JPH0864209A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0864209A
JPH0864209A JP6198402A JP19840294A JPH0864209A JP H0864209 A JPH0864209 A JP H0864209A JP 6198402 A JP6198402 A JP 6198402A JP 19840294 A JP19840294 A JP 19840294A JP H0864209 A JPH0864209 A JP H0864209A
Authority
JP
Japan
Prior art keywords
secondary battery
binder
lithium secondary
positive electrode
butyral resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6198402A
Other languages
Japanese (ja)
Inventor
Koji Hattori
康次 服部
Masanori Endo
正則 遠藤
Maruhotora Karun
マルホトラ カルン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6198402A priority Critical patent/JPH0864209A/en
Publication of JPH0864209A publication Critical patent/JPH0864209A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery excellent in charge/discharge cycle characteristics and having a high weight energy density by forming the binder of the positive electrode of the lithium secondary battery with a prescribed resin. CONSTITUTION: A butyral resin of 20 pts.wt. is added and dissolved into a mixed solvent of 100 pts.wt. of isopropyl alcohol, ethyl alcohol, and toluene to forum a binding liquid, and it is used as the binder of the positive electrode 3 of a lithium secondary battery. The butyral resin has a relatively small specific gravity of 1.1, and the volume ratio of the binder in the positive electrode 3 can be increased when it is mixed with an active material at the same weight ratio. The binding force with the active material is increased, and the discharge cycle characteristic is improved. Since the butyral resin is soluble in the solvent, it can be added in the fused state, the dispersibility is improved, the quantity of the binder is reduced, and the weight energy density can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小型電子機器の駆動用
電源として有用なリチウム2次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery useful as a power source for driving small electronic equipment.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでおり、これら電子機器の駆
動用電源として、小型、軽量で高電圧、高エネルギー密
度を有する2次電池の開発が要望されている。そして、
このような要求性能を満たすべく、種々のリチウム2次
電池が提案されている。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
The cordless technology is rapidly advancing, and there is a demand for the development of a small-sized, lightweight secondary battery having a high voltage and a high energy density as a power source for driving these electronic devices. And
Various lithium secondary batteries have been proposed to satisfy such required performance.

【0003】このリチウム2次電池は、一般に、LiC
oO2 またはLiMn2 4 等を活物質とする正極、カ
ーボン負極、および例えばプロピレンカーボネートとジ
メトキシエタンの混合溶媒に過塩素酸リチウムを溶解し
た非水系有機電解液とで構成されている。
This lithium secondary battery is generally LiC.
It is composed of a positive electrode using oO 2 or LiMn 2 O 4 as an active material, a carbon negative electrode, and a non-aqueous organic electrolytic solution in which lithium perchlorate is dissolved in a mixed solvent of propylene carbonate and dimethoxyethane, for example.

【0004】そして、従来、リチウム2次電池の正極
は、ポリ4フッ化エチレン(以下、PTFEと称す)あ
るいはポリフッ化ビニリデン(以下、PVDFと称す)
を結着剤として活物質に混ぜて成形して作製されてい
た。
Conventionally, the positive electrode of a lithium secondary battery is polytetrafluoroethylene (hereinafter referred to as PTFE) or polyvinylidene fluoride (hereinafter referred to as PVDF).
It was produced by mixing with an active material as a binder and molding.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
リチウム2次電池は、樹脂のなかでは比較的比重の大き
いPTFEやPVDFを正極の結着剤として用いている
ため、電池の重量エネルギー密度(重量効率)向上の妨
げとなっていた。
However, since the conventional lithium secondary battery uses PTFE or PVDF, which has a relatively large specific gravity among resins, as a binder for the positive electrode, the weight energy density (weight) of the battery is It was a hindrance to improving efficiency.

【0006】また、PTFEのような粉末状の結着剤を
用いる場合は、結着剤と活物質との均一分散が困難なた
めに、活物質を均一に結着させるのに、比較的多量の結
着剤を用いなければならなかった。
Further, when a powdery binder such as PTFE is used, it is difficult to uniformly disperse the binder and the active material. Therefore, a relatively large amount is required to uniformly bond the active material. Had to be used.

