JP2000138062A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000138062A
JP2000138062A JP10311100A JP31110098A JP2000138062A JP 2000138062 A JP2000138062 A JP 2000138062A JP 10311100 A JP10311100 A JP 10311100A JP 31110098 A JP31110098 A JP 31110098A JP 2000138062 A JP2000138062 A JP 2000138062A
Authority
JP
Japan
Prior art keywords
fiber
negative electrode
secondary battery
carbon
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311100A
Other languages
Japanese (ja)
Inventor
Koji Higashimoto
晃二 東本
Kenji Hara
賢二 原
Katsunori Suzuki
克典 鈴木
Tomohiro Iguchi
智博 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10311100A priority Critical patent/JP2000138062A/en
Publication of JP2000138062A publication Critical patent/JP2000138062A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a cycle life characteristic by adding, to a negative electrode, a conductive material that has a fiber shape or a needle shape and is a carbon fiber or a conductive ceramic fiber produced in a gas phase method. SOLUTION: In a negative electrode active material, mixture of various carbon materials of 5 wt.% is used as amorphous carbon and conductive material, and vinylidene polyfluoride is used as a binder. The shape of the conductive material is a fiber shape or a needle shape, a carbon fiber or a conductive ceramic fiber produced in a gas phase method is preferably 5 μm or longer in average fiber length, and 5 μm or less in average fiber diameter. In the conductive ceramic fiber, a conductive layer of carbon or silver is formed on the surface of a ceramic fiber such as potassium titanate whisker or glass fiber. When the negative electrode active material containing 5 wt.% carbon fiber produced in the gas phase method as the conductive material is used, this carbon fiber is, for example, 0.2 μm in average fiber diameter, and 15 μm in average fiber length.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は正極にマンガン酸リ
チウムを用いた非水電解液二次電池の、サイクル寿命特
性の改良に関するものである。
The present invention relates to an improvement in cycle life characteristics of a nonaqueous electrolyte secondary battery using lithium manganate for a positive electrode.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水電解
液二次電池は、高エネルギー密度であるメリットを活か
して、主にVTRカメラやノートパソコン、携帯電話な
どのポータブル機器に使用されている。特に近年は負極
に炭素材等のリチウムイオンの吸蔵、放出が可能な材料
を用いたリチウムイオン二次電池が普及している。この
電池の内部構造は通常捲回式である。すなわち、金属箔
に活物質が塗着された正極及び負極が用いられ、セパレ
ータを挟んで捲回され、それを容器となる円筒形の缶に
収納し、電解液を注液した後、キャップをつけて封口し
ている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery represented by a lithium secondary battery takes advantage of its high energy density and is mainly used in portable equipment such as VTR cameras, notebook computers, and mobile phones. I have. In particular, in recent years, lithium ion secondary batteries using a material capable of occluding and releasing lithium ions such as a carbon material for the negative electrode have become widespread. The internal structure of this battery is usually of a wound type. That is, a positive electrode and a negative electrode in which an active material is applied to a metal foil are used, are wound around a separator, are stored in a cylindrical can serving as a container, and after pouring the electrolyte, the cap is closed. We put on and seal.

【0003】電池組立時では負極活物質として用いる炭
素材は、いわばリチウムイオンが放出しきった状態、す
なわち放電状態である。従って、通常は正極も放電状態
の活物質、例えばコバルト酸リチウム(LiCoO2)、ニッ
ケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn
2O4)等が用いられる。そして、電池を組み立てた後に
初充電をする事によって、電池として機能させることが
でき、リチウムイオン二次電池となる。
At the time of battery assembly, the carbon material used as the negative electrode active material is in a state where lithium ions have been completely released, that is, in a discharged state. Therefore, usually, the positive electrode also has a discharged active material such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn
2 O 4 ) is used. Then, by performing initial charging after assembling the battery, the battery can function as a battery, and becomes a lithium ion secondary battery.

【0004】しかしながら、上記した正極活物質には十
分な電子伝導性がないという問題点がある。そこで、正
極には導電剤として黒鉛やカーボンブラックなどの安価
であり、電池内で安定な導電性粉末を含有し、それとバ
インダとを混合して用いている。なお、結晶構造にスピ
ネル構造を有するマンガン酸リチウムは、コバルト酸リ
チウムやニッケル酸リチウムと比べて熱的安定性に優れ
るという特徴がある。そこで、マンガン酸リチウムを正
極用活物質に用いた電池は、安全性の高い電池として電
力貯蔵用や電気自動車用等の、大形のリチウムイオン二
次電池に適するとして注目されている。
However, there is a problem that the above-mentioned positive electrode active material does not have sufficient electron conductivity. Therefore, the positive electrode contains an inexpensive conductive powder such as graphite or carbon black as a conductive agent and is stable in a battery, and is mixed with a binder and used. Note that lithium manganate having a spinel structure in the crystal structure has a feature of being superior in thermal stability as compared with lithium cobaltate and lithium nickelate. Therefore, batteries using lithium manganate as the active material for the positive electrode have attracted attention as high-safety batteries suitable for large-sized lithium-ion secondary batteries such as those for power storage and electric vehicles.

【0005】前記したマンガン酸リチウムは、充電、放
電によりリチウムイオンの挿入、脱離に伴い結晶が膨
張、収縮する。そして、膨張、収縮を伴う充放電を繰り
返すと、正極としての電子伝導性が低下し、放電容量が
低下するという問題点があった。さらに、マンガン酸リ
チウムを活物質に用いた正極は、放電状態または充電状
態にかかわらず、非水電解液中にマンガン成分が溶解す
るという問題がある。そして、マンガン成分の溶解が、
充放電サイクル寿命特性の低下や、保存特性の低下の大
きな原因となっている。
[0005] The lithium manganate expands and contracts as lithium ions are inserted and desorbed by charging and discharging. When charge and discharge accompanied by expansion and contraction are repeated, there is a problem that electron conductivity as a positive electrode decreases and discharge capacity decreases. Further, the positive electrode using lithium manganate as an active material has a problem that a manganese component is dissolved in a non-aqueous electrolyte regardless of a discharged state or a charged state. And the dissolution of the manganese component,
This is a major cause of deterioration of the charge-discharge cycle life characteristics and storage characteristics.

【0006】そこで、特開平10-182160号公報や特開平1
0-182157号公報で報告されているように、マンガン酸リ
チウムの合成条件の改良や添加剤などによって結晶性の
高いマンガン酸リチウムを作製する検討や、マンガン酸
リチウムの結晶構造中に異種元素をドープする検討がさ
れているが、現在のところ充分なサイクル寿命特性が得
られていないのが現状である。
Accordingly, Japanese Patent Application Laid-Open No. 10-182160 and
As reported in Japanese Patent Application Publication No. 0-182157, studies were made to improve the synthesis conditions of lithium manganate and to produce lithium manganate with high crystallinity by adding additives, and to introduce different elements into the crystal structure of lithium manganate. Although doping is being studied, at present, sufficient cycle life characteristics have not been obtained.

【0007】これらの問題点について詳細な検討をした
ところ、正極にマンガン酸リチウムを使用すると、コバ
ルト酸リチウムを使用した場合に比べて、負極の劣化も
大きいことが判った。この原因は、マンガン酸リチウム
は充電時に体積が減少するために電極群の加圧力が低下
し、その結果、負極において活物質間の電子伝導ネット
ワークが崩れるためと考えられる。
A detailed study of these problems revealed that the use of lithium manganate for the positive electrode significantly deteriorated the negative electrode as compared to the case where lithium cobalt oxide was used. It is considered that the reason for this is that the volume of lithium manganate decreases during charging, so that the pressure applied to the electrode group decreases, and as a result, the electron conduction network between active materials in the negative electrode collapses.

【0008】[0008]

【発明が解決しようとする課題】本発明は、最適な導電
材を負極活物質に含有することによって、正極にマンガ
ン酸リチウムを用いた非水電解液二次電池の、サイクル
寿命特性向上を目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the cycle life characteristics of a non-aqueous electrolyte secondary battery using lithium manganate for a positive electrode by including an optimum conductive material in a negative electrode active material. And

【0009】[0009]

【課題を解決するための手段】上記した問題点を解決す
るために、第一の発明では、充電、放電によりリチウム
イオンの吸蔵、放出が可能なリチウムマンガン複酸化物
を正極に用い、充電、放電によりリチウムイオンの吸
蔵、放出が可能な非晶質炭素材料を負極に用いる非水電
解液二次電池において、前記負極に繊維状または針状の
形状をした導電材を含有することを特徴とし、第二の発
明では、前記導電材は、気相法で作製した炭素繊維又は
導電性セラミック繊維であることを特徴とし、第三の発
明では、前記導電材は、平均繊維長さが5μm以上であ
り、平均繊維径が5μm以下であることを特徴としてい
る。尚導電性セラミック繊維とは、チタン酸カリウムウ
ィスカや、ガラス繊維等のセラミック繊維の表面にカー
ボンや銀等で導電層を形成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, in the first invention, a lithium manganese double oxide capable of inserting and extracting lithium ions by charging and discharging is used for a positive electrode, and charging and discharging are performed. A non-aqueous electrolyte secondary battery using an amorphous carbon material capable of occluding and releasing lithium ions by discharge for a negative electrode, wherein the negative electrode contains a fibrous or needle-shaped conductive material. In the second invention, the conductive material is a carbon fiber or a conductive ceramic fiber produced by a gas phase method, and in the third invention, the conductive material has an average fiber length of 5 μm or more. And the average fiber diameter is 5 μm or less. Note that the conductive ceramic fiber is a ceramic fiber such as potassium titanate whisker or glass fiber having a conductive layer formed on the surface of carbon or silver.

【0010】[0010]

【発明の実施の形態】図1は本発明を実施した円筒形リ
チウムイオン二次電池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion secondary battery embodying the present invention.

【0011】1.正極 図1において、1は正極集電体で厚さ20μmのアルミニ
ウム箔である。平面サイズは50mm×450mmであり、2は
正極活物質層である。マンガン酸リチウムの粉末と、炭
素粉末とバインダーであるポリフッ化ビニリデン(以
下、PVDFと略す)とを重量比で80:15:5として混
合し、そこへ分散溶媒となるNMPを適量加えて十分に
混練し、分散させて、スラリー状の溶液にする。この混
練物をロール to ロールの転写によって正極集電体1
の両面に塗着して乾燥する。その後、80℃〜120℃に加
熱したロールを有するロ−ルプレス機により、プレス圧
0.2〜0.5kgf/cmで、正極活物質層の密度が約2.8g/cm3
となるまで圧縮する。
1. 1. Positive Electrode In FIG. 1, reference numeral 1 denotes a positive electrode current collector, which is an aluminum foil having a thickness of 20 μm. The plane size is 50 mm × 450 mm, and 2 is a positive electrode active material layer. Lithium manganate powder, carbon powder and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder are mixed at a weight ratio of 80: 15: 5, and an appropriate amount of NMP serving as a dispersion solvent is added thereto and sufficiently mixed. It is kneaded and dispersed to form a slurry-like solution. This kneaded material is transferred to the positive electrode current collector 1 by roll-to-roll transfer.
Apply to both sides and dry. After that, the press pressure was increased by a roll press having a roll heated to 80 ° C to 120 ° C.
0.2 to 0.5 kgf / cm, the density of the positive electrode active material layer is about 2.8 g / cm 3
Compress until

【0012】2.負極 負極活物質として非晶質炭素(商標名:カーボトロン
P、呉羽化学工業株式会社製)と導電材として後述する
各種の炭素材5wt%からなる混合物を用い、バインダー
としてポリフッ化ビニリデン(PVDF)を用いた。カ
ーボトロンP、各種の炭素粉末及びPVDFを重量比で
85:5:10となるように混合し、そこへ分散溶媒である
NMPを適量加えて十分に混練し、分散させてスラリー
状の溶液にする。この混練物をロール to ロールの転
写により負極集電体3となる銅箔の両面に塗着、乾燥す
る。次にこの極板を80〜120℃に加熱したロールを有す
るロ−ルプレス機にて、プレス圧0.2〜0.5kgf/cmで負
極活物質層4の密度が約1.0g/cm3となるまで圧縮する。
2. Negative electrode A mixture of amorphous carbon (trade name: CARBOTRON P, manufactured by Kureha Chemical Industry Co., Ltd.) as a negative electrode active material and 5 wt% of various carbon materials described later as a conductive material is used, and polyvinylidene fluoride (PVDF) is used as a binder. Using. Carbotron P, various carbon powders and PVDF in weight ratio
The mixture is mixed so that the ratio becomes 85: 5: 10, and an appropriate amount of NMP as a dispersion solvent is added thereto, sufficiently kneaded, and dispersed to form a slurry-like solution. The kneaded material is applied to both surfaces of a copper foil serving as the negative electrode current collector 3 by roll-to-roll transfer and dried. Next, this electrode plate is compressed by a roll press having a roll heated to 80 to 120 ° C. under a pressure of 0.2 to 0.5 kgf / cm until the density of the negative electrode active material layer 4 becomes about 1.0 g / cm 3. I do.

