JPH11329412A - Manufacture of active material composition for lithium secondary battery and plate for lithium secondary battery by using this composition - Google Patents

Manufacture of active material composition for lithium secondary battery and plate for lithium secondary battery by using this composition

Info

Publication number
JPH11329412A
JPH11329412A JP11098255A JP9825599A JPH11329412A JP H11329412 A JPH11329412 A JP H11329412A JP 11098255 A JP11098255 A JP 11098255A JP 9825599 A JP9825599 A JP 9825599A JP H11329412 A JPH11329412 A JP H11329412A
Authority
JP
Japan
Prior art keywords
active material
plasticizer
composition
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11098255A
Other languages
Japanese (ja)
Other versions
JP3928167B2 (en
Inventor
Whanjin Roh
煥 珍 盧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung Display Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Devices Co Ltd filed Critical Samsung Display Devices Co Ltd
Publication of JPH11329412A publication Critical patent/JPH11329412A/en
Application granted granted Critical
Publication of JP3928167B2 publication Critical patent/JP3928167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a manufacturing method of an active material composition for a lithium secondary battery, by which a battery, having a large charge quantity and a high discharge efficiency, can be manufactured, and a manufacturing method of a plate for the lithium secondary battery, in which the plate, excellent in porosity, can be manufactured by using this composition. SOLUTION: This active material composition of a lithium battery contains active material, a conductive agent, a binder and a plasticizer containing epoxydized soybean oil. A manufacturing method of this plate for a lithium secondary battery includes a process in which a composition, containing active material, a conductive agent, a binder and a plasticizer containing epoxydized soybean oil, is laminated on a current collector, and a process in which the plasticizer is extracted by dipping the current collector in organic solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム系列二次電
池用活物質組成物及びこの組成物を利用したリチウム系
列二次電池用極板の製造方法に係わり、より詳しくは、
充電量及び放電効率が高い電池を製造することができる
リチウム系列二次電池用活物質組成物及びこの組成物を
利用して多孔性に優れた極板を製造することができるリ
チウム系列二次電池用極板の製造方法に関する。
The present invention relates to an active material composition for a lithium-based secondary battery and a method for producing an electrode plate for a lithium-based secondary battery using the composition.
An active material composition for a lithium-based secondary battery capable of manufacturing a battery having a high charge amount and discharge efficiency, and a lithium-based secondary battery capable of manufacturing an electrode plate having excellent porosity using the composition The present invention relates to a method for manufacturing an electrode plate.

【0002】[0002]

【従来の技術】最近、カメラ一体型VTR、オーディ
オ、ラップトップ型パーソナルコンピューター、携帯用
電話機などの新たなポータブル電子機器の小型化及び軽
量化に伴って、これら機器の電源として使用される電池
を高性能化及び大容量化する技術が必要になり、特に、
経済的な面からこれら電池の製造原価を節減する技術開
発の努力が進められている。
2. Description of the Related Art Recently, as new portable electronic devices such as a camera-integrated VTR, an audio device, a laptop personal computer, and a portable telephone have become smaller and lighter, a battery used as a power supply for these devices has been reduced. High performance and large capacity technology is required.
Efforts are being made to develop technologies to reduce the manufacturing costs of these batteries from an economic perspective.

【0003】一般に、電池は、マンガン電池、アルカリ
電池、水銀電池、酸化銀電池などのように使い捨てで使
用される一次電池と、鉛畜電池、金属水素化物を陰極活
物質とするNi−MH(nickel−metal h
ydride)電池、密閉型ニッケル−カドミウム電池
とリチウム−金属電池、リチウム−イオン電池(LI
B:Lithium Ion Battery)、リチ
ウム−ポリマー電池(LPB:Lithium Pol
ymer Battery)のようなリチウム群電池な
どのように再充電して使用することができる二次電池
と、そして燃料電池、太陽電池などに区分することがで
きる。この中の一次電池は容量が少なくて寿命が短く、
再利用できないので環境汚染を起こすという問題点があ
る反面、二次電池は再充電して使用できて寿命が長く、
性能と効率性の面で優れ、廃棄物の発生も少ないので環
境保護の面でも優れている。
In general, batteries include primary batteries used disposably, such as manganese batteries, alkaline batteries, mercury batteries, silver oxide batteries, etc., Ni-MH batteries using lead-acid batteries, and metal hydrides as cathode active materials. Nickel-metal h
ydride) batteries, sealed nickel-cadmium batteries and lithium-metal batteries, lithium-ion batteries (LI
B: Lithium Ion Battery, lithium-polymer battery (LPB: Lithium Pol)
secondary batteries that can be recharged and used, such as a lithium group battery such as a ymer battery, and a fuel cell, a solar cell, and the like. The primary battery has a small capacity and a short life,
Although there is a problem of causing environmental pollution because it cannot be reused, secondary batteries can be used by recharging and have a long life,
It excels in performance and efficiency, and is environmentally friendly because it generates less waste.

