JP4865321B2 - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
JP4865321B2
JP4865321B2 JP2005364247A JP2005364247A JP4865321B2 JP 4865321 B2 JP4865321 B2 JP 4865321B2 JP 2005364247 A JP2005364247 A JP 2005364247A JP 2005364247 A JP2005364247 A JP 2005364247A JP 4865321 B2 JP4865321 B2 JP 4865321B2
Authority
JP
Japan
Prior art keywords
radial flow
vacuum pump
gas
flow element
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005364247A
Other languages
English (en)
Other versions
JP2007170182A (ja
Inventor
学 野中
剛志 樺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDWARDSJAPAN LIMITED
Original Assignee
EDWARDSJAPAN LIMITED
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDWARDSJAPAN LIMITED filed Critical EDWARDSJAPAN LIMITED
Priority to JP2005364247A priority Critical patent/JP4865321B2/ja
Publication of JP2007170182A publication Critical patent/JP2007170182A/ja
Application granted granted Critical
Publication of JP4865321B2 publication Critical patent/JP4865321B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Positive Displacement Air Blowers (AREA)

Description

本発明は、容器内から気体を排出し、高真空を得るための真空ポンプに関する。
真空ポンプを用いて排気処理を行い、内部が真空に保たれるような真空装置を用いる装置には、例えば、半導体製造装置、液晶製造装置、電子顕微鏡、表面分析装置、微細加工装置等がある。
各種ある真空ポンプのうち高度の真空状態を実現する際に多用されるものにターボ分子ポンプがある。
ターボ分子ポンプは、ケーシングに対して固定された固定部とモータの働きにより回転する回転部を備えている。そして、固定部および回転部にそれぞれ固定翼および回転翼が多段に配置され、回転部が高速回転するとこれらの翼の作用により吸気口から導入された気体が排気口から排気されるように構成されている。
また、真空ポンプには、ターボ分子ポンプと気体の排気方式が異なる、ねじ溝式分子ポンプや半径流式分子ポンプがある。
ねじ溝式分子ポンプは、一軸回転円筒の外周壁面に設けられたねじ溝と、その外側に隙間を介して配設されたスリーブ表面との相対運動により排気を行う。なお、ねじ溝を固定側のスリーブの内周壁面に設け、一軸回転円筒の外周壁面の表面と、スリーブの内周壁面に設けられたねじ溝との相対運動により排気を行うように構成することもできる。
半径流式分子ポンプは、一軸回転円板と、その板面と隙間を介して固定された固定板の表面に設けられた溝との相対運動により排気を行う。
このように、ねじ溝式分子ポンプおよび半径流式分子ポンプは、平面と流路溝との相対運動によって気体の流れ(気体分子の拡散)が生じた際に、流路溝により排気方向の方向性が与えられることによって気体の排気を行う。
ねじ溝式分子ポンプでは、軸方向の方向性が与えられ、半径流式分子ポンプでは、半径方向の方向性が与えられる。
なお、ねじ溝式分子ポンプのねじ溝、および半径流式分子ポンプの固定板に設けられる溝は、何れもらせん形状を有する。
ところで、ねじ溝式分子ポンプおよび半径流式分子ポンプに設けられる流路溝は、その深さを深くすると、気体分子の中間流量域において気体の排気効率が低下する。
そのため、気体の吸入面積を大きくしても排気速度を大きくすることは困難である。
また、気体分子が他の気体分子に1度衝突してから次に衝突するまでの平均飛行距離(平均自由行程)よりも流路溝の深さを深く設定した場合には、流路溝の底部(相対運動する平面から離れた部位)において、排気方向への方向性が与えられている気体分子の入射する確率が低下する。
その結果、流路溝の底部においては、気体分子の排気方向への拡散が発生せず、排気作用が起こりにくく(生じにくく)なり、排気効率が低下してしまう。
従来、このような排気効率の低下を抑制するために、即ち、排気速度を向上させるために、流路溝の深さに制約を設けた状態で気体の吸入面積を拡大させる技術が下記の特許文献に提案されている。
実開平5−38389号公報
特許文献1には、ねじ溝式分子ポンプの回転円筒部材における外側と内側の両方の周壁にねじ溝部を設けることによって、即ち、気体の流路を回転円筒部材の内側と外側の両方に設けることによって、排気する気体分子の流量を大きくする技術が提案されている。
この技術を用いることにより、ポンプを大型化することなく気体分子の流量を大きくすることができる。
上述した特許文献1に記載の技術を用いた場合、回転円筒部材の外側または内側のどちらか一方にのみねじ溝を設けたポンプよりも気体分子の流量を大きくすることができる。
しかしながら、回転円筒部材の内側と外側では、回転軸の中心からの距離が異なるため、内側のねじ溝と外側のねじ溝とでは、その周速が等しくならない。詳しくは、内側のねじ溝の周速が、外側のねじ溝の周速よりも小さくなってしまう。
そのため、気体の流路を回転円筒部材の内側と外側の2経路設けても、気体の排気速度を2倍にまで向上させることは困難であった。
そこで本発明は、より効果的に排気速度を向上させることができる真空ポンプを提供することを目的とする。
請求項1記載の発明では、吸入部から排気部の間に設けられた、入射する気体分子を径方向に案内する案内溝と、前記案内溝と隙間を介して対向配置された案内面と、からなる半径流要素と、前記案内溝または前記案内面のいずれか一方に回転運動を与えて、前記案内溝と前記案内面を相対運動させ、前記半径流要素に入射する気体分子に半径方向の方向性を与える駆動手段と、を備えた半径方向に気体を排気する半径流方式を採用した真空ポンプであって、前記半径流要素軸方向に少なくとも2段以上並列に配設された半径流要素群と、前記半径流要素群を構成する半径流要素の前記吸入部をすべて連通する連通手段と、前記駆動手段により回転駆動される円筒部と、具備し、前記案内溝または案内面のいずれか一方は、前記円筒部に設けられており、前記円筒部に設けられた前記案内溝または案内面のいずれか一方は、前記円筒部に比べて、比強度の高い部材によって構成されていることにより前記目的を達成する。
請求項2記載の発明では、請求項1記載の発明において、前記駆動手段は、前記案内面に回転運動を与えて、前記案内溝と前記案内面を相対運動させ、前記半径流要素に入射する気体分子に半径方向の方向性を与える
請求項3記載の発明では、請求項1または請求項2記載の発明において、前記比強度の高い部材は、炭素繊維強化プラスチック材(CFRP材)で構成されている
請求項4記載の発明では、請求項2または請求項3記載の発明において、前記案内溝は、当該真空ポンプの筐体に対して固定された固定板に形成され、前記連通手段は、前記案内面形成された回転板または前記固定板を厚み方向に貫通する連通孔により構成されている。
請求項5記載の発明では、請求項1、請求項2、請求項3または請求項4記載の発明において、気体分子の案内方向が異なる前記半径流要素群が軸方向に互い違いに並列に配設されている。
本発明によれば、半径流要素を軸方向に少なくとも2段以上並列に配設した半径流要素群における吸気部をすべて連通することにより、すべての段の半径流要素において同時に気体分子の排気を行うことができるため、半径流要素の段数に応じて効果的に排気速度を向上させることができる。
以下、本発明の真空ポンプにおける好適な実施の形態について、図1から図10を参照して詳細に説明する。
図1は、本実施形態の真空ポンプの軸線方向の概略構成を示した図である。なお、図1は、真空ポンプにおける軸線方向の断面を示している。この真空ポンプは、例えば半導体製造装置内に設置され、真空チャンバからプロセスガスの排出を行う際に用いられる。
本実施の形態では、真空ポンプの一例として半径流式分子ポンプ部αとねじ溝ポンプ部Sを有する複合型の真空ポンプについて説明する。
真空ポンプの外装体を構成するケーシング1は略円筒状の形状をしており、ケーシング1の下部(排気口5側)に設けられた、ベース2と共に真空ポンプの筐体を構成している。そして、この筐体の内部には、真空ポンプに排気機能を発揮させる構造物、即ち気体移送機構が配設されている。
この気体移送機構は、大きく分けて回転自在に軸支された回転部と、筐体に対して固定された固定部から構成されている。
ケーシング1の端部には、真空ポンプへ気体を導入するための吸気口3が形成されている。また、ケーシング1の吸気口3側の端面には、外周側へ張り出したフランジ部4が形成されている。真空ポンプは、このフランジ部4を介して、真空チャンバに締結部材によって固定される。
また、ベース2の端部には、真空ポンプから気体を排気するための、即ち半導体製造装置からのプロセスガス等を排出する排気口5が形成されている。
回転部は、回転軸であるシャフト6、このシャフト6に配設されたロータ本体7、ロータ本体7の外周縁部から排気口5方向に延びるように形成された下円筒部8、ロータ本体7の外周縁部から吸気口3方向に延びるように形成された上円筒部9、上円筒部9の外周壁面から張り出した円環状の回転板10を備えている。
上円筒部9に設けられた回転板10には、最も吸気口3側に配設されたものを除き、回転側連通孔60が形成されている。
最も吸気口3側に配設された回転板10に回転側連通孔60を設けないことにより、圧縮排気された気体が吸入側(上流側)へ戻ることを防止できる。
回転側連通孔60は、厚み方向に回転板10を貫通する孔であり、後述する固定溝板30の内周縁より内側(シャフト6寄り)の部位、即ち、上円筒部9の近傍に形成されている。なお、回転側連通孔60は、円形や半径方向に延びる長円形など任意の形状で形成される。
また、回転板10には、この回転側連通孔60が半径方向に沿って等間隔に複数設けられている。
ロータ本体7は、シャフト6の上部にボルト11で固定されている。また、下円筒部8は、ロータ本体7の延長上に形成され、ロータ本体7の回転軸線と同心の円筒形状を有する。
シャフト6の軸線方向中程には、シャフト6を高速回転させるためのモータ部12が設けられている。ここでは、モータ部12は以下のように構成されたDCブラシレスモータであるとする。
モータ部12は、シャフト6の周囲に固着された永久磁石を備えている。この永久磁石は、例えば、シャフト6の周りにN極とS極が180°ごとに配置されるように固定されている。また、モータ部12は、この永久磁石の周囲にシャフト6から所定のクリアランスを経て配設された電磁石を備えている。ここでは、6個の電磁石が60°ごとにシャフト6の軸線に対して対称的に対向するように配置されている。
真空ポンプは、コネクタおよびケーブルを介して図示しない制御装置に接続されている。そして、この制御装置によってシャフト6の回転が持続するように電磁石の電流を次々に切り替える。即ち、制御装置は、6個の電磁石の励磁電流を切り替えることによりシャフト6に固定された永久磁石の周りに回転磁界を生成し、永久磁石をこの回転磁界に追従させることによりシャフト6を回転させる。
シャフト6のモータ部12に対して吸気口3側、および排気口5側には、シャフト6をラジアル方向(径方向)に軸支するための磁気軸受部13、14が設けられている。また、シャフト6の下端(排気口5側端)には、シャフト6をスラスト方向(軸線方向)に軸支するための磁気軸受部15が設けられている。
これらの磁気軸受部13〜15は、いわゆる5軸制御型の磁気軸受を構成している。
シャフト6は、磁気軸受部13、14によってラジアル方向(シャフト6の径方向)に非接触で支持され、磁気軸受部15によってスラスト方向(シャフト6の軸方向)に非接触で支持されている。
また、磁気軸受部13〜15の近傍には、それぞれシャフト6の変位を検出する変位センサ16〜18が設けられている。
磁気軸受部13には、4個の電磁石がシャフト6の周囲に90°ごとに対向するように配置されている。シャフト6は、高透磁率材(鉄など)により形成され、これらの電磁石の磁力により吸引されるようになっている。
変位センサ16は、シャフト6のラジアル方向の変位を所定の時間間隔でサンプリングして検出する。
そして図示しない制御装置は、変位センサ16からの変位信号によってシャフト6がラジアル方向に所定の位置から変位したことを検出すると、各電磁石の磁力を調節してシャフト6を所定の位置に戻すように動作する。この電磁石の磁力の調節は、各電磁石の励磁電流をフィードバック制御することにより行われる。
制御装置は、変位センサ16の信号に基づいて磁気軸受部13をフィードバック制御し、これによってシャフト6は、磁気軸受部13において電磁石から所定のクリアランスを隔ててラジアル方向に磁気浮上し、空間中に非接触で保持される。
磁気軸受部14の構成と作用は、磁気軸受部13と同様である。制御装置は、変位センサ17の信号に基づいて磁気軸受部13をフィードバック制御し、これによってシャフト6は、磁気軸受部14でラジアル方向に磁気浮上し、空間中に非接触で保持される。
このように、シャフト6は、磁気軸受部13、14の作用により、ラジアル方向に所定の位置で保持される。
また、磁気軸受部15は、円板状の金属ディスク19、電磁石20、21を備え、シャフト6をスラスト方向に保持する。
金属ディスク19は、鉄などの高透磁率材で構成されており、その中心においてシャフト6に垂直に固定されている。この金属ディスク19を挟み、かつ対向するように電磁石20、21が配置されている。電磁石20は、磁力により金属ディスク19を上方に吸引し、電磁石21は、金属ディスク19を下方に吸引する。
制御装置は、この電磁石20、21が金属ディスク19に及ぼす磁力を適当に調節し、シャフト6をスラスト方向に磁気浮上させ、空間に非接触で保持するようになっている。
さらにシャフト6の下端部に対向して変位センサ18が配設されている。この変位センサ18は、シャフト6のスラスト方向の変位をサンプリングして検出し、これを制御装置に送信する。制御装置は、変位センサ18から受信した変位検出信号によりシャフト6のスラスト方向の変位を検出する。
シャフト6がスラスト方向のどちらかに移動して所定の位置から変位した場合、制御装置は、この変位を修正するように電磁石20、21の励磁電流をフィードバック制御して磁力を調節し、シャフト6を所定の位置に戻すように動作する。制御装置は、このフィードバック制御を連続的に行う。これにより、シャフト6はスラスト方向に所定の位置で磁気浮上し、保持される。
以上に説明したように、シャフト6は、磁気軸受部13、14によりラジアル方向に保持され、磁気軸受部15によりスラスト方向に保持されるため、シャフト6の軸線周りに回転するようになっている。
また、シャフト6の上部および下部側には、保護用ベアリング22、23が配置されている。通常、シャフト6およびこれに取り付けられている回転部は、モータ部12により回転している間、磁気軸受部13、14により非接触状態で軸支される。保護用ベアリング22、23は、タッチダウンが発生した場合に磁気軸受部13、14に代わって回転部を軸支することで装置全体を保護するためのベアリングである。従って、保護用ベアリング22、23は、内輪がシャフト6に対して非接触状態となるように配置されている。
筐体の内周側には、固定部が形成されている。この固定部は、吸気口3側(半径流式分子ポンプ部α)に設けられた固定溝板30、また、ねじ溝スペーサ40などから構成されている。ねじ溝スペーサ40の内壁面には、ねじ溝41が形成されている。
なお、固定溝板30の詳細については、後述する。
半径流式分子ポンプ部αでは、固定溝板30が軸線方向に、回転板10と互い違いに3段形成されている。なお、固定溝板30と回転板10の段数は、3段に限定されるものではなく、それ以上であってもよい。
各段の固定溝板30は、円筒形状をしたスペーサリング50により互いに隔てられ、所定の位置に保持されている。
スペーサリング50は段部を有するリング状の部材であり、例えばアルミニウム、鉄またはステンレスなどの金属によって構成されている。
ねじ溝41は、下円筒部8との対向面に沿って形成されたらせん溝により構成されている。ねじ溝41は、所定のクリアランス(隙間)を隔てて下円筒部8の外周面と対面するように設けられている。
ねじ溝41に形成されたらせん溝の方向は、らせん溝内をシャフト6の回転方向に気体が輸送された場合、排気口5の方向である。
また、らせん溝の深さは、排気口5に近づくにつれ浅くなるようになっており、らせん溝を輸送されるガスは、排気口5に近づくにつれて圧縮されるように構成されている。
ここで、固定溝板30について詳細に説明する。
図2(a)は、固定溝板30に形成されるリブ32のらせんの向きとロータの回転方向との関係図を示す。
図2(b)は、固定溝板30の図2(a)に示すA−A’における断面斜視図を示す。
図2(a)、(b)に示すように、固定溝板30は、固定板31、リブ(らせん壁部)32、固定側連通孔33を備えている。
固定板31は、円環状の板部材からなり、その内径は上円筒部9(図1)の外径よりも大きく設定されている。
なお、固定板31は、その内周縁が回転板10に設けられる回転側連通孔60の形成部位より外側に配設されることが好ましい。
リブ32は、固定板31の両面もしくは一方の面から軸方向に突出するようにして設けられる。
リブ32は、固定板31の両面もしくは一方の面から軸方向に突出した突出部が、固定板31の内周端から外周方向に延びるらせん弧に沿って延びるように形成されたものである。
即ち、リブ32は、図中に白矢印で示す回転板10の回転方向(接線方向)に方向性を与えられた気体分子を、回転軸中心側(黒矢印)へ導くための案内手段として機能する。
リブ32は、回転板10の回転方向と同じ向きに中心方向に渦を巻くように構成されている。
図2(a)に示すように、固定板31の面上には、リブ32が周方向に等間隔に複数設けられている。
隣接するリブ32間に形成されるらせん状の溝(空間)によって、排気される気体の流路(移送路)が形成される。
なお、隣接するリブ32間に形成されるらせん状の溝は、気体の吸入領域(導入領域)から排出領域(排気部)に渡って設けられ案内溝として機能し、回転板10の表面は、案内面として機能する。
なお、らせん溝の深さ、即ち、リブ32の突出高さは、気体分子が他の気体分子に1度衝突してから次に衝突するまでの平均飛行距離(平均自由行程)より小さくなるように構成されている。
このように、らせん溝の深さを排気する気体の平均自由行程を考慮した値に設定することにより、らせん溝の底部(相対運動する平面から離れた部位)において、排気方向への方向性が与えられている気体分子の入射する確率の低下を抑制することができる。
固定側連通孔33は、固定板31をその厚み方向に貫通する孔であり、リブ32の形成領域より外側(ケーシング1寄り)の部位、即ち、固定板31の外周縁の近傍に形成される。
固定板31には、最も排気口5側に配設されたものを除き、固定側連通孔33が形成されている。
最も排気口5側に配設された固定板31に固定側連通孔33を設けないことにより、圧縮排気された気体が吸入側(上流側)へ戻ることを防止できる。
固定板31には、この固定側連通孔33が半径方向に沿って等間隔に複数設けられている。
本実施の形態では、固定側連通孔33を半径方向に延びる長孔によって構成しているが、固定側連通孔33の形状はこれに限定されるものではなく、円形や半径方向に延びる長円形など任意の形状で形成するようにしてもよい。
また、各段の固定溝板30は、各段の回転板10間に配置するために、円周方向に2分割されている。
このように形成された固定溝板30は、各段の回転板10間に外側から挿入して組み立てる。固定溝板30は、外周側の一部がスペーサリング50によって周方向に挟持された状態で回転板10間に保持(固定)される。
次に、半径流式分子ポンプ部αにおける気体の排気(圧縮)動作について説明する。
図3は、本実施の形態に係る真空ポンプの半径流式分子ポンプ部αの拡大図を示す。なお、図3では、排気される気体分子の流れを黒矢印で示す。
半径流式分子ポンプ部αでは、回転板10が回転すると、回転板10における固定溝板30と対向する面と、固定溝板30におけるリブ32によって形成されるらせん状の溝との相対運動により排気が行われる。
なお、固定板31におけるリブ32形成面と、この面と対向する回転板10上の面との間に形成された気体の流路を一段の半径流要素(半径流排気路)とする。
図3に示すように、本実施の形態に係る真空ポンプの半径流式分子ポンプ部αは、5段の半径流要素を備えている。
吸気口3から導入された気体分子は、最も吸気口3側に配設された回転板10の外周縁から、各段の半径流要素における気体の吸入領域(導入領域)に取り込まれる(導入される)。
各段の半径流要素における気体の吸入領域は、固定側連通孔33を介して連通されている。なお、この気体の吸入領域は、スペーサリング50の内周壁面とリブ32の形成領域との間の空間(空隙)を示す。
つまり、吸気口3から導入された(入射した)気体分子は、複数段設けられた半径流要素のうち何れかの段の半径流要素に入射する。
各段の半径流要素に入射した気体分子は、上述したように、回転板10とリブ32との相互作用により内周方向へ排気(移送)され、気体の排出領域に排出される。
各段の半径流要素における気体の排出領域は、回転側連通孔60を介して連通されている。なお、この気体の排出領域は、上円筒部9の外周壁面とリブ32の形成領域との間の空間(空隙)を示す。
そして、各段の半径流要素から排出された気体分子は、ねじ溝ポンプ部Sに排出され、ねじ溝スペーサ40のねじ溝41に入射する。
本実施の形態では、半径流式分子ポンプ部αにおいて、軸方向に並列に5段の半径流要素を設けている。このように、軸方向に並列に半径流要素を設けることにより、各段の回転板10の周速を等しくすることができるため、並列に配設した5段(複数段)の半径流要素(円周溝)から同時に気体分子の排気を行うことができる。
従って、一段の排気速度sに対して、並列に配設したn段の半径流要素における排気速度は、n×s、即ち、段数倍の排気速度を得ることができる。
上述した本実施の形態では、ロータ本体7、下円筒部8、上円筒部9、回転板10をアルミニウム合金などで一体形成している。しかしながら、これらの部位は、一体形成に限定されるものではなく、強度などを考慮しながら、それぞれの部位を、異なる材質の部材を用いて形成するようにしてもよい。
例えば、回転板10は、回転時に遠心力が作用するため、その大きさ(外径)は、回転板10を構成する部材の強度の制約を受ける。
そこで、より高い回転数の遠心力や、より大きな外径の遠心力に対する耐久性を向上させるために、図4に示すように、回転板10’(図中ハッチング部)を自らの質量に比して強度の高い材料、即ち、比強度の高い部材によって構成するようにしてもよい。
比強度の高い部材としては、例えば、炭素繊維強化プラスチック材(CFRP材)が望ましい。
このように比強度の高い部材を用いて回転板10’を構成することにより、回転板10’の径をより大きく構成することができる。これにより、各段の半径流要素における吸入面積を増大させることができるため、排気速度をさらに向上させることができる。
(変形例1)
次に、上述した真空ポンプにおける回転部の構造の変形例について説明する。
図5は、第1の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。
なお、図1に示す真空ポンプと重複する箇所には同一の符号を付し、詳細な説明を省略する。
第1の変形例では、図1に示す真空ポンプにおいて一体形成されていた回転部の一部を、複数の部品を組み合わせることによって構成する。
詳しくは、図1に示す真空ポンプにおいて一体形成されていたロータ本体7、上円筒部9、回転板10を、ロータ本体107、回転板110、スペーサ109これらの部品を組み合わせることによって構成する。
ロータ本体107は、少なくとも吸気口3側端面が平らな円板形状を有し、その外周縁部には、排気口5方向に延びるように下円筒部8が形成されている。
なお、ロータ本体107は、その吸気口3側端面が、シャフト106に組み付けた際に、ねじ溝スペーサ40における吸気口3側端面と同じ高さ(同一平面上)に配設されるように構成されている。
回転板110は、固定溝板30との相対運動により排気を行うための円板(ディスク)である。そして、回転板110には、上述した回転板10と同様に、最も吸気口3側に配設されたものを除き、回転側連通孔60が形成されている。
スペーサ109は、組み立て部品間、即ち隣接する回転板110間や回転板110とロータ本体107間に必要な間隔を保持させるための位置決め用のディスタンスピースである。
シャフト106には、吸気口3側端面から軸方向に延びる丸棒状(円柱状)の突出部116が設けられている。なお、突出部116の外周面には、ねじ溝が設けられている。
ロータ本体107、スペーサ109、回転板110には、中心部にシャフト106の突出部116を貫通させるための固定孔が設けられている。
はじめにシャフト106の突出部116にロータ本体107を嵌め込み、さらにスペーサ109を介しながら回転板110を嵌め込む。
そして、これらの部品をナット111によって押さえ付けて固定する。
一体形成では複雑な形状になる回転部であっても、簡単な形状の部品を組み合わせることによって構成することができる。
回転部を分割構成することにより、回転板110のみを比強度の高い部材(例えば、CFRP材)によって構成することも容易にできる。
また、回転部を分割構成することにより、回転部(スペーサ109、回転板110)と固定部(固定溝板30、スペーサリング50)との組み付け作業を同時に行うことができるため、固定溝板30を円周方向に2分割することなく回転板110間に配設することができる。
(変形例2)
次に、組み合わせるポンプ方式の異なる複合型の真空ポンプについて説明する。
図6は、第2の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。
なお、上述した真空ポンプと重複する箇所には同一の符号を付し、詳細な説明を省略する。
第2の変形例では、ターボ分子ポンプ部Tと半径流式分子ポンプ部αとを組み合わせた複合型の真空ポンプについて説明する。
詳しくは、第2の変形例に示す真空ポンプには、ターボ分子ポンプ部Tの排気口5側(下流段)に半径流式分子ポンプ部αが設けられている。
回転部は、回転軸であるシャフト6、このシャフト6に配設された断面略逆U字状のロータ本体207、ロータ本体207に設けられた回転翼209、排気口5側に設けられた円筒部材208などから構成されている。
ロータ本体207の外周には、回転翼209が配設され、この回転翼209は、シャフト6の軸線に垂直な平面から所定の角度だけ傾斜してシャフト6から放射状に伸びたブレード(羽根)からなる。
筐体の内周側には、固定部が形成されている。この固定部は、吸気口3側(ターボ分子ポンプ部T)に設けられた固定翼211、また、固定溝板30などから構成されている。
固定翼211は、シャフト6の軸線に垂直な平面から所定の角度だけ傾斜して筐体の内周面からシャフト6に向かって延びたブレードを有している。
ターボ分子ポンプ部Tでは、固定翼211が軸線方向に、回転翼209と互い違いに複数段形成されている。
各段の固定翼211は、円筒形状をしたスペーサリング50により互いに隔てられ、所定の位置に保持されている。
ターボ分子ポンプ部Tでは、回転部が高速回転すると回転翼209と固定翼211の作用により吸気口3から導入された気体が排気口5側へ排気される。
つまり、ターボ分子ポンプ部Tでは、高速回転する回転翼209に衝突した気体分子に運動量を与えて、気体輸送(気体移送)をすることにより排気処理を行う。
円筒部材208におけるターボ分子ポンプ部Tの排気口5側(下流段)の領域には、円筒部材208の外周壁面から張り出した円環状の回転板210が設けられている。
円筒部材208に設けられた回転板210には、最も吸気口3側に配設されたものを除き、回転側連通孔60が形成されている。
なお、半径流式分子ポンプ部αにおける半径流要素の作用は、上述した図1に示す真空ポンプと同様であるため説明を省略する。
このように、第2の変形例に示す真空ポンプによれば、適切に半径流式分子ポンプ部αの機能を搭載した複合型の真空ポンプを構成することができる。
(変形例3)
次に、組み合わせるポンプ方式の異なる複合型の真空ポンプの他の例について説明する。
図7は、第3の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。
なお、上述した真空ポンプと重複する箇所には同一の符号を付し、詳細な説明を省略する。
第3の変形例では、第2の変形例で示したターボ分子ポンプ部Tと半径流式分子ポンプ部αとを組み合わせた複合型の真空ポンプに、さらに、図1に示した真空ポンプと同様のねじ溝ポンプ部Sを組み合わせた(加えた)複合型の真空ポンプについて説明する。
詳しくは、回転部に、第2の変形例(図6)に設けられている円筒部材208を排気口5側に延長した円筒部材308が設けられている。また、半径流式分子ポンプ部αの排気口5側(下流段)には、固定部を構成するねじ溝スペーサ340が設けられている。
ねじ溝スペーサ340の内壁面には、ねじ溝341が形成されている。また、ねじ溝スペーサ340の吸気口3側端面には、固定溝板30に設けられているものと同様のリブ(らせん壁部)342が形成されている。
なお、ねじ溝ポンプ部Sの作用は、上述した図1に示す真空ポンプと同様であるため説明を省略する。
このように、ねじ溝スペーサ340の吸気口3側端面に半径流要素の構成要素の一部であるリブ342を設けることにより、ねじ溝スペーサ340を固定溝板30と兼用することができる。これにより、ポンプを構成する部品点数の低減および組み立て作業の効率化を図ることができる。
第3の変形例に示す真空ポンプによれば、第2の変形例に示す真空ポンプと同様に、適切に半径流式分子ポンプ部αの機能を搭載した複合型の真空ポンプを構成することができる。
(変形例4)
次に、上述した真空ポンプにおける半径流式分子ポンプ部αの構造の変形例について説明する。
図8は、第4の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。
なお、上述した真空ポンプと重複する箇所には同一の符号を付し、詳細な説明を省略する。
上述した真空ポンプでは、外周側から気体分子を導入し、導入された気体分子に内周方向に方向性を与えて気体の排気(圧縮)を行う半径流要素を設けた半径流式分子ポンプ部αについて説明した。
しかしながら、半径流要素において気体に与えられる方向性は外周側から内周側に限定されるものではない。
即ち、半径流要素は、内周側から気体分子を導入し、導入された気体分子に外周方向に方向性を与えて気体の排気(圧縮)を行うように構成してもよい。
また、上述した真空ポンプでは、半径流式分子ポンプ部αにおいて、軸方向に並列に5段の半径流要素を設けている。同一の排気の方向性を有する隣接した半径流要素の集まりを半径流要素群とする。
即ち、上述した真空ポンプでは、5段の半径流要素によって1つの半径流要素群を構成している。
しかしながら、1つの半径流要素群を構成する半径流要素の段数は5段に限定されるものではなく、これより多くても少なくてもよい。
第4の変形例に示す真空ポンプは、図8に示すように、第2の変形例に示す真空ポンプと同様に、ターボ分子ポンプ部Tと半径流式分子ポンプ部αとを組み合わせた複合型の真空ポンプである。
また、第4の変形例では、半径流式分子ポンプ部αを、導入される気体分子に対して、外周側から内周側(外→内)への方向性を与えるように構成された半径流要素群と、内周側から外周側(内→外)への方向性を与えるように構成された半径流要素群の2種類の半径流要素群を軸方向に交互に配設することによって構成する。
なお、ターボ分子ポンプ部Tの作用は、第2の変形例に示す真空ポンプと同様であるため説明を省略する。
図8に示すように、半径流式分子ポンプ部αは、第1の半径流要素群a、第2の半径流要素群b、第3の半径流要素群cを備えている。
第1の半径流要素群aおよび第3の半径流要素群cは、それぞれ導入される(入射する)気体分子に対して、外周側から内周側(外→内)への方向性を与えるように構成された半径流要素を3段備えている。
また、第2の半径流要素群bは、導入される(入射する)気体分子に対して、内周側から外周側(内→外)への方向性を与えるように構成された半径流要素を3段備えている。
図9(a)は、内周側から外周側への方向性を与えるように構成された半径流要素におけるリブ32のらせんの向きとロータの回転方向との関係図を示す。
図9(b)は、外周側から内周側への方向性を与えるように構成された半径流要素におけるリブ32’のらせんの向きとロータの回転方向との関係図を示す。
第1の半径流要素群aおよび第3の半径流要素群cを構成する半径流要素における固定溝板30には、図9(a)に示すように、回転板410(円筒部材408)の回転方向と同じ向きに中心方向に渦を巻くようにリブ32が設けられている。
一方、第2の半径流要素群bを構成する半径流要素における固定溝板30’には、図9(b)に示すように、回転板410(円筒部材408)の回転方向と反対向きに中心方向に渦を巻くようにリブ32’が設けられている。
なお、回転側連通孔60および固定側連通孔33は、1つの半径流要素群を3段の半径流要素で構成するように設けられ、その形状は、各領域における圧縮の度合いに応じたサイズとする。例えば、気体流路の上流から下流にかけて順に開口面積を小さく形成する。
次に、第4の変形例の半径流式分子ポンプ部αにおける気体の排気(圧縮)動作について説明する。
図10は、第4の変形例に示す真空ポンプの半径流式分子ポンプ部αの拡大図を示す。なお、図10では、排気される気体分子の流れを黒矢印で示す。
ターボ分子ポンプ部Tから導入された気体分子は、最も吸気口3側に配設された回転板10の外周縁から、第1の半径流要素群aにおける気体の吸入領域に取り込まれる。
そして、第1の半径流要素群aにおける気体の吸入領域に取り込まれた気体分子は、3段設けられた半径流要素のうち何れかの段の半径流要素に入射する。
半径流要素に入射した気体分子は、回転板10とリブ32との相互作用により内周方向へ排気(移送)され、第1の半径流要素群aにおける気体の排出領域に排出される。
第1の半径流要素群aにおける気体の排出領域に排出された気体分子は、続いて第2の半径流要素群bにおける気体の吸入領域に取り込まれる。
第2の半径流要素群bにおける気体の吸入領域に取り込まれた気体分子は、3段設けられた半径流要素のうち何れかの段の半径流要素に入射する。
半径流要素に入射した気体分子は、回転板10とリブ32’との相互作用により外周方向へ排気(移送)され、第2の半径流要素群bにおける気体の排出領域に排出される。
第2の半径流要素群bにおける気体の排出領域に排出された気体分子は、続いて第3の半径流要素群cにおける気体の吸入領域に取り込まれる。
第3の半径流要素群cにおける気体の吸入領域に取り込まれた気体分子は、3段設けられた半径流要素のうち何れかの段の半径流要素に入射する。
半径流要素に入射した気体分子は、回転板10とリブ32との相互作用により外周方向へ排気(移送)され、第3の半径流要素群cにおける気体の排出領域に排出される。
そして、第3の半径流要素群cにおける気体の排出領域に排出された気体分子は、そのまま排気口5から真空ポンプの外部に排出される。
このように、第4の変形例に示す真空ポンプによれば、複数の半径流要素群を軸方向に並列に配列することにより、より圧縮性能の高い真空ポンプを構成することができる。
本実施形態の真空ポンプの軸線方向の概略構成を示した図である。 (a)は、固定溝板に形成されるリブのらせんの向きとロータの回転方向との関係図を示し、(b)は、固定溝板の断面斜視図である。 本実施の形態に係る真空ポンプの半径流式分子ポンプ部の拡大図である。 半径流式分子ポンプ部における回転板の変形例を示した図である。 第1の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。 第2の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。 第3の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。 第4の変形例に示す真空ポンプの軸線方向の概略構成を示した図である。 (a)は、内周側から外周側への方向性を与えるように構成された半径流要素におけるリブのらせんの向きとロータの回転方向との関係図であり、(b)は、外周側から内周側への方向性を与えるように構成された半径流要素におけるリブのらせんの向きとロータの回転方向との関係図である。 第4の変形例に示す真空ポンプの半径流式分子ポンプ部の拡大図である。
符号の説明
1 ケーシング
2 ベース
3 吸気口
4 フランジ部
5 排気口
6 シャフト
7 ロータ本体
8 下円筒部
9 上円筒部
10 回転板
11 ボルト
12 モータ部
13 磁気軸受部
14 磁気軸受部
15 磁気軸受部
16 変位センサ
17 変位センサ
18 変位センサ
19 金属ディスク
20 電磁石
21 電磁石
22 保護用ベアリング
23 保護用ベアリング
30 固定溝板
31 固定板
32 リブ
33 固定側連通孔
40 ねじ溝スペーサ
41 ねじ溝
50 スペーサリング
60 回転側連通孔
106 シャフト
107 ロータ本体
109 スペーサ
110 回転板
111 ナット
116 突出部
207 ロータ本体
208 円筒部材
209 回転翼
210 回転板
211 固定翼
308 円筒部材
340 ねじ溝スペーサ
341 ねじ溝
342 リブ
408 円筒部材
410 回転板

Claims (5)

  1. 吸入部から排気部の間に設けられた、入射する気体分子を径方向に案内する案内溝と、前記案内溝と隙間を介して対向配置された案内面と、からなる半径流要素と、
    前記案内溝または前記案内面のいずれか一方に回転運動を与えて、前記案内溝と前記案内面を相対運動させ、前記半径流要素に入射する気体分子に半径方向の方向性を与える駆動手段と、
    を備えた半径方向に気体を排気する半径流方式を採用した真空ポンプであって、
    前記半径流要素軸方向に少なくとも2段以上並列に配設された半径流要素群と、
    前記半径流要素群を構成する半径流要素の前記吸入部をすべて連通する連通手段と、
    前記駆動手段により回転駆動される円筒部と、
    を具備し、
    前記案内溝または案内面のいずれか一方は、前記円筒部に設けられており、
    前記円筒部に設けられた前記案内溝または案内面のいずれか一方は、前記円筒部に比べて、比強度の高い部材によって構成されていることを特徴とする真空ポンプ。
  2. 前記駆動手段は、前記案内面に回転運動を与えて、前記案内溝と前記案内面を相対運動させ、前記半径流要素に入射する気体分子に半径方向の方向性を与えることを特徴とする請求項1記載の真空ポンプ。
  3. 前記比強度の高い部材は、炭素繊維強化プラスチック材(CFRP材)で構成されていることを特徴とする請求項1または請求項2記載の真空ポンプ。
  4. 前記案内溝は、当該真空ポンプの筐体に対して固定された固定板に形成され、
    前記連通手段は、前記案内面形成された回転板または前記固定板を厚み方向に貫通する連通孔により構成されていることを特徴とする請求項2または請求項3記載の真空ポンプ。
  5. 気体分子の案内方向が異なる前記半径流要素群が軸方向に互い違いに並列に配設されていることを特徴とする請求項1、請求項2、請求項3または請求項4記載の真空ポンプ。
JP2005364247A 2005-12-19 2005-12-19 真空ポンプ Active JP4865321B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364247A JP4865321B2 (ja) 2005-12-19 2005-12-19 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364247A JP4865321B2 (ja) 2005-12-19 2005-12-19 真空ポンプ

Publications (2)

Publication Number Publication Date
JP2007170182A JP2007170182A (ja) 2007-07-05
JP4865321B2 true JP4865321B2 (ja) 2012-02-01

Family

ID=38297073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364247A Active JP4865321B2 (ja) 2005-12-19 2005-12-19 真空ポンプ

Country Status (1)

Country Link
JP (1) JP4865321B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008063131A1 (de) * 2008-12-24 2010-07-01 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe
JP2013027228A (ja) 2011-07-25 2013-02-04 Seiko Epson Corp 電気機械装置、並びに、電機機械装置を用いた移動体およびロボット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60139098A (ja) * 1983-12-27 1985-07-23 Sumitomo Bakelite Co Ltd スピ−カ−用振動板
JPS6393493A (ja) * 1986-10-08 1988-04-23 Mitsubishi Electric Corp レ−ザ加工装置
JP2001221186A (ja) * 2000-02-04 2001-08-17 Tokyo Electron Ltd 軸流真空ポンプ及び処理装置
GB0314692D0 (en) * 2003-06-25 2003-07-30 Boc Group Plc Improvements in turbomolecular pumps

Also Published As

Publication number Publication date
JP2007170182A (ja) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4749054B2 (ja) ターボ分子ポンプ、およびターボ分子ポンプの組み立て方法
JP5763660B2 (ja) 排気ポンプ
JP2000337290A (ja) 真空ポンプ
US10823200B2 (en) Connected thread groove spacer and vacuum pump
CN109844321B (zh) 真空泵、以及真空泵中具备的螺旋状板、间隔件及旋转圆筒体
JP3723593B2 (ja) 摩擦ポンプ
US20130309076A1 (en) Rotating Body of Vacuum Pump, Fixed Member Disposed Opposite Rotating Body, and Vacuum Pump Provided with Rotating Body and Fixed Member
KR20130114566A (ko) 배기 펌프
US20150204353A1 (en) Vacuum pump protection net, method for manufacturing the same, and vacuum pump
EP3076021B1 (en) Vacuum pump with siegbahn type pumping stage
US6672827B2 (en) Vacuum pump
EP2722527B1 (en) Vacuum pump and rotor therefor
JPWO2009153874A1 (ja) ターボ分子ポンプ
JP4865321B2 (ja) 真空ポンプ
JP4104098B2 (ja) 真空ポンプ
JP2006307823A (ja) ターボ分子ポンプ
WO2018043072A1 (ja) 真空ポンプ、および真空ポンプに備わる回転円筒体
JPWO2007004542A1 (ja) ターボ分子ポンプ
EP0829645A2 (en) Turbomolecular pump
EP2775148A1 (en) Stationary member and vacuum pump
JP6390098B2 (ja) 真空ポンプ
JP2002070787A (ja) 真空ポンプ
US20030175114A1 (en) Vacuum pump
JP2005105875A (ja) 真空ポンプ
JP2006090231A (ja) ターボ分子ポンプ固定翼の製造方法および真空ポンプ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250