【0013】3.電池 得られた短冊状の正極板、負極板は、帯状のセパレータ
を介して捲回し、電池缶6に挿入する。5はセパレータ
で、厚さ25μmの微多孔性のポリエチレンフィルムであ
る。そして負極集電体3に予め溶接させておいたタブ端
子を電池缶6に溶接する。7は正極キャップで8は正極
タブ端子である。正極タブ端子8は予め正極集電体1に
溶接しておき、正極キャップ7に溶接する。次に、電解
液5mlを電池缶6内に注入する。電解液は、エチレンカ
ーボネートとジメチルカーボネートを体積比で1:2に
混合した溶液にLiPF6を1mol/lの濃度で溶解したもので
ある。正極キャップ7を電池缶上部に配置し、絶縁性の
ガスケット9を介して電池缶上部をかしめて密閉し、高
さ65mm、直径18mmの円筒形リチウムイオン二次電池を作
製した。ここで、正極キャップ7内には、電池内圧の上
昇に応じて作動する電流遮断機構(圧力スイッチ)と、
前記電流遮断機構よりも高い圧力で作動する弁機構が組
み込まれている。本実施例では作動圧は9kgf/cm2の電流
遮断機構と、作動圧20kgf/cm2の弁機構を用いた。
3. Battery The obtained strip-shaped positive electrode plate and negative electrode plate are wound through a band-shaped separator, and inserted into the battery can 6. Reference numeral 5 denotes a separator, which is a microporous polyethylene film having a thickness of 25 μm. Then, the tab terminal that has been welded to the negative electrode current collector 3 in advance is welded to the battery can 6. 7 is a positive electrode cap and 8 is a positive electrode tab terminal. The positive electrode tab terminal 8 is welded to the positive electrode current collector 1 in advance, and then welded to the positive electrode cap 7. Next, 5 ml of the electrolytic solution is injected into the battery can 6. The electrolytic solution is obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solution in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2. The positive electrode cap 7 was placed on the upper portion of the battery can, and the upper portion of the battery can was caulked via an insulating gasket 9 to seal it tightly, thereby producing a cylindrical lithium ion secondary battery having a height of 65 mm and a diameter of 18 mm. Here, in the positive electrode cap 7, a current cutoff mechanism (pressure switch) that operates according to an increase in battery internal pressure is provided.
A valve mechanism that operates at a higher pressure than the current interrupt mechanism is incorporated. Operating pressure in this example was used and the current interrupt device of 9 kgf / cm 2, the valve mechanism operating pressure 20 kgf / cm 2.

【0014】4.充放電サイクル寿命試験 作製した電池は下記の条件で充放電サイクル試験をし、
200サイクル後の放電容量から容量維持率を算出した。
4. Charge / discharge cycle life test The prepared battery was subjected to a charge / discharge cycle test under the following conditions.
The capacity retention was calculated from the discharge capacity after 200 cycles.

【0015】充電条件:定電圧充電4.2V、制限電流1400
mA、3h、50℃、 放電条件:定電流放電1400mA、24分、50℃、 充電、放電の間に、休止時間を10分間設けた。放電容量
の確認は25サイクル毎に50℃の雰囲気で充電は電流1400mA、
4.2Vの定電圧で3時間とし、放電は電流1400mA、放電終
止電圧2.7Vとした。そして、初期の放電容量に対する20
0サイクル目の放電容量(以下、200サイクル目容量維持
率と呼ぶ)を測定した。
Charge condition: constant voltage charge 4.2V, limited current 1400
mA, 3h, 50 ° C, discharge conditions: constant current discharge 1400mA, 24 minutes, 50 ° C, pause time 10 minutes between charging and discharging. Check the discharge capacity every 25 cycles in a 50 ° C atmosphere, charge at 1400 mA,
The discharge was performed at a constant voltage of 4.2 V for 3 hours, a current of 1400 mA, and a discharge end voltage of 2.7 V. And 20 for the initial discharge capacity
The discharge capacity at the 0th cycle (hereinafter, referred to as the capacity maintenance rate at the 200th cycle) was measured.