【0004】前記電池の中の一般的なリチウムイオン二
次電池は、負極としてアルカリ金属であるリチウムまた
は炭素を使用し、正極として遷移金属酸化物(tran
sition metal oxide)及び酸化物固
溶体(LiMxCo1-x2、LiMxCo1-x2、M=N
i、Co、Fe、Mn、Cr、・・・)を使用し、電解
質としてはイオン塩(ionic salt)を使用す
る電池である。前記リチウムイオン電池は他の電池に比
べて作動電圧が極めて高く、重量当りエネルギー密度が
優れて、現在、携帯電話、ノートブック型コンピュータ
ー、カムコーダーなどの小型軽量化が要求される先端電
子機器分野でその需要が増加している。
A general lithium ion secondary battery among the above-mentioned batteries uses lithium or carbon, which is an alkali metal, as a negative electrode and a transition metal oxide (trans) as a positive electrode.
site metal oxide) and oxide solid solution (LiM x Co 1-x O 2 , LiM x Co 1-x O 2 , M = N)
i, Co, Fe, Mn, Cr,...) and an ionic salt as an electrolyte. The lithium ion battery has an extremely high operating voltage and an excellent energy density per weight as compared with other batteries, and is currently used in the field of advanced electronic devices that are required to be reduced in size and weight, such as mobile phones, notebook computers, and camcorders. Its demand is increasing.

【0005】[0005]

【発明が解決しようとする課題】従来のリチウムイオン
電池は活物質を導電剤であるカーボンブラック(car
bon black)、バインダーインポリマー(bi
nder in polymer)及び可塑剤などのよ
うな有機溶媒を利用してスラリー(slurry)を製
造した後、電流集電体の両面にそれぞれ薄くラミネーシ
ョンして極板として使用した。従来は、可塑剤としてフ
タル酸ジブチル(dibutyl phthalat
e)を使用したが、フタル酸ジブチルは環境汚染をもた
らすという問題点を有する。また、前記組成物から製造
された極板のイオン伝導性が満足な水準に至らないとい
う問題点を有する。
A conventional lithium ion battery uses an active material such as carbon black (car) as a conductive agent.
bon black), binder-in polymer (bi
A slurry was prepared using an organic solvent such as a nd in polymer and a plasticizer, then thinly laminated on both sides of the current collector to be used as an electrode plate. Conventionally, dibutyl phthalate has been used as a plasticizer.
Although e) was used, dibutyl phthalate has a problem of causing environmental pollution. Another problem is that the ionic conductivity of the electrode plate manufactured from the composition does not reach a satisfactory level.

【0006】本発明は前記問題点を解決するためのもの
であって、本発明の目的は、第1に、環境汚染をもたら
さない可塑剤を含むリチウム系列二次電池用活物質組成
物を提供することにあり、第2に、イオン伝導性が優れ
た極板を製造することができるリチウム系列二次電池用
活物質組成物を提供することにあり、第3に、前記活物
質組成物を利用するリチウム系列二次電池用極板の製造
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an active material composition for a lithium series secondary battery containing a plasticizer that does not cause environmental pollution. Second, to provide an active material composition for a lithium-based secondary battery capable of producing an electrode plate having excellent ion conductivity. Third, the active material composition An object of the present invention is to provide a method of manufacturing an electrode plate for a lithium-based secondary battery to be used.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、活物質と、導電剤と、バインダーと、エ
ポキシ化された豆油を含む可塑剤とを含むリチウム系列
電池の活物質組成物を提供する。また、活物質と、導電
剤と、バインダーと、エポキシ化された豆油を含む可塑
剤を含む組成物を電流集電体にラミネーションする工程
と、前記電流集電体を有機溶媒に漬けて前記可塑剤を抽
出する工程とを含むリチウム系列二次電池用極板の製造
方法を提供する。
In order to achieve the above object, the present invention provides an active material for a lithium series battery including an active material, a conductive agent, a binder, and a plasticizer containing epoxidized soybean oil. A composition is provided. A step of laminating a composition containing an active material, a conductive agent, a binder, and a plasticizer containing epoxidized bean oil to a current collector; and immersing the current collector in an organic solvent to form the plasticizer. And a step of extracting an agent.

【0008】以下、本発明をより詳しく説明する。 [作用]継続して充電及び放電することができるリチウ
ムイオン二次電池は正極、負極、電解質から構成され、
電解質が液体有機溶媒で構成される液体リチウムイオン
電池と電解質がポリマーで構成されたポリマーリチウム
イオン電池とがある。本発明は、前記2種類のリチウム
イオン二次電池両方に使用され得るイオン伝導性が優れ
た正極及び負極を製造することができる活物質組成物
と、この組成物を利用した極板の製造方法を提供する。
Hereinafter, the present invention will be described in more detail. [Operation] A lithium ion secondary battery that can be continuously charged and discharged is composed of a positive electrode, a negative electrode, and an electrolyte,
There are a liquid lithium ion battery in which the electrolyte is composed of a liquid organic solvent and a polymer lithium ion battery in which the electrolyte is composed of a polymer. The present invention provides an active material composition capable of producing a positive electrode and a negative electrode having excellent ion conductivity that can be used for both of the two types of lithium ion secondary batteries, and a method for producing an electrode plate using the composition. I will provide a.

【0009】本発明のリチウム系列電池の活物質組成物
は、活物質と、導電剤と、バインダーと、エポキシ化さ
れた豆油を含む可塑剤とを含む。
[0009] The active material composition of the lithium series battery of the present invention comprises an active material, a conductive agent, a binder, and a plasticizer containing epoxidized bean oil.

【0010】前記可塑剤は極板を製造した後に有機溶媒
を利用して可塑剤を抽出する工程で極板に気孔を形成し
て電解液が浸透する空間を提供し、これによって電極活
物質が電解液と接する界面を広める効果を奏するように
なる。前記可塑剤として下記化3のエポキシ化された豆
油を使用するのが、可塑剤を抽出して除去する工程で容
易に除去されると共に電池のイオン伝導度を向上させる
ことができるので、好ましい。また、エポキシ化された
豆油は天然物であるので環境汚染問題をもたらさず、人
体に無害であると共に経済的であるという長所がある。
In the process of extracting the plasticizer using an organic solvent after manufacturing the electrode plate, the plasticizer forms pores in the electrode plate to provide a space through which the electrolyte penetrates, thereby providing an electrode active material. This has the effect of widening the interface in contact with the electrolyte. It is preferable to use the epoxidized soybean oil of the following formula 3 as the plasticizer because it can be easily removed in the step of extracting and removing the plasticizer and can improve the ion conductivity of the battery. In addition, since epoxidized soybean oil is a natural product, it does not pose an environmental pollution problem, and is harmless to humans and economical.

【0011】[0011]

【化3】 (上記式において、Rはアルキルグループであり、nは
1〜10である)
Embedded image (In the above formula, R is an alkyl group, and n is 1 to 10.)

【0012】また、本発明のリチウム系列二次電池用極
板の製造方法は次のとおりである。活物質組成物と、導
電剤と、バインダーと、エポキシ化された豆油を含む可
塑剤とを含む組成物を電流集電体に塗布する工程と、前
記電流集電体を有機溶媒に浸漬して前記可塑剤を抽出す
る工程とによってリチウム系列二次電池用極板を製造す
る。
The method of manufacturing the electrode plate for a lithium secondary battery according to the present invention is as follows. Applying a composition containing an active material composition, a conductive agent, a binder, and a plasticizer containing epoxidized soybean oil to a current collector; and immersing the current collector in an organic solvent. The step of extracting the plasticizer produces an electrode plate for a lithium-based secondary battery.

【0013】前記製造方法において、前記可塑剤として
前記化3のエポキシ化された豆油を使用するのが、可塑
剤を抽出して除去する工程で容易に除去されると共に電
池のイオン伝導度を向上させることができるので、好ま
しい。
In the above manufacturing method, the use of the epoxidized soybean oil of the formula (3) as the plasticizer facilitates the removal of the plasticizer by the step of extracting and removing the plasticizer and improves the ionic conductivity of the battery. It is preferable because it can be performed.

【0014】また、前記電流集電体として有孔(per
forated)フォイル又はグリッドタイプの集電体
を使用する。このようにパーフォレーテッドフォイル又
はグリッドを使用すると、電解液のイオンが電極極板の
両面に移動することができるようになって極板の利用効
率及び電池の性能が向上するという効果を有するので好
ましい。
The current collector may be perforated (per
used a foil or grid type current collector. When the perforated foil or grid is used as described above, the ions of the electrolytic solution can move to both surfaces of the electrode plate, which has an effect of improving the use efficiency of the electrode plate and the performance of the battery. It is preferred.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施例及
び比較例を記載する。しかし、下記実施例は本発明の好
ましい一実施例に過ぎず、本発明が下記実施例に限定さ
れるものではない。 (実施形態1)リチウムイオンポリマー電池の正極極板
の製造を示す。正極活物質として二酸化リチウムコバル
ト(LiCoO2)50gを導電剤であるカーボンブラ
ック4gと粉末状態で混合した。バインダーとしてポリ
フッ化ビニリデン(polyvinylidene f
luoride)7gをN−メチルピロリドン(N−m
ethyl pyrolidone)100gに溶解
し、ここに可塑剤としてエポキシ化された豆油(新東
方、韓国)10gを添加した。この混合組成溶液を前記
の製造された粉末混合物に添加した後、均一な練り状態
の物質が得られるまで混合して正極活物質組成物を製造
した。前記正極活物質組成物をキャスティング(cas
ting)して厚さ100μmのフィルムタイプに製造
した。得られた正極活物質フィルムを正極電流集電体で
ある有孔(perforated)アルミニウムフォイ
ルの両面にラミネーションして正極極板を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments and comparative examples of the present invention will be described below. However, the following embodiments are merely preferred embodiments of the present invention, and the present invention is not limited to the following embodiments. (Embodiment 1) Production of a positive electrode plate of a lithium ion polymer battery will be described. 50 g of lithium cobalt dioxide (LiCoO 2 ) as a positive electrode active material was mixed with 4 g of carbon black as a conductive agent in a powder state. As a binder, polyvinylidene fluoride (polyvinylidene f)
7 g of N-methylpyrrolidone (N-m
Ethyl pyrolidone (100 g) was dissolved in the solution, and 10 g of epoxidized soybean oil (New East, Korea) was added as a plasticizer. This mixed composition solution was added to the powder mixture prepared above, and then mixed until a homogeneously kneaded material was obtained to prepare a positive electrode active material composition. Casting the positive electrode active material composition (cas
to produce a film type having a thickness of 100 μm. The obtained positive electrode active material film was laminated on both sides of a perforated aluminum foil serving as a positive electrode current collector to prepare a positive electrode plate.

【0016】リチウムイオンポリマー電池の負極極板の
製造を示す。負極活物質として黒鉛30gを導電剤であ
るカーボンブラック1gと粉末状態で混合した。バイン
ダーとしてポリフッ化ビニリデン5gをN−メチルピロ
リドン50gに溶解し、ここに可塑剤としてエポキシ化
された豆油10gを添加した。この混合組成溶液を前記
の製造された粉末混合物に添加し均一な練り状態の物質
が得られるまで混合して負極活物質組成物を製造した。
この負極活物質組成物をキャスティングして厚さ100
μmのフィルムタイプに製造した。製造された負極活物
質フィルムを負極電流集電体である有孔(perfor
ated)銅フォイルの両面にラミネーションして負極
極板を製造した。
1 shows the production of a negative electrode plate of a lithium ion polymer battery. 30 g of graphite as a negative electrode active material was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride as a binder was dissolved in 50 g of N-methylpyrrolidone, and 10 g of epoxidized soybean oil was added as a plasticizer. This mixed composition solution was added to the above prepared powder mixture, and mixed until a material in a uniform kneaded state was obtained to prepare a negative electrode active material composition.
This negative electrode active material composition was cast to a thickness of 100
It was manufactured into a film type of μm. The manufactured negative electrode active material film is perforated as a negative electrode current collector (perfor).
ated) Laminated on both sides of the copper foil to produce a negative electrode plate.

【0017】リチウムイオンポリマー電池の製造を示
す。ポリフッ化ビニリデンとヘキサフルオロプロピレン
との共重合体を利用してセパレータを製造した。前記方
法によって製造された正極極板、負極極板及びセパレー
タをラミネーティングして極板群(element)を
製造した。この極板群をエーテルに15分間2回浸漬し
て可塑剤であるエポキシ化された豆油を抽出した。次い
で、この極板群を電解液である1MLiPF6、2:1
容積比の炭酸エチレン(ethylene carbo
nate:EC)と炭酸ジメチル(dimethyl
carbonate:DMC)との溶液に浸漬した後に
取り出してポリエチレン/アルミニウムフォイルシーリ
ング容器(sealant envelope)に入れ
シーリングしてリチウムイオンポリマー電池を製造し
た。
The production of a lithium ion polymer battery is shown. A separator was manufactured using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to manufacture an electrode plate. The electrode group was immersed twice in ether for 15 minutes to extract epoxidized bean oil as a plasticizer. Then, the electrode group was placed in an electrolyte solution of 1M LiPF6, 2: 1.
Volumetric ethylene carbonate (ethylene carbo)
nate: EC) and dimethyl carbonate (dimethyl)
After being immersed in a solution with carbonate (DMC), it was taken out, placed in a polyethylene / aluminum foil sealing container (sealing envelope), and sealed to produce a lithium ion polymer battery.

【0018】(実施形態2)リチウムイオンポリマー電
池の正極極板の製造を示す。正極活物質として四酸化リ
チウムマンガン(LiMn24)50gを導電剤である
カーボンブラック4gと粉末状態で混合した。バインダ
ーとしてポリフッ化ビニリデン7gをN−メチルピロリ
ドン(N−methyl pyrolidone)10
0gに溶解し、ここに可塑剤としてエポキシ化された豆
油(新東方、韓国)10gを添加した。この混合組成溶
液を前記の製造された粉末混合物に添加した後、均一な
練り状態の物質が得られるまで混合して正極活物質組成
物を製造した。前記正極活物質組成物をキャスティング
して120μm厚さのフィルムタイプに製造した。製造
された正極活物質フィルムを正極電流集電体であるアル
ミニウムグリッドの両面にラミネーションして正極極板
を製造した。
(Embodiment 2) Production of a positive electrode plate of a lithium ion polymer battery will be described. 50 g of lithium manganese tetroxide (LiMn 2 O 4 ) as a positive electrode active material was mixed with 4 g of carbon black as a conductive agent in a powder state. 7 g of polyvinylidene fluoride as a binder is N-methylpyrrolidone 10
0 g, and 10 g of epoxidized soybean oil (New Dong, Korea) was added as a plasticizer. This mixed composition solution was added to the powder mixture prepared above, and then mixed until a homogeneously kneaded material was obtained to prepare a positive electrode active material composition. The positive electrode active material composition was cast to prepare a 120 μm thick film type. The prepared positive electrode active material film was laminated on both sides of an aluminum grid as a positive electrode current collector to prepare a positive electrode plate.

【0019】リチウムイオンポリマー電池の負極極板の
製造を示す。負極活物質として黒鉛30gを導電剤であ
るカーボンブラック1gと粉末状態で混合した。バイン
ダーとしてポリフッ化ビニリデン5gをN−メチルピロ
リドン50gに溶解し、ここに可塑剤としてエポキシ化
された豆油10gを添加した。この混合組成溶液を前記
の製造された粉末混合物に添加し、均一な練り状態の物
質が得られるまで混合して負極活物質組成物を製造し
た。この負極活物質組成物をキャスティングして120
μm厚さのフィルムタイプに製造した。得られた負極活
物質フィルムを負極電流集電体である銅グリッドの両面
にラミネーションして負極極板を製造した。
The production of a negative electrode plate of a lithium ion polymer battery is shown. 30 g of graphite as a negative electrode active material was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride as a binder was dissolved in 50 g of N-methylpyrrolidone, and 10 g of epoxidized soybean oil was added as a plasticizer. This mixed composition solution was added to the above prepared powder mixture, and mixed until a material in a uniform kneaded state was obtained, thereby producing a negative electrode active material composition. This negative electrode active material composition was cast into 120
It was manufactured into a film type having a thickness of μm. The obtained negative electrode active material film was laminated on both surfaces of a copper grid as a negative electrode current collector to produce a negative electrode plate.

【0020】リチウムイオンポリマー電池の製造を示
す。ポリフッ化ビニリデンとヘキサフルオロプロピレン
との共重合体を利用してセパレータを製造した。前記方
法によって製造された正極極板、負極極板及びセパレー
タをラミネーティングして極板群(element)を
製造した。この極板群をエーテルに15分間2回浸漬し
て可塑剤であるエポキシ化された豆油を抽出した。次い
で、この極板群を電解液である1MLiPF6、2:1
容積比の炭酸エチレンと炭酸ジメチルとの溶液に浸漬し
た後に取り出してポリエチレン/アルミニウムフォイル
シーリング容器に入れシーリングしてリチウムイオンポ
リマー電池を製造した。
The production of a lithium ion polymer battery is shown. A separator was manufactured using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to manufacture an electrode plate. The electrode group was immersed twice in ether for 15 minutes to extract epoxidized bean oil as a plasticizer. Then, the electrode group was placed in an electrolyte solution of 1M LiPF6, 2: 1.
After being immersed in a solution of ethylene carbonate and dimethyl carbonate in a volume ratio, it was taken out, placed in a polyethylene / aluminum foil sealing container, and sealed to produce a lithium ion polymer battery.

【0021】(比較例1)リチウムイオンポリマー電池
の正極極板の製造を示す。正極活物質として二酸化リチ
ウムコバルト(LiCoO2)50gを導電剤であるカ
ーボンブラック4gと粉末状態で混合した。バインダー
としてポリフッ化ビニリデン7gをN−メチルピロリド
ン(N−methyl pyrolidone)100
gに溶解し、これに可塑剤としてフタル酸ジブチル(d
ibutyl phthalate)10gを添加し
た。この混合組成溶液を前記の製造された粉末混合物に
添加した後、均一な練り状態の物質が得られるまで混合
して正極活物質組成物を製造した。前記正極活物質組成
物をキャスティングして100μm厚さを有するフィル
ムタイプに製造した。得られた正極活物質フィルムを正
極電流集電体である有孔(perforated)アル
ミニウムフォイルの両面にラミネーションして正極極板
を製造した。
Comparative Example 1 Production of a positive electrode plate of a lithium ion polymer battery is described. 50 g of lithium cobalt dioxide (LiCoO 2 ) as a positive electrode active material was mixed with 4 g of carbon black as a conductive agent in a powder state. 7 g of polyvinylidene fluoride as a binder is N-methylpyrrolidone 100
g of dibutyl phthalate (d) as a plasticizer.
10 g of ibutyl phthalate) was added. This mixed composition solution was added to the powder mixture prepared above, and then mixed until a homogeneously kneaded material was obtained to prepare a positive electrode active material composition. The positive electrode active material composition was cast into a film type having a thickness of 100 μm. The obtained positive electrode active material film was laminated on both sides of a perforated aluminum foil serving as a positive electrode current collector to prepare a positive electrode plate.

【0022】リチウムイオンポリマー電池の負極極板の
製造を示す。負極活物質として黒鉛30gを導電剤であ
るカーボンブラック1gと粉末状態で混合した。バイン
ダーとしてポリフッ化ビニリデン5gをN−メチルピロ
リドン50gに溶解し、これに可塑剤としてフタル酸ジ
ブチル(dibutyl phthalate)10g
を添加した。この混合組成溶液を前記の製造された粉末
混合物に添加し、均一な練り状態の物質が得られるまで
混合して負極活物質組成物を製造した。この負極活物質
組成物をキャスティングして100μm厚さを有するフ
ィルムタイプに製造した。得られた負極活物質フィルム
を負極電流集電体である有孔(perforated)
銅フォイルの両面にラミネーションして負極極板を製造
した。
The production of a negative electrode plate of a lithium ion polymer battery will be described. 30 g of graphite as a negative electrode active material was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride as a binder is dissolved in 50 g of N-methylpyrrolidone, and 10 g of dibutyl phthalate as a plasticizer is added thereto.
Was added. This mixed composition solution was added to the above prepared powder mixture, and mixed until a material in a uniform kneaded state was obtained, thereby producing a negative electrode active material composition. This negative electrode active material composition was cast into a film type having a thickness of 100 μm. The obtained negative electrode active material film was perforated as a negative electrode current collector.
Lamination was performed on both sides of the copper foil to produce a negative electrode plate.

【0023】リチウムイオンポリマー電池の製造を示
す。ポリフッ化ビニリデンとヘキサフルオロプロピレン
との共重合体を利用してセパレータを製造した。前記方
法によって製造された正極極板、負極極板及びセパレー
タをラミネーティングして極板群(element)を
製造した。この極板群をエーテルに浸漬して可塑剤であ
るフタル酸ジブチルを抽出した。次いで、この極板群を
電解液である1MLiPF6、2:1容積比の炭酸エチ
レンと炭酸ジメチルとの溶液に浸漬した後に取り出して
ポリエチレン/アルミニウムフォイルシーリング容器に
入れシーリングしてリチウムイオンポリマー電池を製造
した。
The production of a lithium ion polymer battery is shown. A separator was manufactured using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to manufacture an electrode plate. This electrode group was immersed in ether to extract dibutyl phthalate as a plasticizer. Next, the electrode group was immersed in a solution of 1M LiPF6, which is an electrolytic solution, of ethylene carbonate and dimethyl carbonate in a 2: 1 volume ratio, taken out, placed in a polyethylene / aluminum foil sealing container, and sealed to produce a lithium ion polymer battery did.

【0024】(比較例2)リチウムイオンポリマー電池
の正極極板の製造を示す。正極活物質として四酸化リチ
ウムマンガン(LiMn24)50gを導電剤であるカ
ーボンブラック4gと粉末状態で混合した。バインダー
としてポリフッ化ビニリデン7gをN−メチルピロリド
ン(N−methyl pyrolidone)100
gに溶解し、これに可塑剤としてフタル酸ジブチル10
gを添加した。この混合組成溶液を前記の製造された粉
末混合物に添加した後、均一な練り状態の物質が得られ
るまで混合して負極活物質組成物を製造した。前記負極
活物質組成物をキャスティングし120μm厚さのフィ
ルムタイプに製造した。得られた負極活物質フィルムを
正極集電体であるアルミニウムグリッドの両面にラミネ
ーションして正極極板を製造した。
Comparative Example 2 Production of a positive electrode plate of a lithium ion polymer battery is described. 50 g of lithium manganese tetroxide (LiMn 2 O 4 ) as a positive electrode active material was mixed with 4 g of carbon black as a conductive agent in a powder state. 7 g of polyvinylidene fluoride as a binder is N-methylpyrrolidone 100
g of dibutyl phthalate as a plasticizer.
g was added. This mixed composition solution was added to the prepared powder mixture, and then mixed until a homogeneously kneaded material was obtained to prepare a negative electrode active material composition. The negative active material composition was cast to prepare a 120 μm thick film type. The obtained negative electrode active material film was laminated on both surfaces of an aluminum grid as a positive electrode current collector to produce a positive electrode plate.

【0025】リチウムイオンポリマー電池の負極極板の
製造を示す。負極活物質として黒鉛30gを導電剤であ
るカーボンブラック1gと粉末状態で混合した。バイン
ダーとしてポリフッ化ビニリデン5gをN−メチルピロ
リドン50gに溶解し、これに可塑剤としてフタル酸ジ
ブチル(dibutyl phthalate)10g
を添加した。この混合組成溶液を前記の製造された粉末
混合物に添加し、均一な練り状態の物質が得られるまで
に混合して負極活物質組成物を製造した。この負極活物
質組成物をキャスティングして120μm厚さを有する
フィルムタイプに製造した。得られた負極活物質フィル
ムを負極電流集電体である銅グリッドの両面にラミネー
ションして負極極板を製造した。
The production of a negative electrode plate of a lithium ion polymer battery will be described. 30 g of graphite as a negative electrode active material was mixed with 1 g of carbon black as a conductive agent in a powder state. 5 g of polyvinylidene fluoride as a binder is dissolved in 50 g of N-methylpyrrolidone, and 10 g of dibutyl phthalate as a plasticizer is added thereto.
Was added. This mixed composition solution was added to the above prepared powder mixture, and mixed until a uniformly kneaded material was obtained, to produce a negative electrode active material composition. This negative electrode active material composition was cast into a film type having a thickness of 120 μm. The obtained negative electrode active material film was laminated on both surfaces of a copper grid as a negative electrode current collector to produce a negative electrode plate.

【0026】リチウムイオンポリマー電池の製造を示
す。ポリフッ化ビニリデンとヘキサフルオロプロピレン
との共重合体を利用してセパレータを製造した。前記方
法によって製造された正極極板、負極極板及びセパレー
タをラミネーティングして極板群(element)を
製造した。この極板群をエーテルに浸漬して可塑剤であ
るフタル酸ジブチルを抽出した。次いで、この極板群を
電解液である1MLiPF6、2:1容積比の炭酸エチ
レンと炭酸ジメチルとの溶液に浸漬した後に取り出して
ポリエチレン/アルミニウムフォイルシーリング容器に
入れシーリングしてリチウムイオンポリマー電池を製造
した。
The production of a lithium ion polymer battery is shown. A separator was manufactured using a copolymer of polyvinylidene fluoride and hexafluoropropylene. The positive electrode plate, the negative electrode plate, and the separator manufactured by the above method were laminated to manufacture an electrode plate. This electrode group was immersed in ether to extract dibutyl phthalate as a plasticizer. Next, the electrode group was immersed in a solution of 1M LiPF6, which is an electrolytic solution, of ethylene carbonate and dimethyl carbonate in a 2: 1 volume ratio, taken out, placed in a polyethylene / aluminum foil sealing container, and sealed to produce a lithium ion polymer battery did.

【0027】[0027]

【発明の効果】本発明で可塑剤として使用したエポキシ
化された豆油は正極及び負極集電体に電極物質をコーテ
ィングする時に均一な厚さで薄くコーティングされ得る
ように物質の粘度等を一定に維持させる役割を果たす。
また、コーティングを終了し極板乾燥後又は電極製造後
に可塑剤をメタノール、エーテルなどの有機溶媒を用い
て抽出する工程において速い時間内に抽出される。メタ
ノールとエーテルを抽出溶媒として用いて時間に応ずる
可塑剤の抽出量実験を実施し、その結果を図1に示し
た。可塑剤が抽出された後に生成される気孔は電解液が
浸透する空間を提供し、電極活物質が電解液と接する界
面を広げる効果を有する。従って、リチウムイオン電池
の極板におけるイオンの伝導度を向上させ高電流及び低
温での充電量及び放電効率を高める効果と共にエネルギ
ー密度などのような電池の諸般の性能を向上させる効果
を有する。
According to the present invention, the epoxidized soybean oil used as a plasticizer in the present invention has a constant viscosity and the like so that a uniform thickness can be applied when coating the electrode material on the positive and negative electrode current collectors. Play a role to maintain.
In addition, the plasticizer is extracted within a short time in the step of extracting the plasticizer using an organic solvent such as methanol or ether after the coating is completed and after the electrode plate is dried or the electrode is manufactured. An experiment on the extraction amount of the plasticizer depending on time was performed using methanol and ether as extraction solvents, and the results are shown in FIG. The pores generated after the plasticizer is extracted provide a space for the electrolyte to penetrate, and have the effect of expanding the interface between the electrode active material and the electrolyte. Accordingly, the present invention has the effect of improving the conductivity of ions in the electrode plate of the lithium ion battery to increase the charge and discharge efficiency at high current and low temperature, and has the effect of improving various performances of the battery such as energy density.

【0028】特に、従来、可塑剤として主に利用された
フタル酸ジブチルは発癌物質であるため人体に有害であ
り価格が高いという問題点を有するが、本発明で利用し
たエポキシ化された豆油は天然物で製造されるため公害
のおそれがないと共に、人体に無害であり価格が安いと
いう利点を有する。また、集電体としてフォイルの代わ
りに有孔フォイルまたはグリッドを使用することによっ
て、電解液のイオンが電極極板の両面に移動することが
できるようになり、従って極板の利用効率が向上するの
で電池の性能が向上する。
Particularly, dibutyl phthalate, which has hitherto been mainly used as a plasticizer, has a problem that it is harmful to the human body and is expensive because it is a carcinogen, but the epoxidized soybean oil used in the present invention has a problem. Since it is made of natural products, there is no danger of pollution, and it is harmless to the human body and has the advantages of low price. Also, the use of perforated foils or grids instead of foils as current collectors allows the ions of the electrolyte to move to both sides of the electrode plate, thus improving the efficiency of use of the plate. Therefore, the performance of the battery is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法によって製造されるリチウムイオ
ン電池極板の製造時に抽出される可塑剤量を、使用する
抽出溶媒及び時間に応じて示した図
FIG. 1 is a diagram showing the amount of a plasticizer extracted during the production of a lithium-ion battery electrode plate produced by the method of the present invention, according to the extraction solvent used and the time.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活物質と、導電剤と、バインダーと、エ
ポキシ化された豆油を含む可塑剤とを含むリチウム系列
二次電池用活物質組成物。
1. An active material composition for a lithium secondary battery comprising an active material, a conductive agent, a binder, and a plasticizer containing epoxidized bean oil.
【請求項2】 前記可塑剤は下記化1のエポキシ化され
た豆油である請求項1に記載のリチウム系列二次電池用
活物質組成物。 【化1】 (上記式において、Rはアルキルグループであり、nは
1〜10である)
2. The active material composition for a lithium secondary battery according to claim 1, wherein the plasticizer is an epoxidized bean oil represented by the following formula 1. Embedded image (In the above formula, R is an alkyl group, and n is 1 to 10.)
【請求項3】 活物質と、導電剤と、バインダーと、エ
ポキシ化された豆油を含む可塑剤とを含む組成物を電流
集電体にラミネーションする工程と、 前記電流集電体を有機溶媒に浸漬して前記可塑剤を抽出
する工程とを含むリチウム系列二次電池用極板の製造方
法。
3. laminating a composition containing an active material, a conductive agent, a binder, and a plasticizer containing epoxidized bean oil to a current collector; and applying the current collector to an organic solvent. And dipping the plasticizer to extract the plasticizer.
【請求項4】 前記可塑剤は下記化2のエポキシ化され
た豆油である請求項3に記載のリチウム系列二次電池用
極板の製造方法。 【化2】 (上記式において、Rはアルキルグループであり、nは
1〜10である)
4. The method according to claim 3, wherein the plasticizer is epoxidized bean oil represented by the following formula (2). Embedded image (In the above formula, R is an alkyl group, and n is 1 to 10.)
JP09825599A 1998-04-06 1999-04-06 Method for manufacturing electrode plate for lithium secondary battery Expired - Lifetime JP3928167B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1998-12036 1998-04-06
KR1019980012036A KR100274244B1 (en) 1998-04-06 1998-04-06 An active material composition for a lithium based cell and a method of preparing an electrode for a lithium based cell using the same

Publications (2)

Publication Number Publication Date
JPH11329412A true JPH11329412A (en) 1999-11-30
JP3928167B2 JP3928167B2 (en) 2007-06-13

Family

ID=19535870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09825599A Expired - Lifetime JP3928167B2 (en) 1998-04-06 1999-04-06 Method for manufacturing electrode plate for lithium secondary battery

Country Status (4)

Country Link
JP (1) JP3928167B2 (en)
KR (1) KR100274244B1 (en)
DE (1) DE19915394A1 (en)
GB (1) GB2336239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189690A (en) * 1999-12-28 2001-07-10 Yoshida Enterprise:Kk Portable radio telephone set

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762799B1 (en) * 2006-09-28 2007-10-04 한국전기연구원 Carbon-coated composite material, manufacturing method thereof, positive active material, and lithium secondary battery comprising the same
CN101225236B (en) * 2007-12-19 2010-06-16 江苏飞翔化工股份有限公司 Composition used for polychloroethylene resin plasticizer and method of use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728588A (en) * 1987-06-01 1988-03-01 The Dow Chemical Company Secondary battery
US5057565A (en) * 1988-12-22 1991-10-15 The Dow Chemical Company Solid polyelectrolyte polymer film
KR19990025888A (en) * 1997-09-19 1999-04-06 손욱 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189690A (en) * 1999-12-28 2001-07-10 Yoshida Enterprise:Kk Portable radio telephone set

Also Published As

Publication number Publication date
JP3928167B2 (en) 2007-06-13
KR19990079419A (en) 1999-11-05
GB2336239A (en) 1999-10-13
GB9907842D0 (en) 1999-06-02
KR100274244B1 (en) 2000-12-15
DE19915394A1 (en) 1999-10-07

Similar Documents

Publication Publication Date Title
JP4159667B2 (en) Method for manufacturing electrode plate for lithium secondary battery
JP5217076B2 (en) Lithium ion battery
JP3822445B2 (en) Electrochemical devices
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP2007273183A (en) Negative electrode and secondary battery
JP2015153720A (en) Laminate for positive electrode, positive electrode, and nonaqueous electrolyte secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JP2011040179A (en) Nonaqueous lithium secondary battery
JP5066804B2 (en) Lithium ion secondary battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
JPH08273671A (en) Electrode plate for nonaqueous electrolyte secondary battery
JP2009070606A (en) Lithium polymer battery
JP2019091571A (en) Lithium secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
CN116864624A (en) Electrode plate of integrated sulfide all-solid-state battery and preparation method thereof
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP6818300B2 (en) Lithium secondary battery charging / discharging method
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3928167B2 (en) Method for manufacturing electrode plate for lithium secondary battery
JPH0541244A (en) Nonaqueous electrolyte secondary battery
JPH08162155A (en) Nonaqueous electrolytic battery
JP2004273132A (en) Electrode and battery using the same
KR100625958B1 (en) Lithium secondary battery and manufacturiing method therefor
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term