【0007】そこで、本発明の目的は、充放電サイクル
特性に優れ、重量エネルギー密度が高いリチウム2次電
池を提供することにある。
Therefore, an object of the present invention is to provide a lithium secondary battery having excellent charge / discharge cycle characteristics and a high weight energy density.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明のリチウム2次電池は、リチウム含有酸化物
からなる正極と、非水電解液と、負極とからなり、前記
正極の結着剤はブチラール樹脂からなることを特徴とす
る。
In order to achieve the above object, a lithium secondary battery of the present invention comprises a positive electrode made of a lithium-containing oxide, a non-aqueous electrolyte and a negative electrode. The agent is characterized by comprising butyral resin.

【0009】[0009]

【作用】リチウム2次電池の正極の結着剤として用いる
ブチラール樹脂の比重は1.1と、従来結着剤として用
いられていたPTFEの2.7、PVDFの1.7と比
較して小さい。このため、同じ重量比率で活物質と混合
した場合、正極中の結着剤の体積比率が従来より増加す
る。したがって、活物質を結着する力が大となって正極
中の活物質の脱落が少なくなり、リチウム2次電池の充
放電サイクル特性が向上する。
The specific gravity of the butyral resin used as the binder of the positive electrode of the lithium secondary battery is 1.1, which is smaller than the 2.7 of PTFE and 1.7 of PVDF which have been conventionally used as the binder. . Therefore, when mixed with the active material in the same weight ratio, the volume ratio of the binder in the positive electrode is higher than in the conventional case. Therefore, the force for binding the active material is large, and the active material in the positive electrode is less likely to fall off, and the charge / discharge cycle characteristics of the lithium secondary battery are improved.

【0010】また、ブチラール樹脂は溶剤に可溶性のた
め、溶液状態で添加できて分散性がよく、従来のPTF
E等の粉末の結着剤より少ない添加割合で同等の結着力
が得られる。したがって、添加する結着剤量を減少させ
ることができ、リチウム2次電池の重量エネルギー密度
が向上する。
Also, since butyral resin is soluble in a solvent, it can be added in a solution state and has good dispersibility.
An equivalent binding force can be obtained with a smaller addition ratio than the powdery binder such as E. Therefore, the amount of the binder to be added can be reduced, and the weight energy density of the lithium secondary battery is improved.

【0011】[0011]

【実施例】【Example】

(実施例)以下、本発明のリチウム2次電池について、
その実施例を説明する。
(Example) Hereinafter, regarding the lithium secondary battery of the present invention,
The embodiment will be described.

【0012】図1は、本発明の一実施例により得られる
コイン型電池の断面図である。同図において、1はステ
ンレス鋼板を加工した耐非水有機電解液性の電池ケー
ス、2は封口板、3は正極、4は負極、5はセパレー
タ、6は絶縁ガスケットである。
FIG. 1 is a sectional view of a coin type battery obtained according to an embodiment of the present invention. In the figure, 1 is a non-aqueous organic electrolyte resistant battery case made by processing a stainless steel plate, 2 is a sealing plate, 3 is a positive electrode, 4 is a negative electrode, 5 is a separator, and 6 is an insulating gasket.

【0013】次に、本発明のリチウム2次電池の製造方
法を説明する。まず、イソプロピルアルコール、エチル
アルコールおよびトルエンの混合溶媒100重量部に、
ブチラール樹脂20重量部を添加、溶解させて結着剤液
を作製した。次に、この結着剤液、導電剤としてのアセ
チレンブラックおよび活物質としてのLiMn2
4 を、表1に示す割合になるように混合し、活物質スラ
リーを作製した。その後、厚さ15μmのアルミニウム
製集電体基板上に、このスラリーをドクターブレード法
によって厚さ20μmにコーティングし、正極シートを
形成した。
Next, a method for manufacturing the lithium secondary battery of the present invention will be described. First, in 100 parts by weight of a mixed solvent of isopropyl alcohol, ethyl alcohol and toluene,
20 parts by weight of butyral resin was added and dissolved to prepare a binder solution. Next, this binder liquid, acetylene black as a conductive agent, and LiMn 2 O as an active material.
4 were mixed in the proportions shown in Table 1 to prepare an active material slurry. Then, this slurry was coated on a 15 μm-thick aluminum current collector substrate by a doctor blade method to a thickness of 20 μm to form a positive electrode sheet.

【0014】次に、得られた正極シートを直径17mm
の円板状に打ち抜き、200℃で減圧乾燥して正極3と
した。
Next, the obtained positive electrode sheet was prepared to have a diameter of 17 mm.
Was punched into a disk shape and dried under reduced pressure at 200 ° C. to obtain a positive electrode 3.

【0015】その後、図1に示すように、上記正極3と
厚さ0.24mmのリチウム金属からなる負極4をポリ
プロピレン製セパレータ5(セルガード2502、ダイ
セル化学工業製)を介して電池ケース1内に収納した。
そして、電解液には、プロピレンカーボネートと1,2
−ジメトキシエタンの等容積混合溶液に、過塩素酸リチ
ウムを1モル/リットルの割合で溶解させたものを用い
た。その後、周囲を絶縁ガスケット6で電池ケース1と
絶縁した状態に封口板2で封口し、リチウム2次電池を
作製した。
Then, as shown in FIG. 1, the positive electrode 3 and the negative electrode 4 made of lithium metal having a thickness of 0.24 mm are placed in a battery case 1 through a polypropylene separator 5 (Celguard 2502, manufactured by Daicel Chemical Industries). Stowed.
Then, the electrolytic solution contains propylene carbonate and 1,2
A solution obtained by dissolving lithium perchlorate in a mixed solution of equal volumes of dimethoxyethane at a rate of 1 mol / liter was used. After that, the periphery was insulated from the battery case 1 by the insulating gasket 6 and sealed with the sealing plate 2 to fabricate a lithium secondary battery.

【0016】以上、得られたリチウム2次電池につい
て、初期容量を確認するとともに、充放電電流密度1m
A/cm2 、充電終止電圧4.5V、放電終止電圧3.
0Vの条件下で定電流充放電試験を行なった。表1に、
初期容量および充放電試験100サイクル目の容量を理
論容量(148mAh/g)に対する比率で示す。
With respect to the lithium secondary battery thus obtained, the initial capacity was confirmed, and the charge / discharge current density was 1 m.
A / cm 2 , charge end voltage 4.5 V, discharge end voltage 3.
A constant current charge / discharge test was performed under the condition of 0V. In Table 1,
The initial capacity and the capacity at the 100th cycle of the charge / discharge test are shown as a ratio to the theoretical capacity (148 mAh / g).

【0017】(比較例)正極の結着剤としてブチラール
樹脂の代わりにPVDFまたはPTFEを用い、結着
剤、導電剤としてのアセチレンブラックおよび活物質と
してのLiMn24を、表1に示す割合になるように混
合し、その他は実施例と同様にして、リチウム2次電池
を作製した。
Comparative Example PVDF or PTFE was used in place of the butyral resin as the binder for the positive electrode, and the binder, acetylene black as the conductive agent, and LiMn 2 O 4 as the active material were used in the proportions shown in Table 1. A lithium secondary battery was produced in the same manner as in Example 1 except that the above components were mixed.

【0018】その後、実施例と同様に、初期容量を確認
するとともに定電流充放電試験を行なった。表1に、初
期容量および充放電試験100サイクル目の容量を理論
容量(148mAh/g)に対する比率で示す。
Then, in the same manner as in the example, the initial capacity was confirmed and a constant current charge / discharge test was conducted. Table 1 shows the initial capacity and the capacity at the 100th cycle of the charge / discharge test as a ratio to the theoretical capacity (148 mAh / g).

【0019】[0019]

【表1】 [Table 1]

【0020】表1の実施例に示す通り、本発明のブチラ
ール樹脂を正極の結着剤として用いたものは、比較例に
示すPVDFまたはPTFEを用いたものと比較して初
期容量が大きく、充放電試験後の容量の減少も少なく、
充放電サイクル特性に優れている。
As shown in the examples of Table 1, the one using the butyral resin of the present invention as the binder for the positive electrode has a large initial capacity as compared with the one using PVDF or PTFE shown in the comparative example. Little decrease in capacity after discharge test,
Excellent charge / discharge cycle characteristics.

【0021】なお、上記実施例は、本発明による一実施
例を示したもので、電極活物質、導電剤、集電体基板材
料、負極材料、電解液、セパレータ等は上記実施例に限
定されるものではなく、公知の材料を適宜用いることが
できる。
The above embodiment is an embodiment according to the present invention, and the electrode active material, the conductive agent, the current collector substrate material, the negative electrode material, the electrolytic solution, the separator, etc. are limited to the above embodiment. However, a known material can be used as appropriate.

【0022】[0022]

【発明の効果】以上の説明で明らかなように、正極の結
着剤としてブチラール樹脂を用いることにより、充放電
サイクル特性に優れ、重量エネルギー密度が高いリチウ
ム2次電池が得られる。
As is clear from the above description, by using butyral resin as the binder for the positive electrode, a lithium secondary battery having excellent charge / discharge cycle characteristics and a high weight energy density can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例により得られるコイン型電池
の断面図である。
FIG. 1 is a sectional view of a coin-type battery obtained according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 正極 4 負極 5 セパレータ 6 絶縁ガスケット 1 case 2 sealing plate 3 positive electrode 4 negative electrode 5 separator 6 insulating gasket

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有酸化物からなる正極と、非
水電解液と、負極とからなり、前記正極の結着剤はブチ
ラール樹脂からなることを特徴とするリチウム2次電
池。
1. A lithium secondary battery comprising a positive electrode made of a lithium-containing oxide, a non-aqueous electrolyte, and a negative electrode, and a binder for the positive electrode made of butyral resin.
JP6198402A 1994-08-23 1994-08-23 Lithium secondary battery Pending JPH0864209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6198402A JPH0864209A (en) 1994-08-23 1994-08-23 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6198402A JPH0864209A (en) 1994-08-23 1994-08-23 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0864209A true JPH0864209A (en) 1996-03-08

Family

ID=16390538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6198402A Pending JPH0864209A (en) 1994-08-23 1994-08-23 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0864209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381496B2 (en) 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381496B2 (en) 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use

Similar Documents

Publication Publication Date Title
JP4159667B2 (en) Method for manufacturing electrode plate for lithium secondary battery
JPH09120818A (en) Nonaqueous electrolyte secondary battery
US20080182172A1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
CN107946564B (en) Rich in Na4Mn2O5/Na0.7MnO2Composite material and preparation method and application thereof
JPH11219731A (en) Organic electrolyte secondary battery
CN111883765A (en) Lithium battery positive active material, preparation method thereof and lithium battery
JPH1167215A (en) Nonaqueous electrolyte secondary battery
JP2002042785A (en) Lithium battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JPH1154120A (en) Lithium ion secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
CN110078134B (en) Preparation method of cobaltosic oxide for preparing lithium ion battery cathode material
JP4365633B2 (en) Lithium secondary battery
JPH0864209A (en) Lithium secondary battery
JPH08180878A (en) Lithium secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP3451602B2 (en) Non-aqueous electrolyte battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JPH08148141A (en) Manufacture of electrode for lithium secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
TWI728666B (en) Method for preparing the anode material of the lithium ion battery
JPH11154509A (en) Nonaqueous electrolyte secondary battery
JPH11250898A (en) Organic electrolyte secondary battery
JP2000138062A (en) Nonaqueous electrolyte secondary battery
JPH11329412A (en) Manufacture of active material composition for lithium secondary battery and plate for lithium secondary battery by using this composition