【0016】[0016]

【実施例】(実施例1)気相法で作製した炭素繊維を導
電材として5wt%含有した負極活物質を用いて、上述し
た円筒形リチウムイオン二次電池を作製した。この炭素
繊維は平均繊維径が0.2μmであり、平均繊維長さが15
μmである。
EXAMPLES (Example 1) The above-described cylindrical lithium ion secondary battery was manufactured using a negative electrode active material containing 5 wt% of a carbon fiber prepared by a gas phase method as a conductive material. This carbon fiber has an average fiber diameter of 0.2 μm and an average fiber length of 15 μm.
μm.

【0017】(実施例2)アセチレンブラックを導電材
として5wt%含有した負極活物質を用いて、上述した円
筒形リチウムイオン二次電池を作製した。アセチレンブ
ラックの一次粒径の平均値は40nmのものを使用した。
Example 2 The above-described cylindrical lithium ion secondary battery was manufactured using a negative electrode active material containing 5 wt% of acetylene black as a conductive material. Acetylene black having an average primary particle size of 40 nm was used.

【0018】(実施例3)チタン酸カリウムウィスカ表
面に、カーボンを被覆した導電材を5wt%含有した負極
活物質を用いて、上述した円筒形リチウムイオン二次電
池を作製した。なお、カーボンを被覆したチタン酸カリ
ウムウィスカは平均繊維径が0.5μmで平均繊維長さが1
5μmのものである。
Example 3 The above-mentioned cylindrical lithium ion secondary battery was manufactured using a negative electrode active material containing 5 wt% of a conductive material coated with carbon on the surface of potassium titanate whiskers. Note that the carbon-coated potassium titanate whisker has an average fiber diameter of 0.5 μm and an average fiber length of 1 μm.
5 μm.

【0019】(実施例4)チタン酸カリウムウィスカ表
面に銀を被覆した導電材を5wt%含有した負極活物質を
用いて、上述した円筒形リチウムイオン二次電池を作製
した。なお、銀を被覆したチタン酸カリウムウィスカは
平均繊維径が0.6μmで平均繊維長さが15μmのもので
ある。
Example 4 The above-described cylindrical lithium ion secondary battery was manufactured using a negative electrode active material containing 5 wt% of a conductive material in which silver was coated on the surface of potassium titanate whiskers. The silver-coated potassium titanate whisker has an average fiber diameter of 0.6 μm and an average fiber length of 15 μm.

【0020】(実施例5)(実施例1)と同じく気相法
で作製した炭素繊維を導電材として5wt%含有した負
極活物質を用いて、上述した円筒形リチウムイオン二次
電池を作製した。この炭素繊維は合成条件を調整して平
均繊維径が5μmで平均繊維長さが15μmのものであ
る。
Example 5 A cylindrical lithium ion secondary battery as described above was manufactured using a negative electrode active material containing 5 wt% of carbon fiber as a conductive material prepared by a gas phase method in the same manner as in (Example 1). . This carbon fiber has an average fiber diameter of 5 μm and an average fiber length of 15 μm by adjusting the synthesis conditions.

【0021】(実施例6)(実施例1)と同じく気相法
で作製した炭素繊維を導電材として5wt%含有した負極
活物質を用いて、上述した円筒形リチウムイオン二次電
池を作製した。この炭素繊維は合成条件を調整して平均
繊維径が10μmであり、平均繊維長さが15μmである。
Example 6 A cylindrical lithium ion secondary battery as described above was manufactured using a negative electrode active material containing 5 wt% of carbon fiber as a conductive material prepared by a gas phase method in the same manner as in (Example 1). . This carbon fiber has an average fiber diameter of 10 μm and an average fiber length of 15 μm by adjusting the synthesis conditions.

【0022】(実施例7)(実施例1)と同じく気相法
で作製した炭素繊維を導電材として5wt%含有した負極
活物質を用いて、上述した円筒形リチウムイオン二次電
池を作製した。この炭素繊維は合成条件を調整して平均
繊維径が0.2μmであり、平均繊維長さが5μmである。
(Example 7) The cylindrical lithium ion secondary battery described above was produced by using a negative electrode active material containing 5 wt% of carbon fiber produced by a gas phase method as a conductive material in the same manner as in (Example 1). . This carbon fiber has an average fiber diameter of 0.2 μm and an average fiber length of 5 μm by adjusting the synthesis conditions.

【0023】(実施例8)(実施例1)と同じく気相法
で作製した炭素繊維を導電材として5wt%含有した負極
活物質を用いて、上述した円筒形リチウムイオン二次電
池を作製した。この炭素繊維は合成条件を調整して平均
繊維径が5μmであり、平均繊維長さが5μmである。
Example 8 The cylindrical lithium ion secondary battery described above was manufactured using a negative electrode active material containing 5 wt% of carbon fiber as a conductive material prepared by a gas phase method in the same manner as in (Example 1). . This carbon fiber has an average fiber diameter of 5 μm and an average fiber length of 5 μm by adjusting the synthesis conditions.

【0024】(実施例9)(実施例1)と同じく気相法
で作製した炭素繊維を導電材として5wt%含有した負極
活物質を用いて、上述した円筒形リチウムイオン二次電
池を作製した。この炭素繊維は合成条件を調整して平均
繊維径が0.2μmであり、平均繊維長さが1μmである。
Example 9 The cylindrical lithium ion secondary battery described above was manufactured using a negative electrode active material containing 5 wt% of carbon fiber prepared as a conductive material by the same method as in Example 1 as a conductive material. . This carbon fiber has an average fiber diameter of 0.2 μm and an average fiber length of 1 μm by adjusting the synthesis conditions.

【0025】(比較例)比較例として、前述した各種の
導電材を含有しない負極を用いた。すなわち、前記非晶
質炭素が90wt%とPVDFを10wt%含む負極を用いて、
上述した円筒形リチウムイオン二次電池を作製した。
(Comparative Example) As a comparative example, a negative electrode not containing the above-mentioned various conductive materials was used. That is, using a negative electrode containing 90 wt% of amorphous carbon and 10 wt% of PVDF,
The cylindrical lithium ion secondary battery described above was manufactured.

【0026】前記した方法で寿命試験をした結果を表1
に示す。表1の結果から明らかなように、導電材を含有
した(実施例1〜9)は比較例より200サイクル目の容量維持
率が高い。好ましくは、平均繊維径が5μm以下で平均
繊維長さが5μm以上の繊維を含有することがより効果
があることが明らかになった。
Table 1 shows the results of the life test performed by the method described above.
Shown in As is clear from the results in Table 1, the case where the conductive material was contained (Examples 1 to 9) had a higher capacity retention ratio at the 200th cycle than the comparative example. It has been found that it is more effective to contain fibers having an average fiber diameter of 5 μm or less and an average fiber length of 5 μm or more.

【0027】また、今回セラミック繊維として用いたチ
タン酸カリウムウィスカの代わりに、ガラス繊維を用い
たものでも同様の効果を示した。
The same effect was obtained by using glass fibers instead of the potassium titanate whiskers used as the ceramic fibers.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明は、放電、充電により正極にリチ
ウムイオンを吸蔵、放出が可能なリチウムマンガン複酸
化物と、充電、放電によりリチウムイオンの吸蔵、放出
が可能な非晶質炭素材料を負極に用いる非水電解液二次
電池において、非晶質炭素材に繊維状、または針状の形
状をした導電材を含有した負極活物質を使用することに
よって、サイクル寿命の優れた非水電解液二次電池を得
ることができる。
According to the present invention, a lithium manganese double oxide capable of inserting and extracting lithium ions in the positive electrode by discharging and charging, and an amorphous carbon material capable of inserting and extracting lithium ions by charging and discharging are provided. In the non-aqueous electrolyte secondary battery used for the negative electrode, the non-aqueous electrolyte with excellent cycle life is obtained by using a negative electrode active material containing a fibrous or acicular conductive material in an amorphous carbon material. A liquid secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した円筒形リチウムイオン二次電
池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion secondary battery embodying the present invention.

【符号の説明】[Explanation of symbols]

1:正極集電体、2:正極活物質層、3:負極集電体、
4:負極活物質層、5:セパレータ、6:電池缶、7:
正極キャップ、8:正極タブ端子、9:ガスケット
1: positive electrode current collector, 2: positive electrode active material layer, 3: negative electrode current collector,
4: negative electrode active material layer, 5: separator, 6: battery can, 7:
Positive electrode cap, 8: positive electrode tab terminal, 9: gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 智博 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ05 AK03 AL06 AM05 AM07 BJ02 BJ14 DJ08 DJ15 EJ04 EJ08 HJ04  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomohiro Iguchi 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H029 AJ05 AK03 AL06 AM05 AM07 BJ02 BJ14 DJ08 DJ15 EJ04 EJ08 HJ04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】放電、充電によりリチウムイオンの吸蔵、
放出が可能なリチウムマンガン複酸化物を正極に用い、
充電、放電によりリチウムイオンの吸蔵、放出が可能な
非晶質炭素材料を負極に用いる非水電解液二次電池にお
いて、前記負極に繊維状または針状の形状をした導電材
を含有することを特徴とする非水電解質二次電池。
1. The method according to claim 1, wherein lithium ions are occluded by discharging and charging.
Using a releasable lithium manganese double oxide for the positive electrode,
In a nonaqueous electrolyte secondary battery using an amorphous carbon material capable of occluding and releasing lithium ions by charging and discharging as a negative electrode, the negative electrode contains a fibrous or needle-shaped conductive material. Characteristic non-aqueous electrolyte secondary battery.
【請求項2】前記導電材は、気相法で作製した炭素繊維
又は導電性セラミック繊維であることを特徴とする請求
項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein said conductive material is a carbon fiber or a conductive ceramic fiber produced by a vapor phase method.
【請求項3】前記導電材は、平均繊維長さが5μm以上
であり、平均繊維径が5μm以下であることを特徴とす
る請求項1又は2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive material has an average fiber length of 5 μm or more and an average fiber diameter of 5 μm or less.
JP10311100A 1998-10-30 1998-10-30 Nonaqueous electrolyte secondary battery Pending JP2000138062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311100A JP2000138062A (en) 1998-10-30 1998-10-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311100A JP2000138062A (en) 1998-10-30 1998-10-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000138062A true JP2000138062A (en) 2000-05-16

Family

ID=18013148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311100A Pending JP2000138062A (en) 1998-10-30 1998-10-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000138062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231316A (en) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2002289481A (en) * 2001-03-28 2002-10-04 Kyocera Corp Activated carbonaceous structure and electric double layer capacitor using the same
US9620784B2 (en) 2011-07-14 2017-04-11 Nec Energy Devices, Ltd. Negative electrode including platy graphite conductive additive for lithium ion battery, and lithium ion battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231316A (en) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP4719982B2 (en) * 2001-01-30 2011-07-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2002289481A (en) * 2001-03-28 2002-10-04 Kyocera Corp Activated carbonaceous structure and electric double layer capacitor using the same
US9620784B2 (en) 2011-07-14 2017-04-11 Nec Energy Devices, Ltd. Negative electrode including platy graphite conductive additive for lithium ion battery, and lithium ion battery using the same

Similar Documents

Publication Publication Date Title
US7754381B2 (en) Anode and battery, and manufacturing methods thereof
JP2002063938A (en) Secondary battery and its manufacturing method
US20130280617A1 (en) Gel electrode secondary cell
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH10270019A (en) Nonaqueous electrolyte secondary battery
JP3191614B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000294291A (en) Polymer electrolyte battery
JP2000331686A (en) Nonaqueous electrolyte secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4448963B2 (en) Flat type non-aqueous electrolyte secondary battery and method for manufacturing the same
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JP4365633B2 (en) Lithium secondary battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
JP2000138062A (en) Nonaqueous electrolyte secondary battery
JP2000285923A (en) Nonaqueous electrolyte secondary battery
JP2001015168A (en) Lithium secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery