JPH0842486A - 摩擦ポンプ - Google Patents

摩擦ポンプ

Info

Publication number
JPH0842486A
JPH0842486A JP7031092A JP3109295A JPH0842486A JP H0842486 A JPH0842486 A JP H0842486A JP 7031092 A JP7031092 A JP 7031092A JP 3109295 A JP3109295 A JP 3109295A JP H0842486 A JPH0842486 A JP H0842486A
Authority
JP
Japan
Prior art keywords
friction pump
pump
friction
rotating
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7031092A
Other languages
English (en)
Other versions
JP3723593B2 (ja
Inventor
Armin Conrad
アルミン・コンラート
Torbjoern Lembke
トルビェルン・レムブケ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Balzers Pfeiffer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balzers Pfeiffer GmbH filed Critical Balzers Pfeiffer GmbH
Publication of JPH0842486A publication Critical patent/JPH0842486A/ja
Application granted granted Critical
Publication of JP3723593B2 publication Critical patent/JP3723593B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

(57)【要約】 【目的】 ジークバーン形ないしホルベック形の摩擦ポ
ンプにおいて、高い回転数で運転でき、回転部材と固定
部材との間の間隙を小さく抑えることのできる構成を提
供する。 【構成】 ジークバーン形ないしホルベック形の摩擦ポ
ンプに、自己調節機能を有する、永久磁石(10、1
2)を用いた磁気軸受を備えた。この磁気軸受に関し、
同一の構成要素(6、8;7、11)が、その磁気軸受
の基本的構成要素としても機能し、また同時に摩擦ポン
プの基本的構成要素としても機能するよう、それら構成
要素を形成し且つ組み合わせた。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、排気用の摩擦ポンプに
関するものであり、より詳しくは、2枚の固定板の間で
回転する回転板から成るポンプ段を少なくとも1段備
え、前記回転板の片面ないし両面、もしくは前記2枚の
固定板の前記回転板に対向した2つの面の一方ないし両
方の面に、螺旋形の条溝及び突条を設けて成る、排気用
のジークバーン形摩擦ポンプに関し、また、2つの固定
円筒壁部材の間で回転する回転中空円筒部材から成るポ
ンプ段を少なくとも1段備え、前記回転中空円筒部材の
片面ないし両面、もしくは前記回転中空円筒部材に対向
した前記2つの固定円筒壁部材の2つの面の一方ないし
両方の面に、螺旋形の条溝及び突条を設けて成る、排気
用のホルベック形摩擦ポンプに関するものである。
【0002】それら摩擦ポンプにおいては、磁気軸受が
その摩擦ポンプの一体不可分の構成部分を形成してい
る。従って、その構成部分は、磁気軸受の基本的構成要
素としての機能を果たすものであると同時に、真空ポン
プの機能を得るために不可欠な基本的構成要素としての
機能も果たすものとなっている。
【0003】
【従来の技術】従来から様々な形式の排気用の摩擦ポン
プが公知となっている。摩擦ポンプの動作メカニズムの
基本は、運動する壁面から気体粒子へ、運動量が伝達さ
れるということである。これによって所望の方向の気体
の流れを発生させている。摩擦ポンプは、気体分子の自
由行程がポンプの幾何学寸法より大きくなるような圧力
範囲で作動するものであり、そのため分子流領域で作動
する摩擦ポンプは、分子ポンプと呼ばれている。
【0004】このような摩擦ポンプの最初のものはゲー
デによって提案された(W. Gaede,Ann. Phys. 41 (191
3) 337 ff.)。その基本原理を踏襲した、ゲーデ形ポン
プの発展技術というべきものが、ジークバーン形ポンプ
である(M. Siegbahn, Arch.Math. Ash. Fys. 30 B (19
43))である。ジークバーン形ポンプでは、運動する壁
面として、回転板を使用している。摩擦ポンプの更に別
の構成として、ホルベックが提案したホルベック形ポン
プがある(F. Holweck, Comptes rendus Acad.Sience 1
77 (1923) 43 ff.)。ホルベック形ポンプは、円筒表面
が、運動する壁面としての機能を果たすようにしたもの
である。
【0005】それらに続く気体摩擦ポンプの発展の中
で、大いなる進歩と呼べるのは、ベッカー形の構成であ
った(W. Becker, Vakuum Technik 9/10 (1966))。ベ
ッカー形の構成では、運動壁体と固定壁体とを交互に何
層にも配設し、それら運動壁体と固定壁体との両方を、
タービンブレードを備えたタービン羽根車の形態にした
ものである。そのため、このベッカー形の構成に対して
は、ターボ分子ポンプという名称が使用されるようにな
った。
【0006】以上に列挙した、最初にゲーデによって提
案された摩擦ポンプのその後の様々な発展形態は、真空
技術の分野において、また特に高真空技術並びに超高真
空技術の分野において、ますます重要な役割を担うよう
になってきた。またそれに伴って、一方のベッカー形タ
ーボ分子ポンプの適用領域と、他方のジークバーン形摩
擦ポンプ及びホルベック形摩擦ポンプの適用領域とが、
分離されるようになった。ターボ分子ポンプは、多数の
ポンプ段を一列に並べた構成を有することから高い圧力
比を得ることができ、そのため高真空領域及び超高真空
領域への適用に特に適している。しかしながら、それよ
り圧力が高い領域への適用には制約があり、その原因
は、ターボ分子ポンプはポンプ構成要素の間の間隔が大
きいため、約10-1ミリバール以下の低圧でないと十分
に機能しないことにある。ジークバーン形摩擦ポンプ及
びホルベック形摩擦ポンプは、そこから更に高圧側に続
く圧力領域へ適用しても良好に適合する。これら摩擦ポ
ンプは、そのような圧力領域において単独で使用し得る
のみならず、ターボ分子ポンプと直列に接続して使用す
ることも可能である。このようにターボ分子ポンプと摩
擦ポンプとを組み合わせた最近の組合せ構造は、ターボ
分子ポンプの作動領域を排出圧力のより高い方へシフト
させるための優れた構成態様となっている。
【0007】この種のポンプの機能に関しては、逆流損
失ないし逆輸送損失を小さく抑えるために、回転部材と
固定部材との間の間隙を非常に小さく抑えることが本質
的に必要とされている。これは特に、ジークバーン形摩
擦ポンプ及びホルベック形摩擦ポンプに関していえるこ
とである。そうすることによって、これら摩擦ポンプで
は(並びにターボ分子ポンプでも)、回転部材と固定部
材との間の間隙が、ポンプで排気しようとしている気体
の分子の平均自由行程より小さくなるという条件を満た
すようになり、より圧力の高い方の圧力領域でも分子流
量域でも作動できるようになる。更にそれによって、以
上に挙げたポンプは、分子流領域における全圧力比も改
善される。
【0008】以上に挙げたポンプの全てに共通している
のは、運動する壁面の機能を果たしている回転部材の周
速度に対して、圧力比は指数関数的に変化し、排気速度
は一次関数的に変化するということである。そのため、
効果的なポンプ性能を得るには、ロータ回転数を非常に
高くすることが基本的に必要であるが、一方では、連続
運転を高い信頼性をもって行えるようにすることも基本
的に必要である。
【0009】そのため、ロータを軸支する軸受構造が非
常に重要になる。油潤滑玉軸受を使用した伝統的なロー
タ軸受構造と並んで、現在では、永久磁石を用いた磁気
軸受と玉軸受とを組み合わせた軸受構造も採用されてい
る。完全無接触状態で軸支するための様々な実施態様の
アクティブ制御式磁気軸受も採用されている。
【0010】回転数は高くすること、そして、固定部材
と回転部材との間の間隙はできる限り小さくすること、
これら2つの困難な要求は、摩擦ポンプの構造に関す
る、折り合いを付けることが困難な2つの必要条件であ
る。回転数を高くするほど、衝突を避け、従ってポンプ
の損傷ないし完全な破壊を避けるために、固定部材と回
転部材との間の最小間隙をそれに応じて大きくする必要
がある。ジークバーン形摩擦ポンプ並びにホルベック形
摩擦ポンプでは、効果的なポンプ性能を得るためには、
この間隙を非常に小さくせねばならないため、その基準
が非常に重要な役割を果たすことになる。例えば上述の
間隙を小さく抑えると、連続運転の長い時間の間に重大
な障害を引き起こすおそれが生じる。
【0011】
【発明が解決しようとする課題】本発明の目的は、回転
数を非常に高くし且つ上述の間隙をできるだけ小さくす
るという困難な要求を満たしつつ、また摩擦ポンプに特
有の例えば無潤滑で真空が得られるという優れた特性を
生かしつつ、安全確実で信頼性の高い連続運転を保証す
る摩擦ポンプを提供することにある。また具体的には、
ジークバーン形摩擦ポンプ及びホルベック形摩擦ポンプ
において、連続運転の期間中、非常に小さな間隙を維持
するという課題を達成することを目的とする。
【0012】
【課題を解決するための手段】上記課題は、本発明によ
れば、前記ジークバーン形摩擦ポンプに関しては、前記
回転板を導電性材料で形成し、該回転板の両側に、前記
固定板に取り付けた永久磁石を配設し、該永久磁石を、
対向する向きの渦電流が前記回転板に誘導されるように
配置し、該渦電流によって、ロータに対して軸方向安定
化力を作用させる磁界が発生するようにしたことによっ
て達成されており、また、前記ホルベック形摩擦ポンプ
に関しては、前記回転中空円筒部材を導電性材料で形成
し、該回転中空円筒部材の両側に、前記固定円筒壁部材
に取り付けた永久磁石を配設し、該永久磁石を、対向す
る向きの渦電流が前記回転中空円筒部材に誘導されるよ
うに配置し、該渦電流によって、ロータに対して径方向
安定化力を作用させる磁界が発生するようにしたことに
よって達成されている。
【0013】新形式の磁気軸受を開発したことによっ
て、摩擦ポンプにおける非常に小さな間隙を一定に維持
するという問題が洗練された方法で解決されている。こ
の解決法は洗練された方法であるばかりでなく更に簡明
な方法でもあり、なぜならば、この解決法は、ポンプの
基本的構成要素と磁気軸受の基本的構成要素とを同一の
構成部材とし、その構成部材が、摩擦ポンプのポンプ機
能を発揮するという必要条件と、磁気軸受としての基本
的特性を提供するという条件との、本来は異なった条件
を同時に満足するようにしているからである。
【0014】磁気軸受は自己調節機能を備えた軸受であ
り、渦電流誘導の原理に基づいたものである。そのため
一般的に、その調節機能を発揮する部材を、導電性を有
する薄肉の部材として構成する必要があり、その導電性
薄肉部材に対向させるようにして複数の永久磁石を配列
する。導電性薄肉部材が永久磁石に対して相対的に運動
することによって、導電性薄肉部材の中に渦電流が誘導
され、その誘導渦電流によって発生する磁界のために、
導電性薄肉部材と永久磁石との間に反発力が作用する。
導電性薄肉部材と永久磁石との間が近付くほど誘導電流
は大きくなり、従ってその誘導電流によって発生する磁
界も強力になる。そのため、導電性薄肉部材が永久磁石
に近付こうとする運動に対して、抵抗力として働く反発
力もまた増大する。導電性薄肉部材と永久磁石とが離れ
ようとするときには、それに応じて以上とは逆の作用が
生じる。従ってこの導電性薄肉部材は、磁力の大きさが
可変の磁石のように機能する。以上の機構は、このよう
にして自己調節機能を発揮する。
【0015】互いに相対的に運動する部材どうしの幾何
学的配置に関しては、様々な配置態様が存在している。
磁気リニアベアリングを構成するためのリニア形の配置
態様もあるが、このような配置態様は本発明への適用と
いう点では無意味であり、それとは別の回転対称形の配
置態様にうちに、真空ポンプへの適用に適した2通りの
配置態様がある。
【0016】上述の導電性部材は、例えば円板等の回転
板の形状に形成することができる。この回転板の両側
に、永久磁石を備えたステータ構造体を配設する。この
配置態様は基本的に、ジークバーン形摩擦ポンプの構造
に対応したものである。この場合には、ステータ構造体
の間に回転板を配設している。
【0017】本発明においては、磁気軸受の構成部材で
もありジークバーン形摩擦ポンプの構成部材でもある兼
用の構成部材を、磁気軸受にとっての本質的な特性と摩
擦ポンプにとっての本質的な特性との双方を満足するよ
うに配置して組み合わせている。即ち、上述の薄肉の回
転板を電気の良導体とし、それによって、その回転板に
誘導電流を発生させ得るようにしている。更に加えて、
回転板の材質は、摩擦ポンプに必要な高い回転数によっ
て発生する荷重に耐えられるだけの剛性を有する必要で
ある。一方、ステータ構成部材は、永久磁石を担持する
と共に、排気のための螺旋形の条溝を備えている必要が
ある。ただし、その変更例として、螺旋形の条溝を回転
板に設けるようにすることも可能である。
【0018】また、上述の導電性部材を、回転中空円筒
部材として形成することもできる。この中空円筒部材の
両側に、永久磁石を備えたステータ構造体を配設する。
この配置態様は基本的に、ホルベック形摩擦ポンプの構
造に対応したものである。この場合には、ステータ構造
体の間に回転円筒部材を配設している。
【0019】上で説明したジークバーン形摩擦ポンプの
場合と同様の考え方を用いれば、ホルベック形摩擦ポン
プに関しても磁気軸受で軸支した洗練されたしかも簡明
な構成を得ることができる。なおこの場合にも、螺旋形
の条溝は、ステータを構成している部材に設けるばかり
でなく、ロータを構成している部材に設けることも可能
である。
【0020】回転板を用いた構成態様と回転円筒部材を
用いた構成態様という、上述の2通りの構成態様の間の
中間的な構成態様として、上述の導電性部材を円錐形な
いし球形の部材とした構成態様も可能である。また、そ
のようにした場合に、導電性部材以外のその他の部材の
構成をどのようにすべきかは、上の説明から明らかであ
る。
【0021】更には上述の2通りの構成態様を、軸受の
構成部材としての機能ないしポンプの構成部材としての
機能を得るために利用することに加えて、1台のポンプ
の中にそれらを組み合わせて利用することも可能であ
る。そうした場合には、径方向の支持構造(ジークバー
ン形の構造の場合)ないし軸方向の支持構造(ホルベッ
ク形の構成の場合)の1つを、余分なものとして省略す
ることができる。
【0022】回転部材と固定部材との間の隙間をできる
限り小さくすること、それに周速度をできる限り大きく
すること、これら2つの条件は、磁気軸受としての性能
を効果的なものとするための前提条件であると共に、摩
擦ポンプとしての性能を効果的なものとするための前提
条件でもある。
【0023】本発明によれば、これら厳しい要求条件の
双方を満足する構成を作り出すことに成功している。そ
のため、磁気軸受にとっての基本的構成要素が同時に真
空ポンプにとっての基本的機能を果たすようにした、磁
気軸受で軸支した真空ポンプを構成することができる。
このような洗練された簡明な構成態様は、従来の構成態
様と比較して、寸法的にはよりコンパクトで、動作に関
してはより信頼性が高くより安全確実な構成態様となり
得るものである。ターボ分子ポンプと組み合わせた構造
的組合せによって、より広い圧力範囲に適用でき、しか
も簡単な構成の補助ポンプ(例えば膜ポンプ等)に接続
して運転することができる、真空ポンプが得られる。
【0024】
【実施例】以下に添付図面を参照しつつ、本発明をその
実施例に即して更に詳細に説明して行く。図1及び図2
に、単段式の形態のジークバーン形摩擦ポンプを示し
た。この摩擦ポンプは、その摩擦ポンプとしての本質的
構成部材が、同時に、自己調節機能を備えた磁気スラス
ト軸受の基本的構成部材としての機能も果たすようにし
たものである。吸気口フランジ2と排気口3とを備えた
ポンプケーシング1の中で、回転軸4がモータ機構5に
よって駆動される。回転軸4には、導電性材料製の平ら
な円板6を取り付けてある。この円板6に向かい合うよ
うにして、この円板6の両側に一対の固定板8を配設し
てある。それら固定板8がポンプの構成要素としての機
能を果たすようにするために、それら固定板8には、螺
旋形の複数本の条溝9を設けてあり、それら複数本の条
溝9は複数本の突条19によって夫々隔てられている。
回転する上述の円板(回転板)6によって運動量を付与
された気体が、それら条溝9の中を輸送されて行く。固
定板8には更に、それら固定板8が磁気スラスト軸受の
構成要素としての機能を果たすようにするために、複数
の永久磁石10を取り付けてあり、それら永久磁石10
は、条溝9の下側に配設しても良く、或いは、突条19
の中に配設しても良い。それら永久磁石10は導電性の
回転板6に渦電流を誘導し、その渦電流によって磁界が
発生する。その結果として発生する力が、回転板6と固
定板8との間の軸方向の反発力として働く。回転板6が
一方の固定板8に接近したならば、その接近した側の磁
界が強まり、従ってそちら側の反発力が強まる。これと
は逆に間隔が広がった場合には、反発力が減少する。こ
のようにして、磁気スラスト軸受の自己調節機能が得ら
れている。
【0025】この実施例では、ロータ構造体の径方向の
安定化はパッシブ永久磁石軸受14によって行ってい
る。ただし、この径方向の安定化は、その他の任意の、
磁石を用いた構成、電磁石を用いた構成、及び/また
は、機械的な構成によって行うことも可能である。
【0026】誘導渦電流が発生しているのは、従って磁
界が発生しているのは、回転板6が回転しているときだ
けであり、そのため、ロータ構造体が静止しているとき
には上述の軸受構造は機能を消失している。そのような
状況に対処するために、一対の始動及び停止用軸受15
を備えており、ロータ構造体の静止時や回転開始時に
は、それら軸受15によってロータ構造体を軸方向に支
持するようにしている。またそれら軸受15は、この実
施例では更に、構造体全体の運転中における緊急用軸受
としての機能も果たしている。
【0027】図3、図4、及び図5に、単段式の形態の
ホルベック形摩擦ポンプを示した。この摩擦ポンプは、
その摩擦ポンプとしての本質的構成部材が、同時に、自
己調節機能を備えた磁気ラジアル軸受の基本的構成部材
としての機能も果たすようにしたものである。ポンプケ
ーシング、回転軸、及びモータ機構は、図1に示したも
のと同じである。ただし、回転軸4には、平らな円板で
はなく、導電性材料製の中空円筒部材7を取り付けてあ
る。この中空円筒部材7の内外両面の円筒壁面に向かい
合うようにして、この中空円筒部材7の内外両側に一対
の固定円筒壁部材11を設けてある。それら固定円筒壁
部材11がポンプの構成要素としての機能を果たすよう
にするために、それら固定円筒壁部材11には、螺旋形
の複数本の条溝13と複数本の突条20とを設けてあ
る。回転する上述の中空円筒部材7によって運動量を付
与された気体が、それら条溝13の中を輸送されて行
く。固定円筒壁部材11には更に、それら固定円筒壁部
材11が磁気ラジアル軸受の構成要素としての機能を果
たすようにするために、複数の永久磁石12を取り付け
てあり、それら永久磁石12は、条溝13の下側に配設
しても良く、或いは、突条20の中に配設しても良い。
中空円筒部材7を回転させることによって、上の第1実
施例に関して説明したのもと同様の、反発力の作用及び
自己調節機能が得られるが、ただしこの実施例では、反
発力が作用する方向が径方向であるという点が異なって
いる。
【0028】ロータ構造体の軸方向の安定化は、パッシ
ブ永久磁石軸受16によって行っているが、同等の機能
を有するその他の軸受構造によって行うようにしても良
い。この実施例では、始動及び停止用の、また、緊急用
の軸受として、この実施例には、一対の玉軸受17を備
えている。変更構成として、以上に説明した2つの実施
例の構成のいずれにおいても、基本的機能が維持される
ようにしつつ、螺旋形の条溝及び突条を、固定板ないし
固定円筒壁部材に設けるようにしても良い。
【0029】図1〜図5には、本発明を単段式の摩擦ポ
ンプの実施例に適用したものを示した。軸方向ないし径
方向に複数のポンプ段を積層して並べた構成とすれば、
より大きな圧力比を発生させることができる。図6に
は、ターボ分子ポンプ18と組み合わせた多段式のジー
クバーン形摩擦ポンプを示した。図7には、多段式のホ
ルベック形摩擦ポンプについての同様の組み合わせの構
成を示した。
【図面の簡単な説明】
【図1】本発明の実施例に係る、磁気スラスト軸受とし
ての機能を併せ有するジークバーン形摩擦ポンプを示し
た断面図である。
【図2】(a)は図1の一部を取り出して拡大した拡大
断面図であり、(b)は(a)のA−A線に沿った断面
図である。
【図3】本発明の実施例に係る、磁気ラジアル軸受とし
ての機能を併せ有するホルベック形摩擦ポンプを示した
断面図である。
【図4】図3の一部を取り出して拡大した拡大断面図で
ある。
【図5】図3及び図4の中の外側固定円筒壁面を示した
見取り図である。
【図6】ジークバーン形摩擦ポンプとターボ分子ポンプ
とを組み合わせた構造を示した断面図である。
【図7】ホルベック形摩擦ポンプとターボ分子ポンプと
を組み合わせた構造を示した断面図である。
【符号の説明】
6 回転板 7 回転中空円筒部材 8 固定板 9 条溝 10 永久磁石 11 固定円筒壁部材 12 永久磁石 13 条溝 19 突条 20 突条

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 2枚の固定板(8)の間で回転する回転
    板(6)から成るポンプ段を少なくとも1段備え、前記
    回転板の片面ないし両面、もしくは前記2枚の固定板の
    前記回転板に対向した2つの面の一方ないし両方の面
    に、螺旋形の条溝(9)及び突条(19)を設けて成
    る、排気用のジークバーン形摩擦ポンプにおいて、 前記回転板(6)を導電性材料で形成し、該回転板
    (6)の両側に、前記固定板(8)に取り付けた永久磁
    石(10)を配設し、該永久磁石(10)を、対向する
    向きの渦電流が前記回転板(6)に誘導されるように配
    置し、該渦電流によって、ロータに対して軸方向安定化
    力を作用させる磁界が発生するようにしたことを特徴と
    する摩擦ポンプ。
  2. 【請求項2】 前記螺旋形の条溝(9)及び突条(1
    9)を前記固定板(8)の表面に設け、前記永久磁石
    (10)をそれら条溝及び突条の下側に取り付けてある
    ことを特徴とする請求項1記載の摩擦ポンプ。
  3. 【請求項3】 前記永久磁石(10)を前記突条(1
    9)の中に配設してあることを特徴とする請求項1また
    は2記載の摩擦ポンプ。
  4. 【請求項4】 前記ロータを永久磁石(14)から成る
    機構によって径方向に安定化してあることを特徴とする
    請求項1から3までのいずれか記載の摩擦ポンプ。
  5. 【請求項5】 前記ロータの回転開始以前ないし回転開
    始直後に該ロータを軸方向に安定化する機能を果たす少
    なくとも1つの機械式軸受(15)を備えたことを特徴
    とする請求項1から4までのいずれか記載の摩擦ポン
    プ。
  6. 【請求項6】 2つの固定円筒壁部材(11)の間で回
    転する回転中空円筒部材(7)から成るポンプ段を少な
    くとも1段備え、前記回転中空円筒部材の片面ないし両
    面、もしくは前記回転中空円筒部材に対向した前記2つ
    の固定円筒壁部材(11)の2つの面の一方ないし両方
    の面に、螺旋形の条溝(13)及び突条(20)を設け
    て成る、排気用のホルベック形摩擦ポンプにおいて、 前記回転中空円筒部材(7)を導電性材料で形成し、該
    回転中空円筒部材の両側に、前記固定円筒壁部材(1
    1)に取り付けた永久磁石(12)を配設し、該永久磁
    石(12)を、対向する向きの渦電流が前記回転中空円
    筒部材(7)に誘導されるように配置し、該渦電流によ
    って、ロータに対して径方向安定化力を作用させる磁界
    が発生するようにしたことを特徴とする摩擦ポンプ。
  7. 【請求項7】 前記螺旋形の条溝(13)を前記固定円
    筒壁部材(11)の表面に設け、前記永久磁石(12)
    を該条溝の下側に取り付けてあることを特徴とする請求
    項6記載の摩擦ポンプ。
  8. 【請求項8】 前記永久磁石(12)を前記突条(2
    0)の中に配設してあることを特徴とする請求項6また
    は7記載の摩擦ポンプ。
  9. 【請求項9】 前記ロータを永久磁石(16)から成る
    機構によって軸方向に安定化してあることを特徴とする
    請求項6から8までのいずれか記載の摩擦ポンプ。
  10. 【請求項10】 前記ロータの回転開始以前ないし回転
    開始直後に該ロータを軸方向に安定化する機能を果たす
    少なくとも1つの機械式軸受(17)を備えたことを特
    徴とする請求項6から9までのいずれか記載の摩擦ポン
    プ。
  11. 【請求項11】 前記回転板ないし前記回転中空円筒部
    材に代えて円錐形部材ないし球形部材を備え、その円錐
    形部材ないし球形部材に近接させて備える固定部材を、
    その円錐形部材ないし球形部材に対応した形状のものと
    したことを特徴とする請求項1から10までのいずれか
    記載の摩擦ポンプ。
  12. 【請求項12】 前記摩擦ポンプをターボ分子ポンプ
    (18)と組み合せ、該摩擦ポンプと該ターボ分子ポン
    プとを1本の回転軸に取り付け、該摩擦ポンプを該ター
    ボ分子ポンプの背圧側に配設したことを特徴とする請求
    項1から11までのいずれか記載の摩擦ポンプ。
JP03109295A 1994-03-26 1995-02-20 摩擦ポンプ Expired - Fee Related JP3723593B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4410656.4 1994-03-26
DE4410656A DE4410656A1 (de) 1994-03-26 1994-03-26 Reibungspumpe

Publications (2)

Publication Number Publication Date
JPH0842486A true JPH0842486A (ja) 1996-02-13
JP3723593B2 JP3723593B2 (ja) 2005-12-07

Family

ID=6514011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03109295A Expired - Fee Related JP3723593B2 (ja) 1994-03-26 1995-02-20 摩擦ポンプ

Country Status (4)

Country Link
US (1) US5547338A (ja)
EP (1) EP0675289B1 (ja)
JP (1) JP3723593B2 (ja)
DE (2) DE4410656A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504278A1 (de) * 1995-02-09 1996-08-14 Leybold Ag Testgas-Lecksuchgerät
US5847480A (en) * 1995-11-03 1998-12-08 The Regents Of The University Of California Passive magnetic bearing element with minimal power losses
IT1281025B1 (it) * 1995-11-10 1998-02-11 Varian Spa Pompa turbomolecolare.
DE19613148A1 (de) * 1996-04-03 1997-10-09 Alfa Laval Flow Gmbh Drehkolbenpumpe mit magnetischer Rotorhalterung
IT1296155B1 (it) * 1996-04-05 1999-06-09 Varian Spa Rotore di pompa turbomolecolare
GB9609281D0 (en) * 1996-05-03 1996-07-10 Boc Group Plc Improved vacuum pumps
SE508445C2 (sv) * 1997-01-28 1998-10-05 Magnetal Ab Vakuumpump av höghastighetstyp
US5938406A (en) * 1997-04-18 1999-08-17 Varian, Inc. Rotor for turbomolecular pump
DE19804768B4 (de) * 1998-02-06 2006-08-24 Pfeiffer Vacuum Gmbh Rotorlagerung für eine Gasreibungspumpe
ITTO980453A1 (it) * 1998-05-27 1999-11-29 Varian Spa Pompa da vuoto compatta
TW504548B (en) * 1998-06-30 2002-10-01 Ebara Corp Turbo molecular pump
US6508631B1 (en) 1999-11-18 2003-01-21 Mks Instruments, Inc. Radial flow turbomolecular vacuum pump
KR100610012B1 (ko) * 2004-08-16 2006-08-09 삼성전자주식회사 터보 펌프
GB0618745D0 (en) 2006-09-22 2006-11-01 Boc Group Plc Molecular drag pumping mechanism
DE102008035891A1 (de) 2008-07-31 2010-02-04 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
DE102008048210A1 (de) 2008-09-20 2010-05-12 Oerlikon Leybold Vacuum Gmbh Dämpfungsvorrichtung
US8070419B2 (en) * 2008-12-24 2011-12-06 Agilent Technologies, Inc. Spiral pumping stage and vacuum pump incorporating such pumping stage
DE102009055888A1 (de) * 2009-11-26 2011-06-01 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1058274B (de) * 1951-07-27 1959-05-27 Dr Eberhard Schneller Schneiden- oder Nadeldrehlager fuer Mikrowaagen
DE912007C (de) * 1951-12-14 1954-05-24 Zeiss Carl Fa Molekularluftpumpe
GB679607A (en) * 1952-04-12 1952-09-17 Philips Electrical Ind Ltd Improvements in high-vacuum molecular pumps
DE1010235B (de) * 1955-04-22 1957-06-13 Arthur Pfeiffer Fa Molekularpumpe
US3066849A (en) * 1960-08-18 1962-12-04 Exemplar Inc High vacuum pump systems
DE1933031C3 (de) * 1969-06-30 1978-10-26 Karl 5170 Juelich Boden Magnetische Lagerung
DE2219029A1 (de) * 1971-04-24 1972-12-07 Comitato Nazionale Per Lenergi Elektromagnetische Vorrichtung zum freischwebenden Aufhangen einer um eine vertikale Achse rotierenden Last
DE2349033C3 (de) * 1973-09-29 1984-08-30 Leybold-Heraeus Gmbh, 5000 Koeln Turbomolekularpumpe
JPS5226578B2 (ja) * 1974-02-08 1977-07-14
CH583856A5 (ja) * 1974-09-27 1977-01-14 Balzers Patent Beteilig Ag
DE3239328C2 (de) * 1982-10-23 1993-12-23 Pfeiffer Vakuumtechnik Magnetisch gelagerte Turbomolekularpumpe mit Schwingungsdämpfung
DE3409047A1 (de) * 1984-03-13 1985-09-19 Kernforschungsanlage Jülich GmbH, 5170 Jülich Magnetlager zur dreiachsigen lagerstabilisierung von koerpern
US4642036A (en) * 1984-09-17 1987-02-10 Young Niels O Magnet ball pump
DE3613344A1 (de) * 1986-04-19 1987-10-22 Pfeiffer Vakuumtechnik Turbomolekular-vakuumpumpe fuer hoeheren druck
DE3844563A1 (de) * 1988-03-12 1989-11-23 Kernforschungsanlage Juelich Magnetische lagerung mit permanentmagneten zur aufnahme der radialen lagerkraefte
DE3818556A1 (de) * 1988-06-01 1989-12-07 Pfeiffer Vakuumtechnik Magnetlager fuer eine schnell rotierende vakuumpumpe
DE3922782A1 (de) * 1988-07-12 1990-02-08 Beijing Lab Of Vacuum Physics Molekularpumpe in kombinierter bauart
FR2641582B1 (fr) * 1989-01-09 1991-03-22 Cit Alcatel Pompe a vide du type a canal de gaede
US5470208A (en) * 1990-10-05 1995-11-28 Kletschka; Harold D. Fluid pump with magnetically levitated impeller
JP2999607B2 (ja) * 1991-09-30 2000-01-17 日本精工株式会社 超電導軸受装置とその操作方法

Also Published As

Publication number Publication date
EP0675289A1 (de) 1995-10-04
JP3723593B2 (ja) 2005-12-07
EP0675289B1 (de) 2001-12-19
DE4410656A1 (de) 1995-09-28
US5547338A (en) 1996-08-20
DE59509955D1 (de) 2002-01-31

Similar Documents

Publication Publication Date Title
JP3723593B2 (ja) 摩擦ポンプ
JP3788558B2 (ja) ターボ分子ポンプ
JP3971821B2 (ja) 気体摩擦ポンプ
JP3047292B1 (ja) ターボ分子ポンプ及び真空装置
US6409468B1 (en) Turbo-molecular pump
JP2009074537A (ja) 半径方向に段階的なマイクロスケールのターボ分子ポンプ
JP2000283085A (ja) インバーテッドモータ付き真空ポンプ
JP2004360698A (ja) 小型真空ポンプ
JP4050811B2 (ja) 複流形気体摩擦ポンプ
US5451147A (en) Turbo vacuum pump
US6524060B2 (en) Gas friction pump
JP5683544B2 (ja) 真空ポンプ
JPH0786357B2 (ja) オイルフリー型真空ポンプ
JP2001254693A (ja) 磁気浮上式シールレスポンプ
JP4576746B2 (ja) ターボ形回転機器
JP3710584B2 (ja) ターボ分子ポンプ
JP3095338B2 (ja) ターボ分子ポンプ
RU2168070C2 (ru) Молекулярный вакуумный насос
JPH0431692A (ja) 真空ポンプの軸受装置
JP4865321B2 (ja) 真空ポンプ
JP2003214378A (ja) 真空ポンプ
JPS62111194A (ja) タ−ボ分子ポンプ
JPH0617035Y2 (ja) タ−ボ分子ポンプ
JP2005105875A (ja) 真空ポンプ
JPH0710493U (ja) ターボ分子ポンプ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees