powder has a large specific surface area, it is difficult to suppress elution of Mn, and as a result, the charge / discharge cycle characteristics of the secondary battery are deteriorated. In addition, it is difficult to say industrial because of hydrothermal synthesis.
[0021]
Then, this invention makes it a technical subject to provide the lithium manganate particle powder excellent in the charging / discharging cycling characteristics of a secondary battery as a positive electrode active material for nonaqueous electrolyte secondary batteries.
[0022]
[Means for Solving the Problems]
The technical problem can be achieved by the present invention as follows.
[0023]
That is, the present invention has an average primary particle diameter of 3.0 to 20.0 μm and an average secondary particle diameter D. 50 (The particle diameter at which the cumulative ratio when the total volume of the lithium manganate particle powder is 100% and the cumulative ratio with respect to the particle diameter is 50%) 3.0 40.0 μm, and the ratio of the average primary particle size to the average secondary particle size (average primary particle size / average secondary particle size) is 0.5 to 1.2. The particle shape is granular And a positive electrode active material for a non-aqueous electrolyte secondary battery.
[0024]
Further, the present invention provides an average secondary particle diameter D of lithium manganate particles. 50 D for 10 Ratio (D particle diameter at which the cumulative ratio with respect to the particle diameter is 10% when the total volume of the lithium manganate particle powder is 100%) (D 10 / D 50 ) Is 0.50 or more and D 50 D for 90 Ratio (D particle diameter at which the cumulative ratio when the total volume of lithium manganate particle powder is 100% and the particle diameter expressed in cumulative volume is 90% is determined) (D 90 / D 50 ) Is 2.0 or less, the positive electrode active material for non-aqueous electrolyte secondary batteries.
[0025]
In addition, the present invention neutralizes a reaction solution containing a manganese salt, and after aging, an oxidation reaction is performed to obtain a manganese oxide particle powder, the manganese oxide particle powder and a lithium compound are mixed, and the mixture Is heated in a temperature range of 700 to 1000 ° C., the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
[0026]
Next, the configuration of the present invention will be described in more detail as follows.
[0027]
First, the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention (hereinafter simply referred to as “positive electrode active material”) will be described.
[0028]
In the present invention, “primary particles” represent the smallest particles that can exist alone, and “secondary particles” are the smallest particles for normal behavior formed by aggregation of a plurality of primary particles. Means that.
[0029]
The positive active material according to the present invention has an average primary particle size of 3.0 to 20.0 μm. When the average primary particle size is less than 3.0 μm, the density of the secondary battery is reduced when the positive electrode of the secondary battery is manufactured, and the packing density becomes low and the amount of the binder needs to be increased. Invite. On the other hand, when it exceeds 20.0 μm, the Li deinsertion reaction tends to decrease when the current density is increased. Preferably it is 4.0-18.0 micrometers.
[0030]
Average secondary particle diameter of positive electrode active material according to the present invention (D 50 ) 3.0 ˜40.0 μm. When the average secondary particle diameter is less than 3.0 μm, the packing density becomes low when manufacturing the positive electrode of the secondary battery, and the amount of the binder needs to be increased. Incurs a decline. on the other hand, 40.0 When it exceeds μm, the Li deinsertion reaction tends to decrease when the current density is increased. Preferably it is 5.0-30.0 micrometers.
[0031]
The average primary particle diameter and the average secondary particle diameter (D 50 ) (Average primary particle size / average secondary particle size) is 0.5 to 1.2. When the ratio is less than 0.5, a large number of aggregated particles exist, and the packing density decreases. If it is 0.0, the primary particles and the secondary particles have the same particle size and are not agglomerated and behave as primary particles, but the upper limit is 1.2 in consideration of measurement errors. Preferably it is 0.5-1.0.
[0032]
The particle diameter at which the cumulative volume ratio is 10%, 50%, and 90% when the cumulative volume ratio with respect to the particle diameter is obtained by the laser scattering / diffraction method with the total volume of the lithium manganate particles being 100% D 10, D 50 , D 90 The particle size distribution of the positive electrode active material according to the present invention is the average secondary particle size D 50 D for 10 Ratio (D 10 / D 50 ) Is 0.50 or more and D 50 D for 90 Ratio (D 90 / D 50 ) Is 2.0 or less. D 10 / D 50 And D 90 / D 50 When the value is outside the above range, it means that the particle size distribution is wide, and the filling property is lowered. D 10 / D 50 Is preferably 0.6 or more, more preferably 0.64 or more. The upper limit is about 0.85. D 90 / D 50 Is preferably 1.7 or less, more preferably 1.6 or less. The lower limit is about 1.15.
[0033]
The particle shape of the positive electrode active material according to the present invention is granular. In the case of a particle shape having an acute angle portion, the reactivity with the electrolytic solution is increased, which is not preferable.
[0034]
The positive electrode active material according to the present invention is Li 1 + x Mn 2-x O 4 It is preferable that Li / Mn is 0.525-0.62 by molar ratio. If it is less than 0.525, the charge / discharge capacity is high, but the cycle characteristics deteriorate due to the occurrence of distortion due to the Jahn-Teller effect. On the other hand, if it exceeds 0.62, the initial discharge capacity is not sufficient, which is not preferable. In the composition formula, a metal element or a transition metal element having an atomic number of 11 or more may be contained in a molar ratio of 0 to 20% with respect to Mn.
[0035]
Note that Mn does not contribute to charge / discharge capacity and cycle characteristics. 2 O 3 , Mn 3 O 4 , MnO 2, Li 2 MnO 3 Or the like.
[0036]
The BET specific surface area value of the positive electrode active material according to the present invention is 0.04 to 1.5 m. 2 / G is preferred. 0.04m 2 When it is less than / g, it is considered that the Li deinsertion reaction is lowered when the current density is increased, and the battery characteristics are lowered. 1.5m 2 When the amount exceeds / g, the packing density of the positive electrode active material decreases and the reactivity with the electrolytic solution becomes excessive, resulting in a decrease in safety.
[0037]
The tap density of the positive electrode active material according to the present invention is preferably 2.0 g / ml or more. The upper limit is about 3.0 g / ml.
[0038]
Next, a method for producing the positive electrode active material according to the present invention will be described.
[0039]
Examples of the manganese salt in the present invention include manganese sulfate, manganese nitrate, manganese oxalate, and manganese acetate, and these may be used alone or in combination of two or more as required.
[0040]
When neutralizing the reaction solution containing the various manganese salts, an alkali solution such as an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or ammonia can be used. By adding an alkaline solution in excess of the equivalent of the manganese salt, manganese oxide having a large particle size can be easily obtained. The addition amount of the alkaline solution excluding the neutralized portion of the manganese salt can be 0 to 20 mol / L, and preferably 1.0 to 10 mol / L.
[0041]
The aging reaction is carried out in the temperature range of 20 to 100 ° C., preferably in the temperature range of 50 to 90 ° C., with respect to the suspension after the neutralization reaction. By performing the aging reaction, manganese oxide having a narrow particle size distribution can be obtained, and thus lithium manganate particles having a narrow particle size distribution can be obtained. The aging time is preferably 0.1 to 10 hours, more preferably 1 to 3 hours.
[0042]
The oxidation reaction can be performed by passing an oxidizing gas through the reaction solution or by adding an oxidizing agent. For example, air is preferable.
[0043]
After completion of the oxidation reaction, washing with water and drying are performed to obtain manganese oxide particles.
[0044]
The resulting manganese oxide particle powder is Mn 3 O 4 The particle shape is granular, the average particle diameter is 2.0 to 20.0 μm, and the BET specific surface area value is 0.04 to 2.0 m. 2 / G is preferable. Mn 2 O 3 May be included.
[0045]
As the lithium raw material, lithium carbonate, lithium hydroxide, lithium nitrate, lithium chloride and the like can be used, but lithium carbonate is preferable.
[0046]
The mixing ratio of the manganese oxide particle powder and the lithium raw material is preferably about Li / Mn = 0.525 to 0.62 in molar ratio. In the case of 0.525 or less, the capacity is high, but the charge / discharge cycle characteristics deteriorate due to the occurrence of distortion due to the Jahn-Teller effect. On the other hand, if it exceeds 0.62, the initial capacity is not sufficient.
[0047]
The manganese oxide particle powder and the lithium raw material must be in a uniform mixed state. If they are not uniformly mixed, the composition ratio partially shifts and lithium manganate having different capacities and reversibility is synthesized, and this may cause generation of a different phase other than lithium manganate.
[0048]
The firing temperature of the mixture is 700 to 1000 ° C. When the temperature is lower than 700 ° C., lithium manganate particles having high crystallinity cannot be obtained. When the temperature is 1000 ° C. or higher, the average particle diameter of the primary particles becomes too large, and Li ion desorption is difficult to occur.
[0049]
The firing atmosphere may be in an oxygen-containing gas, such as air. The firing time may be selected so that the reaction proceeds uniformly, but it is preferably 1 to 48 hours, more preferably 10 to 24 hours.
[0050]
After firing, it is pulverized to obtain lithium manganate particles.
[0051]
When producing a positive electrode material using the lithium manganate particles according to the present invention as a positive electrode active material for a non-aqueous electrolyte secondary battery, a conductive agent such as acetylene black and carbon black, and polytetrafluoroethylene, polyfluoride. It is mixed with a binder such as vinylidene chloride and formed into a predetermined shape to obtain a positive electrode material.
[0052]
The negative electrode active material is not particularly limited, and for example, lithium metal, lithium alloy, and a material capable of occluding and releasing lithium can be used, and examples thereof include lithium / aluminum alloy, lithium / tin alloy, graphite, and graphite. It is done.
[0053]
Also, the electrolyte is not particularly limited. For example, in at least one organic solvent such as carbonates such as propylene carbonate, diethyl carbonate and dimethyl carbonate and ethers such as dimethoxyethane, lithium perchlorate, tetrafluoroborate What melt | dissolved at least 1 sort (s) of lithium salts, such as lithium and lithium hexafluorophosphate, can be used.
[0054]
The secondary battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of 85 to 135 mAh / g and a capacity retention rate of 50% after 50 cycles at 60 ° C.
[0055]
DETAILED DESCRIPTION OF THE INVENTION
A typical embodiment of the present invention is as follows.
[0056]
The particle size of the positive electrode active material was measured by the following two methods.
[0057]
D of secondary particles from the particle size distribution in terms of volume of each particle powder using the laser scattering / diffraction method “NIKISO MICROTRAC HRA, MODEL 9320-X100: manufactured by Nikkiso Co., Ltd.” 10 , D 50 , D 90 Was measured. Average secondary particle size is D 50 The value of
[0058]
The average primary particle diameter was measured with a scanning electron microscope (manufactured by Hitachi, Ltd.). Ten primary particles were arbitrarily selected from the particles present on the diagonal line of the scanning electron micrograph, the particle size was measured, and the average value was defined as the average primary particle size. In the scanning electron micrograph, the magnification at which 20 to 40 particles exist on a diagonal line is preferable from the viewpoint of measurement accuracy of the particle size.
[0059]
The identification and crystal structure and crystallite size of the positive electrode active material are determined by X-ray diffraction (RIGAKU).
Cu-Kα 40 kV 40 mA).
[0060]
The morphology of the precursor particles was observed with a scanning electron microscope (manufactured by Hitachi, Ltd.).
[0061]
The BET specific surface area was measured by the BET method.
[0062]
The tap density was measured using “SEISHIN TAPDENSER KYT-3000: manufactured by Seishin Enterprise Co., Ltd.”.
[0063]
<Preparation of positive electrode>
Lithium manganate particles powder, acetylene black as a conductive agent and polyvinylidene fluoride as a binder are mixed at a weight ratio of 85: 10: 5, and N-methyl-2-pyrrolidone is added to form a paste. Was applied to an aluminum foil to a thickness of 0.15 mm, dried, and then punched into a disk having a diameter of 16 mm to produce a positive electrode.
[0064]
Lithium foil was used for the negative electrode, and this was punched into a 16 mm disk.
[0065]
<Production of secondary battery>
The separator was made of polyethylene, and this was punched into a 19 mm disk. LiPF as the electrolyte 6 A mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) in a 1: 1 volume ratio was used. And the coin-type cell battery was produced in the glove box of argon atmosphere.
[0066]
In the charge / discharge cycle test of the secondary battery, the current density with respect to the positive electrode is 0.5 mA / cm using the coin-type battery cell. 2 Then, after 50 cycles of charge and discharge were repeated at a temperature of 60 ° C. with a cut-off voltage between 4.5 V and 3.0 V, the discharge capacity was measured to determine the ratio to the initial discharge capacity.
[0067]
<Manufacture of lithium manganate particles>
Under nitrogen aeration, 0.5 mol of manganese sulfate was added to 3.5 mol of sodium hydroxide to make the total amount 1 L, and the obtained manganese hydroxide was aged at 90 ° C. for 1 hour. After aging, air was passed through, oxidized at 90 ° C., washed with water and dried to obtain manganese oxide particles.
[0068]
The obtained manganese oxide particle powder is Mn 3 O 4 The particle shape is granular, the average particle diameter is 4.8 μm, and the BET specific surface area is 0.6 m. 2 / G.
[0069]
Said Mn 3 O 4 The particle powder and lithium carbonate were mixed for 1 hour so that the Li / Mn ratio was 0.55 to obtain a uniform mixture. 50 g of the obtained mixture was put in an alumina crucible and kept at 750 ° C. in an air atmosphere for 10 hours to obtain lithium manganate particles. The obtained lithium manganate particles were pulverized with a ball mill for 1 hour.
[0070]
The obtained lithium manganate particles had an average primary particle size of 5.0 μm and an average secondary particle size (D 50 ) 7.0 μm and the average primary particle size / average secondary particle size is 0.71, D 10 / D 50 Is 0.74 and D 90 / D 50 Is 1.39 and the BET specific surface area is 0.4 m. 2 / G, and the tap density was 2.1 g / ml. The observation result of the scanning electron micrograph of the obtained lithium manganate particle powder is shown in FIG. As shown in the figure, the particle shape was granular without an acute angle portion.
[0071]
The coin-type battery manufactured using the positive electrode active material made of the lithium manganate particles obtained here had an initial discharge capacity of 120 mAh / g and a capacity maintenance rate of 50% after 50 cycles at 60 ° C. It was.
[0072]
[Action]
The most important point in the present invention is that the positive electrode active material according to the present invention has a large primary particle diameter and is excellent in dispersibility without agglomeration.
[0073]
In the present invention, a manganese oxide particle having a uniform particle size distribution and a large particle size distribution can be obtained by providing a aging step after neutralizing the manganese salt, and performing an oxidation reaction at a high alkali and high temperature. .
[0074]
Since the particle size of the lithium manganate particles greatly depends on the particle size of the manganese oxide particles that are the precursors, by using the manganese oxide particles, the positive electrode active material composed of the lithium manganate particles also becomes large primary particles, and the particle size Distribution is also excellent.
[0075]
The charge / discharge cycle characteristics of the secondary battery using the positive electrode active material according to the present invention are excellent because the specific surface area of the positive electrode active material is small and the particle shape is granular and does not have an acute angle portion. It is presumed that the reactivity with the electrolytic solution is suppressed, and the dispersibility and filling properties at the time of coating are excellent.
[0076]
【Example】
Next, examples and comparative examples are shown.
[0077]
Examples 1-6:
In Example 1, lithium manganate particles were obtained in the same manner as in the above embodiment except that the reaction temperature was 80 ° C. In Example 2, lithium manganate particles were obtained in the same manner as in the above embodiment except that the amount of sodium hydroxide added was 4.0 mol. In Example 3, lithium manganate particles were obtained in the same manner as in Example 2 except that the Li / Mn ratio was 0.60. In Example 4, lithium manganate particles were obtained in the same manner as in Example 2 except that the ball mill crushing time was 20 minutes. In Example 5, lithium manganate particles were obtained in the same manner as in the above embodiment except that the amount of sodium hydroxide added was 6.0 mol. In Example 6, lithium manganate particles were obtained in the same manner as in Example 5 except that the ball mill crushing time was 20 minutes.
[0078]
Comparative Examples 1-4:
As Comparative Example 1, the precursor Mn 3 O 4 Electrolytic MnO instead of particles 2 A lithium manganate particle powder was obtained in the same manner as in the above-described embodiment except that was used. As Comparative Example 2, lithium manganate particle powder was obtained in the same manner as in the above embodiment except that the amount of sodium hydroxide added was 1.05 mol. As Comparative Example 3, lithium manganate particle powder was obtained in the same manner as Comparative Example 2 except that the aging and oxidation reaction temperature was 60 ° C. As Comparative Example 4, lithium manganate particles were obtained in the same manner as Comparative Example 2, except that the amount of sodium hydroxide added was 2.0 mol.
[0079]
The production conditions at this time are shown in Table 1, and the characteristics of the obtained lithium manganate particles and the results of battery evaluation performed in the same manner as in the embodiment of the invention are shown in Table 2.
[0080]
[Table 1]
Figure 0004620926
[0081]
[Table 2]
Figure 0004620926
[0082]
As is clear from Table 2, the batteries of Comparative Examples 1 to 4 are greatly deteriorated in capacity during the charge / discharge cycle, whereas the batteries of the embodiments of the invention and the batteries of Examples 1 to 6 are used. Indicates a better charge / discharge cycle retention rate, with reduced capacity degradation. In addition, the packing density is low in Comparative Examples 1 to 4, while it is higher than 2.0 g / ml in the embodiment of the invention and Examples 1 to 6, indicating a good packing density. Since this is a large particle and a particle having good dispersibility, it is considered that the specific surface area is small and it is granular.
[0083]
【The invention's effect】
Since the positive electrode active material according to the present invention is excellent in dispersibility and filling properties, it is possible to provide a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics.
[Brief description of the drawings]
FIG. 1 shows an electron micrograph (1500 times) of a positive electrode active material composed of lithium manganate particles obtained in an embodiment of the invention.
2 shows an electron micrograph (magnification 3500 times) of the lithium manganate particles produced in Comparative Example 1. FIG.
3 shows an electron micrograph (magnified 30000 times) of the lithium manganate particles produced in Comparative Example 3. FIG.

Claims (2)

平均一次粒子径が3.0〜20.0μmであって平均二次粒子径D50(マンガン酸リチウム粒子粉末の全体積を100%として粒子径に対する累積割合を求めたときの累積割合が50%となる粒子径)が3.0〜40.0μmであり、前記平均一次粒子径と前記平均二次粒子径との比(平均一次粒子径/平均二次粒子径)が0.5〜1.2であり、一次粒子の粒子形状が鋭角部を有していない粒状であるマンガン酸リチウム粒子粉末からなる非水電解質二次電池用正極活物質の製造法であって、マンガン塩を含有する反応溶液を中和し、次いで熟成した後、酸化反応を行って酸化マンガン粒子粉末を得、該酸化マンガン粒子粉末とリチウム化合物とを混合し、該混合物を700〜1000℃の温度範囲で加熱することを特徴とする非水電解質二次電池用正極活物質の製造法。 The average primary particle diameter is 3.0-20.0 μm, the average secondary particle diameter D 50 (the cumulative ratio when the total volume of the lithium manganate particle powder is 100% and the cumulative ratio with respect to the particle diameter is 50% Particle diameter) is 3.0 to 40.0 μm, and the ratio of the average primary particle diameter to the average secondary particle diameter (average primary particle diameter / average secondary particle diameter) is 0.5 to 1. 2 der is, a method of manufacturing a positive electrode active material for non-aqueous electrolyte secondary battery do that lithium manganate particles is a granular particle shape of the primary particles do not have sharp corners, manganese salt The reaction solution is neutralized and then aged, and then an oxidation reaction is performed to obtain manganese oxide particle powder, the manganese oxide particle powder and the lithium compound are mixed, and the mixture is heated in a temperature range of 700 to 1000 ° C. Non-aqueous electrolysis characterized by Process for the preparation of the positive electrode active material for a secondary battery. 平均一次粒子径が3.0〜20.0μmであって平均二次粒子径D 50 (マンガン酸リチウム粒子粉末の全体積を100%として粒子径に対する累積割合を求めたときの累積割合が50%となる粒子径)が3.0〜40.0μmであり、前記平均一次粒子径と前記平均二次粒子径との比(平均一次粒子径/平均二次粒子径)が0.5〜1.2であり、一次粒子の粒子形状が鋭角部を有していない粒状であり、マンガン酸リチウム粒子粉末の平均二次粒子径D50に対するD10(マンガン酸リチウム粒子粉末の全体積を100%として粒子径に対する累積割合を求めたときの累積割合が10%となる粒子径)の比(D10/D50)が0.50以上であってD50に対するD90(マンガン酸リチウム粒子粉末の全体積を100%として粒子径に対する累積割合を求めたときの累積割合が90%となる粒子径)の比(D90/D50)が2.0以下である非水電解質二次電池用正極活物質の製造法であって、マンガン塩を含有する反応溶液を中和し、次いで熟成した後、酸化反応を行って酸化マンガン粒子粉末を得、該酸化マンガン粒子粉末とリチウム化合物とを混合し、該混合物を700〜1000℃の温度範囲で加熱することを特徴とする非水電解質二次電池用正極活物質の製造法。 The average primary particle diameter is 3.0-20.0 μm, the average secondary particle diameter D 50 (the cumulative ratio when the total volume of the lithium manganate particle powder is 100% and the cumulative ratio with respect to the particle diameter is 50% Particle diameter) is 3.0 to 40.0 μm, and the ratio of the average primary particle diameter to the average secondary particle diameter (average primary particle diameter / average secondary particle diameter) is 0.5 to 1. 2 and the particle shape of the primary particles is a granule that does not have an acute angle portion, and D 10 with respect to the average secondary particle diameter D 50 of the lithium manganate particle powder (the total volume of the lithium manganate particle powder is 100%) The ratio (D 10 / D 50 ) of the particle diameter at which the cumulative ratio with respect to the particle diameter is 10%) is 0.50 or more, and D 90 (total lithium manganate particle powder) with respect to D 50 The product is 100% Production ratio (D 90 / D 50) is the positive electrode active material for a nonaqueous electrolyte secondary battery Ru der 2.0 less particle size) in which the cumulative percentage becomes 90% as determined cumulative percentage of particle diameter Te The method comprises neutralizing a reaction solution containing a manganese salt and then aging, and then performing an oxidation reaction to obtain a manganese oxide particle powder, mixing the manganese oxide particle powder and a lithium compound, and mixing the mixture. The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries characterized by heating in the temperature range of 700-1000 degreeC.
JP2002075919A 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Lifetime JP4620926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075919A JP4620926B2 (en) 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075919A JP4620926B2 (en) 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003272629A JP2003272629A (en) 2003-09-26
JP4620926B2 true JP4620926B2 (en) 2011-01-26

Family

ID=29204865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075919A Expired - Lifetime JP4620926B2 (en) 2002-03-19 2002-03-19 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4620926B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954440B2 (en) * 2003-10-29 2012-06-13 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery, cathode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4859487B2 (en) 2005-03-09 2012-01-25 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN100483808C (en) * 2005-03-09 2009-04-29 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
WO2007011053A1 (en) 2005-07-21 2007-01-25 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
JP5180448B2 (en) * 2006-08-09 2013-04-10 関東電化工業株式会社 Spinel type lithium manganate and method for producing the same, and positive electrode active material and nonaqueous electrolyte battery using spinel type lithium manganate
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
JP5309581B2 (en) * 2008-02-04 2013-10-09 住友化学株式会社 Powder for positive electrode active material, positive electrode active material and sodium secondary battery
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
JP2010080424A (en) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd Electrode active material and method for manufacturing the same
JP5670105B2 (en) * 2009-09-29 2015-02-18 日本碍子株式会社 Positive electrode active material and lithium secondary battery
US20110003206A1 (en) * 2009-09-29 2011-01-06 Ngk Insulators, Ltd. Positive electrode active element and lithium secondary battery
ES2712946T3 (en) * 2010-10-06 2019-05-16 Tosoh Corp Manganese oxide and method to produce the same, and method to produce oxide of lithium manganese compound using the same
JP5590337B2 (en) * 2011-05-30 2014-09-17 住友金属鉱山株式会社 Manganese composite hydroxide particles, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production methods thereof
JP6123391B2 (en) 2012-03-22 2017-05-10 東ソー株式会社 Trimanganese tetraoxide and method for producing the same
JP6194618B2 (en) * 2012-04-20 2017-09-13 東ソー株式会社 Trimanganese tetraoxide and method for producing the same
CN102730762B (en) * 2012-06-26 2014-08-27 深圳市新昊青科技有限公司 Low BET ball-type manganic manganous oxide and its preparation method
KR101519861B1 (en) * 2013-07-18 2015-05-13 전남대학교산학협력단 Process for producing manganese compound and potassium sulfate from material comprising potassium and manganese
KR101542748B1 (en) 2014-12-01 2015-08-07 전남대학교산학협력단 Process for producing manganese compound and potassium sulfate from material comprising potassium and manganese
JP6614202B2 (en) 2017-06-01 2019-12-04 日亜化学工業株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Also Published As

Publication number Publication date
JP2003272629A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
JP4305629B2 (en) Trimanganese tetroxide powder and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5817143B2 (en) Positive electrode active material precursor particle powder, positive electrode active material particle powder, and non-aqueous electrolyte secondary battery
US10056612B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP6167822B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5716923B2 (en) Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2014520359A (en) Positive electrode material having a size-dependent composition
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6542421B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5720900B2 (en) Active material powder for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20200411861A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
WO2012032709A1 (en) Method for producing complex oxide, cathode active material for secondary battery and secondary battery
JP2015128004A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary batteries and producing method thereof, and positive electrode active material for nonaqueous electrolyte secondary batteries and producing method thereof
WO2019177017A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery and production method therefor, and non-aqueous electrolyte secondary battery
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6155957B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US20210288321A1 (en) Lithium multiple metal oxide-based cathode active materials for lithium secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term