JPH0833429B2 - Local discharge location method for long power cable lines - Google Patents

Local discharge location method for long power cable lines

Info

Publication number
JPH0833429B2
JPH0833429B2 JP1314006A JP31400689A JPH0833429B2 JP H0833429 B2 JPH0833429 B2 JP H0833429B2 JP 1314006 A JP1314006 A JP 1314006A JP 31400689 A JP31400689 A JP 31400689A JP H0833429 B2 JPH0833429 B2 JP H0833429B2
Authority
JP
Japan
Prior art keywords
partial discharge
power cable
frequency
long power
cable line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1314006A
Other languages
Japanese (ja)
Other versions
JPH03175374A (en
Inventor
桓 遠藤
忠禧 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1314006A priority Critical patent/JPH0833429B2/en
Priority to CA002008898A priority patent/CA2008898C/en
Priority to NO900431A priority patent/NO302494B1/en
Priority to EP94111231A priority patent/EP0636890B1/en
Priority to EP97111457A priority patent/EP0806676B1/en
Priority to DE69033263T priority patent/DE69033263T2/en
Priority to DE69033279T priority patent/DE69033279T2/en
Priority to DE69032763T priority patent/DE69032763T2/en
Priority to EP94111232A priority patent/EP0628829B1/en
Priority to EP03000561A priority patent/EP1310803A3/en
Priority to EP94111230A priority patent/EP0629866B1/en
Priority to EP97111472A priority patent/EP0806677A1/en
Priority to DE69026186T priority patent/DE69026186T2/en
Priority to DE69032808T priority patent/DE69032808T2/en
Priority to EP90101895A priority patent/EP0424598B1/en
Publication of JPH03175374A publication Critical patent/JPH03175374A/en
Priority to US07/784,728 priority patent/US5323117A/en
Priority to US08/163,572 priority patent/US5469067A/en
Publication of JPH0833429B2 publication Critical patent/JPH0833429B2/en
Priority to NO963527A priority patent/NO303304B1/en
Priority to NO963530A priority patent/NO304126B1/en
Priority to NO963529A priority patent/NO304761B1/en
Priority to NO963528A priority patent/NO301673B1/en
Priority to NO974684A priority patent/NO309881B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は部分放電位置標定方法、特に長尺電力ケーブ
ル線路における部分放電位置の標定方法に関する。
The present invention relates to a partial discharge position locating method, and more particularly to a partial discharge position locating method in a long power cable line.

[従来の技術] 長尺電力ケーブル線路における部分放電位置を標定す
る方法としては、従来TDR法(Time Domain Reflectomet
ry)が知られている。この方法は、長尺電力ケーブル線
路において発生した部分放電パルスが線路中を往復反射
する現象を利用しており、パルス波形の観察により部分
放電の位置を標定する方法である。
[Prior Art] As a method for locating a partial discharge position in a long power cable line, a conventional TDR method (Time Domain Reflectomet) is used.
ry) is known. This method utilizes a phenomenon that a partial discharge pulse generated in a long power cable line is reflected back and forth in the line, and is a method of locating a partial discharge position by observing a pulse waveform.

[発明が解決しようとする課題] しかし、この方法は忠実なパルス波形の観察が必要な
ため低周波方式あるいは広帯域方式による部分放電測定
には適用できるが、同調式による部分放電測定には適用
できない。何故なら、同調式部分放電測定では部分放電
パルスをLC共振回路で共振されるので、パルスの波形の
特徴が失われてしまうからである。TDR法ではパルスの
波形の特徴が失われると、部分放電の位置を標定するこ
とができない。
[Problems to be Solved by the Invention] However, since this method requires observation of a faithful pulse waveform, it can be applied to the partial discharge measurement by the low frequency method or the wide band method, but cannot be applied to the partial discharge measurement by the tuning method. . This is because, in the tunable partial discharge measurement, the partial discharge pulse is resonated by the LC resonance circuit, and the characteristic of the pulse waveform is lost. In the TDR method, the position of the partial discharge cannot be located if the characteristics of the pulse waveform are lost.

部分放電測定においてS/N比を支配するノイズおよび
部分放電パルスの信号検出感度の両者は、電力ケーブル
のL、C成分による共振、***振パルスの電力ケーブル
線路上での往復反射による定在波等の要因で、複雑な周
波数依存性を有している。従って、比較的高い検出感度
で部分放電位置の標定を行うには、できるだけ高いS/N
比の得られる周波数を選んで用いることができる同調式
測定法を用いることが望まれる。
In the partial discharge measurement, the noise that controls the S / N ratio and the signal detection sensitivity of the partial discharge pulse are both the resonance due to the L and C components of the power cable, and the standing wave due to the round-trip reflection of the anti-resonance pulse on the power cable line. Due to such factors, it has a complicated frequency dependence. Therefore, in order to locate the partial discharge position with a relatively high detection sensitivity, the highest S / N
It is desirable to use a tunable measurement method that can be used by choosing the frequency at which the ratio can be obtained.

従って、本発明の目的は、同調式部分放電測定が適用
でき、高いS/N比の得られる部分放電位置標定方法を提
供することにある。
Therefore, an object of the present invention is to provide a partial discharge position locating method to which a tunable partial discharge measurement can be applied and a high S / N ratio can be obtained.

[問題を解決するための手段] 上記目的を達成するために本発明では、複数の絶縁接
続部を用いて複数の電力ケーブルを接続して構成される
長尺電力ケーブル線路上の少なくとも3つの絶縁接続部
で部分放電パルス強度を測定し、電力ケーブル線路の長
さ方向に沿って絶縁接続部の間での部分放電パルス強度
の増加および減少の勾配から部分放電パルス強度の極大
値が存在する位置を求め、部分放電の発生区間を標定す
るようにした。
[Means for Solving the Problem] In order to achieve the above object, in the present invention, at least three insulations on a long power cable line configured by connecting a plurality of power cables using a plurality of insulation connection parts are provided. The position where the maximum value of the partial discharge pulse intensity exists from the gradient of the increase and decrease of the partial discharge pulse intensity between the insulated connections along the length direction of the power cable line after measuring the partial discharge pulse intensity. Was calculated and the section where the partial discharge occurred was determined.

さらに、長尺電力ケーブル線路上の各絶縁接続部で部
分放電パルス強度の周波数スペクトルを測定して、部分
放電の発生点までの距離を推定することにより、部分放
電の発生位置を確認することができる。
In addition, the location of partial discharge can be confirmed by measuring the frequency spectrum of the partial discharge pulse intensity at each insulation connection on the long power cable line and estimating the distance to the point of partial discharge occurrence. it can.

[作用] 二つの絶縁接続部の間の区間に部分放電の発生点が含
まれない場合には、発生点から遠い絶縁接続部から近い
方の絶縁接続部に向かって検出されるパルス強度が増加
する。二つの絶縁接続部の間の区間に部分放電の発生点
が含まれる場合には、検出されるパルス強度の差は極め
て小さくなる。それ故、電力ケーブル線路上の少なくと
も3つの絶縁接続部で部分放電パルス強度を測定し、線
路の長さ方向に沿って絶縁接続部の各区間での部分放電
パルス強度の増加および減少の勾配から、部分放電パル
ス強度の極大値が存在する位置を求めることができる。
[Operation] When the point of partial discharge is not included in the section between the two insulation connections, the pulse intensity detected from the insulation connection far from the generation point to the insulation connection nearer increases. To do. When the point of partial discharge is included in the section between the two insulated connections, the difference in detected pulse intensities is extremely small. Therefore, the partial discharge pulse strength is measured at at least three insulation connections on the power cable line, and the slope of the increase and decrease of the partial discharge pulse strength in each section of the insulation connection along the length of the line is measured. , The position where the maximum value of the partial discharge pulse intensity exists can be obtained.

検出点として絶縁接続部を用いる理由は、絶縁接続部
は構成上、部分放電を検出するのに極めて好都合である
からである。絶縁接続部では、防食シースの内側にある
金属シース(あるいは金属遮蔽層)が絶縁接続部の途中
で絶縁筒によって、その長手方向に対して縁切り(絶
縁)されている。詳しくは後で述べるが、このため、上
記絶縁筒の両側の防食シースの上に一対の金属箔電極を
取り付け、この金属箔電極に検出インピーダンスを介し
て測定装置を接続することで安全に且つ容易に部分放電
を測定することができる。
The reason why the insulating connection portion is used as the detection point is that the insulating connection portion is extremely convenient for detecting the partial discharge due to its structure. In the insulating connection portion, the metal sheath (or the metal shielding layer) inside the anticorrosion sheath is cut off (insulated) in the longitudinal direction by an insulating tube in the middle of the insulating connection portion. As will be described later in more detail, therefore, a pair of metal foil electrodes are attached on the anticorrosion sheaths on both sides of the insulating cylinder, and a measuring device is connected to the metal foil electrodes via a detection impedance for safe and easy operation. The partial discharge can be measured.

本発明では部分放電パルス強度はスペクトルアナライ
ザにより測定されてもよい。これは部分放電パルスは、
周波数の高い成分ほど減衰量が大きくなり、しかも部分
放電発生点と部分放電検出点間の距離が遠くなるほど減
衰のカーブがきつく(逆に近くなるほど減衰のカーブが
緩やかに)なるので、例えば0.1MHz〜100MHzの範囲で比
較的低い周波数と比較的高い周波数で減衰量が測定でき
れば、その差から部分放電発生位置の推定が可能にな
る。これを前述の極大値の検出結果に併せて位置標定す
れば、検出精度が更に向上する。
In the present invention, the partial discharge pulse intensity may be measured by a spectrum analyzer. This is a partial discharge pulse
The higher the frequency component, the greater the amount of attenuation, and the more the distance between the partial discharge occurrence point and the partial discharge detection point becomes, the tighter the attenuation curve becomes. If the attenuation can be measured at a relatively low frequency and a relatively high frequency in the range of up to 100 MHz, it is possible to estimate the partial discharge occurrence position from the difference. If this is located together with the above-described maximum value detection result, the detection accuracy will be further improved.

以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

[実施例1] 第1図(A)に本発明による部分放電位置標定に用い
た構成を示す。第1図で電力ケーブル1は、普通接続部
(NJB)2、絶縁接続部(IJB)31,32,33,34を有してい
る。IJB31,32,33,34の各絶縁筒31a,32a,33a,34aの両側
の防食シースの上にそれぞれ一対の金属箔電極41,42,4
3,44を巻き付けた。各絶縁接続部の一対の金属箔電極4
1,42,43,44はそれぞれ検出インピーダンス51,52,53,54
に接続されている。各検出インピーダンスには、図示さ
れないスペクトラルアナライザの機能を有するパルス測
定装置が接続される。
[Embodiment 1] FIG. 1 (A) shows a configuration used for the partial discharge position locating according to the present invention. In FIG. 1, a power cable 1 has a normal connection portion (NJB) 2 and an insulation connection portion (IJB) 31, 32, 33, 34. A pair of metal foil electrodes 41, 42, 4 on the anticorrosion sheaths on both sides of each insulating cylinder 31a, 32a, 33a, 34a of IJB 31, 32, 33, 34
Wrapped around 3,44. A pair of metal foil electrodes for each insulated connection 4
1,42,43,44 are detected impedances 51,52,53,54 respectively
It is connected to the. A pulse measuring device (not shown) having a spectral analyzer function is connected to each detection impedance.

何れかの接続部または中間のケーブル上で部分放電が
発生すると、部分放電パルスは各一対の金属箔電極41,4
2,43,44により検出インパーダンス51,52,53,54の両端の
電位差として検出される。
When a partial discharge occurs on any connection or intermediate cable, the partial discharge pulse will generate a pair of metal foil electrodes 41,4.
It is detected as a potential difference between both ends of the detection impedances 51, 52, 53, 54 by 2, 43, 44.

IJB31,IJB32,NJB2,IJB33,IJB34の間の距離がそれぞれ
約600mである。各金属箔電極に接続した検出インピーダ
ンス51,52,53,54には、それぞれ第1表に示す強度の信
号が同時に検出された。信号の検出には、周波数4.8MHz
の同調式パルス測定装置を用いた。第1表の測定結果を
第1図(B)に示す。
The distance between IJB31, IJB32, NJB2, IJB33, and IJB34 is about 600m. Signals with the intensities shown in Table 1 were simultaneously detected at the detection impedances 51, 52, 53, 54 connected to the respective metal foil electrodes. Frequency of 4.8MHz for signal detection
The tuned pulse measuring device of was used. The measurement results in Table 1 are shown in FIG.

上記の結果から、4点の測定点A,B,C,Dに基づいて極
大点Mを求めることができる。従って、部分放電はIJB3
2とIJB33の間にあるNJB2またはその付近で発生したもの
と推定された。第1図(B)より明らかな通り、極大点
Mを求めるには、測定点は最小3点あればよいことがわ
かる。
From the above result, the maximum point M can be obtained based on the four measurement points A, B, C and D. Therefore, partial discharge is IJB3
It was presumed to have occurred at or near NJB2, which is between 2 and IJB33. As is clear from FIG. 1 (B), in order to obtain the maximum point M, at least three measurement points are required.

次いで、IJB31およびIJB32に取り付けられた金属箔電
極からの信号について、それぞれパルス測定装置により
周波数スペクトルを求めた。その結果は第2図に示す通
りであった。
Next, the frequency spectrum of each of the signals from the metal foil electrodes attached to IJB31 and IJB32 was obtained by a pulse measuring device. The result was as shown in FIG.

第2図はIJB31およびIJB32の検出部分放電信号の周波
数特性を示す。両検出点の1MHzでの信号強度差V1と10MH
zでの信号強度差V10との差ΔV(=V10−V1)と周波数
差から、部分放電発生位置を推定することができる。IJ
B31の検出結果だけからも可能である。即ち、図示した1
MHzの信号強度V1′と10MHzの信号強度V10′の差ΔV′
(V10′−V1′)から、部分放電発生位置を推定するこ
ともできる。つまり、部分放電パルスは、部分放電発生
点と部分放電検出点が同一位置であれば部分放電パルス
が電力ケーブル線路を伝播しないから周波数増加に伴う
減衰は起こらないが、第2図からも分かる通り、部分放
電発生点と部分放電検出点間に或る距離があると周波数
の高い成分ほど減衰量が大きくなり、しかも部分放電発
生点と部分放電検出点間の距離が遠くなるほど減衰のカ
ーブがきつく(逆に近くなるほど減衰のカーブが緩やか
に)なり、この減衰量の周波数依存性は電力ケーブル線
路固有の値を示す。従って、電力ケーブル線路について
事前に信号強度減衰量の周波数依存性を求めて置くこと
で、上記信号強度差等から部分放電発生位置の推定が可
能になる。第1図(B)の標定結果にこの推定を組み合
わせると、標定精度はさらに向上する。
FIG. 2 shows the frequency characteristics of the detected partial discharge signals of IJB31 and IJB32. Signal strength difference at 1MHz between both detection points V 1 and 10MH
The partial discharge occurrence position can be estimated from the difference ΔV (= V 10 −V 1 ) from the signal intensity difference V 10 at z and the frequency difference. IJ
It is possible only from the detection result of B31. That is, the illustrated 1
Difference ΔV ′ between the signal strength V 1 ′ of MHz and the signal strength V 10 ′ of 10 MHz
From (V 10 '-V 1') , it is also possible to estimate the partial discharge generation position. That is, if the partial discharge generation point and the partial discharge detection point are at the same position, the partial discharge pulse does not propagate along the power cable line, so attenuation does not occur with frequency increase, but as can be seen from FIG. , If there is a certain distance between the partial discharge occurrence point and the partial discharge detection point, the higher the frequency component, the greater the amount of attenuation, and the longer the distance between the partial discharge occurrence point and the partial discharge detection point, the tighter the attenuation curve. (Conversely, the closer it is, the more gradually the attenuation curve becomes gentle.) The frequency dependence of this attenuation shows a value peculiar to the power cable line. Therefore, by obtaining the frequency dependence of the signal strength attenuation amount in advance for the power cable line, it is possible to estimate the partial discharge occurrence position from the signal strength difference and the like. When this estimation is combined with the orientation result of FIG. 1 (B), the orientation accuracy is further improved.

[実施例2] 第3図(A)に本発明による部分放電位置標定に用い
た別の構成を示す。第3図(A)で電力ケーブル1は、
NJB22,23,IJB35,36,37,38を有している。NJB22はIJB35
と36の間に、NJB23はIJB37と38の間にそれぞれ位置す
る。IJB35,36,37,38の各絶縁筒35a,36a,37a,38aの両側
の防食シースの上にそれぞれ一対の金属箔電極45,46,47
48を巻き付けた。各絶縁接続部の一対の金属箔電極45,4
6,47,48は、それぞれ検出インピーダンス55,56,57,58に
接続されている。各検出インピーダンスには、図示され
ないパルス測定装置を接続した。
[Embodiment 2] FIG. 3 (A) shows another structure used for the partial discharge position locating according to the present invention. The power cable 1 in FIG.
It has NJB22,23, IJB35,36,37,38. NJB22 is IJB35
Between NJB23 and IJB37 and 38, respectively. A pair of metal foil electrodes 45, 46, 47 on the anticorrosion sheaths on both sides of each insulating cylinder 35a, 36a, 37a, 38a of IJB35, 36, 37, 38
Wrapped around 48. A pair of metal foil electrodes 45,4 for each insulated connection
6, 47 and 48 are connected to detection impedances 55, 56, 57 and 58, respectively. A pulse measuring device (not shown) was connected to each detection impedance.

何れかの接続部または中間のケーブル上で部分放電が
発生すると、実施例1と同様に、部分放電パルスは各一
対の金属箔電極45,46,47,48により検出インピーダンス5
5,56,57,58の両端の電位差として検出される。
When a partial discharge occurs on any connection part or an intermediate cable, the partial discharge pulse is detected by the pair of metal foil electrodes 45, 46, 47, 48 as in the first embodiment.
It is detected as the potential difference across 5,56,57,58.

IJB35,NJB22,IJB36,IJB37,NJB23,IJB38の間の距離が
それぞれ約600mである。周波数4.8MHzの同調式パルス測
定装置を用いて部分放電パルスを測定した。各絶縁接続
部に設けられた検出インピーダンス55,56,57,58には、
それぞれ第2表に示す強度の信号が同時に検出された。
第2表の測定結果を第3図(B)に示す。
The distances between IJB35, NJB22, IJB36, IJB37, NJB23 and IJB38 are about 600m. Partial discharge pulses were measured using a tunable pulse measuring device with a frequency of 4.8 MHz. The detection impedance 55, 56, 57, 58 provided in each insulation connection part,
The signals with the intensities shown in Table 2 were simultaneously detected.
The measurement results in Table 2 are shown in FIG. 3 (B).

上記の結果から、極大点が求められ、部分放電はIJB3
7とIJB38の間にあるNJB23またはその付近で発生したも
のと推定された。
From the above results, the maximum point was found, and the partial discharge was IJB3
It was presumed to have occurred at or near NJB23 between 7 and IJB38.

[発明の効果] 本発明によると、周波数の選択により高いS/N比が得
られる同調式部分放電測定法を用いて、長尺電力ケーブ
ル線路の部分放電位置を安全且つ容易に標定することが
できる。結果として高い検出感度で部分放電の位置標定
を行うことができ、比較的小さい部分放電、あるいは測
定点から遠い場所で発生した部分放電でも、発生位置の
標定ができ、長尺電力ケーブル線路の部分放電を測定す
る上でうってつけである。
EFFECTS OF THE INVENTION According to the present invention, it is possible to safely and easily locate a partial discharge position of a long power cable line by using a tunable partial discharge measurement method capable of obtaining a high S / N ratio by selecting a frequency. it can. As a result, the location of the partial discharge can be located with high detection sensitivity, and the location of the location can be located even with a relatively small partial discharge or a partial discharge that is generated far from the measurement point. It is perfect for measuring discharge.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は本発明の一実施例の概要を示す説明図、
第1図(B)は実施例1において各絶縁接続部の検出イ
ンピーダンスで検出された信号の強度を示すグラフ、第
2図は本発明による一測定例で得られた周波数スペクト
ルのグラフ、第3図(A)は本発明の他の実施例の概要
を示す説明図、第3図(B)は実施例2において各絶縁
接続部の検出インピーダンスで検出された信号の強度を
示すグラフである。 符号の説明 1……電力ケーブル 2,22,23……普通接続部(NJB) 31,32,33,34,35,36,37,38……絶縁接続部(IJB) 31a,32a,33a,34a,35a,36a,37a,38a……絶縁筒 41,42,43,44,45,46,47,48……金属箔電極 51,52,53,54,55,56,57,58……検出インピーダンス
FIG. 1 (A) is an explanatory view showing an outline of one embodiment of the present invention,
FIG. 1 (B) is a graph showing the intensity of the signal detected by the detection impedance of each insulation connection in Example 1, and FIG. 2 is a graph of the frequency spectrum obtained in one measurement example according to the present invention. FIG. 3A is an explanatory view showing the outline of another embodiment of the present invention, and FIG. 3B is a graph showing the intensity of the signal detected by the detection impedance of each insulation connection portion in the second embodiment. Explanation of code 1 …… Power cable 2,22,23 …… Normal connection (NJB) 31,32,33,34,35,36,37,38 …… Insulation connection (IJB) 31a, 32a, 33a, 34a, 35a, 36a, 37a, 38a …… Insulation cylinder 41,42,43,44,45,46,47,48 …… Metal foil electrode 51,52,53,54,55,56,57,58 …… Detection impedance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の絶縁接続部を用いて複数の電力ケー
ブルを接続して構成される長尺電力ケーブル線路上の少
なくとも3つの絶縁接続部で、部分放電パルス強度を測
定し、電力ケーブル線路の長さ方向に沿って絶縁接続部
の間での部分放電パルス強度の増加または減少の勾配か
ら部分放電パルス強度の極大値が存在する位置を求め、
この位置を部分放電の発生位置として標定することを特
徴とする長尺電力ケーブル線路の部分放電位置標定方
法。
1. A power cable line for measuring a partial discharge pulse intensity at at least three insulating connection parts on a long power cable line formed by connecting a plurality of power cables using a plurality of insulating connection parts. The position where the maximum value of the partial discharge pulse intensity exists is obtained from the gradient of the increase or decrease of the partial discharge pulse intensity between the insulating connections along the length direction of
A method for locating a partial discharge of a long power cable line, characterized by locating this position as a position where a partial discharge occurs.
【請求項2】部分放電パルス強度を同調式測定法で測定
する請求項第1項記載の長尺電力ケーブル線路の部分放
電位置標定方法。
2. The method for locating a partial discharge of a long power cable line according to claim 1, wherein the partial discharge pulse intensity is measured by a tuning type measuring method.
【請求項3】前記部分放電パルス強度の測定値を周波数
分析し、前記測定値が周波数の増大に対応して伝播減衰
量が大になることを考慮して放電位置を標定する請求項
第1項記載の長尺電力ケーブル線路の部分放電位置標定
方法。
3. The frequency of the measured value of the partial discharge pulse intensity is frequency-analyzed, and the discharge position is located in consideration of the fact that the measured value has a large amount of propagation attenuation corresponding to an increase in frequency. Partial discharge position locating method for long power cable lines described in paragraph.
JP1314006A 1989-10-25 1989-12-02 Local discharge location method for long power cable lines Expired - Lifetime JPH0833429B2 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP1314006A JPH0833429B2 (en) 1989-12-02 1989-12-02 Local discharge location method for long power cable lines
CA002008898A CA2008898C (en) 1989-10-25 1990-01-30 Method for detecting partial discharge in an insulation of an electric power apparatus
NO900431A NO302494B1 (en) 1989-10-25 1990-01-30 A method for detecting a partial discharge in an electrical power cable insulation
EP97111472A EP0806677A1 (en) 1989-10-25 1990-01-31 Method for detecting partial discharge
EP90101895A EP0424598B1 (en) 1989-10-25 1990-01-31 Method for detecting partial discharge in an insulation of an electric power cable
DE69033263T DE69033263T2 (en) 1989-10-25 1990-01-31 Method for comparing frequency spectra
DE69033279T DE69033279T2 (en) 1989-10-25 1990-01-31 Method for measuring partial discharges in a wire with a detection electrode
DE69032763T DE69032763T2 (en) 1989-10-25 1990-01-31 Use of a magnetic core for measuring partial discharges
EP94111232A EP0628829B1 (en) 1989-10-25 1990-01-31 Use of magnetic core to measure partial discharge
EP03000561A EP1310803A3 (en) 1989-10-25 1990-01-31 Method for detecting partial discharge
EP94111230A EP0629866B1 (en) 1989-10-25 1990-01-31 Method for locating faults in an electric power cable line
EP94111231A EP0636890B1 (en) 1989-10-25 1990-01-31 Method for comparing frequency spectrums
DE69026186T DE69026186T2 (en) 1989-10-25 1990-01-31 Method for determining partial discharges in the insulation of an electrical power cable
DE69032808T DE69032808T2 (en) 1989-10-25 1990-01-31 Procedure for locating faults in electrical power cables
EP97111457A EP0806676B1 (en) 1989-10-25 1990-01-31 Use of detecting electrode to measure partial discharge in a wire
US07/784,728 US5323117A (en) 1989-10-25 1991-10-28 Method for detecting partial discharge in an insulation of an electric power apparatus
US08/163,572 US5469067A (en) 1989-10-25 1993-12-08 Detecting partial discharge using a detection coil and analysis of output signal and noise frequency spectrums
NO963527A NO303304B1 (en) 1989-10-25 1996-08-23 A method of detecting a partial discharge in an insulation of an electric power cable or similar
NO963530A NO304126B1 (en) 1989-10-25 1996-08-23 A method for detecting partial discharge in an insulation for electrical devices
NO963529A NO304761B1 (en) 1989-10-25 1996-08-23 A method of detecting partial discharge in an insulation of an electr
NO963528A NO301673B1 (en) 1989-10-25 1996-08-23 Method for detecting partial discharge in an insulation of an electrical device
NO974684A NO309881B1 (en) 1989-10-25 1997-10-10 Method for Detecting Partial Discharge in Power Cables Coupled by Insulation Joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314006A JPH0833429B2 (en) 1989-12-02 1989-12-02 Local discharge location method for long power cable lines

Publications (2)

Publication Number Publication Date
JPH03175374A JPH03175374A (en) 1991-07-30
JPH0833429B2 true JPH0833429B2 (en) 1996-03-29

Family

ID=18048080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314006A Expired - Lifetime JPH0833429B2 (en) 1989-10-25 1989-12-02 Local discharge location method for long power cable lines

Country Status (1)

Country Link
JP (1) JPH0833429B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289929B2 (en) * 2003-05-29 2009-07-01 旭電機株式会社 Conductive line judgment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750147B2 (en) * 1989-06-14 1995-05-31 株式会社日立製作所 Abnormal position locating method and apparatus for gas insulated electrical equipment

Also Published As

Publication number Publication date
JPH03175374A (en) 1991-07-30

Similar Documents

Publication Publication Date Title
EP0629866B1 (en) Method for locating faults in an electric power cable line
US9081047B2 (en) Methods, device and installation for locating a defect in an electric link
JPH0833429B2 (en) Local discharge location method for long power cable lines
JPH1090337A (en) Method for deterioration measurement of cable
JP3247049B2 (en) Cable deterioration diagnosis method
JPH0640121B2 (en) Method for measuring partial discharge of live cable
US3440528A (en) Method and apparatus for locating voids in an insulated electrical cable
JP3088879B2 (en) Partial discharge measurement method
JPH068848B2 (en) Partial discharge measurement method
JP3072958B2 (en) Partial discharge measurement method
JP3072947B2 (en) Power cable partial discharge measuring device
JPH0353583B2 (en)
JP2616122B2 (en) Partial discharge measurement method
JPH0436329B2 (en)
JP3049657B2 (en) Partial discharge measurement method
SU1285409A1 (en) Method of detecting location of faulted metal sheath of cable
JPH08178997A (en) Partial discharge measuring method for power cable
JP2717592B2 (en) Faulty point measurement method of optical submarine cable by electrical pulse echo
JPH1090343A (en) Method for measuring degradation of cable
JP3333725B2 (en) Partial discharge measurement method
JPH10153638A (en) Method for measuring partial discharge at air termination part of power cable
JPH0519008A (en) Partial discharge detector
JPH1090342A (en) Method for measuring degradation of power cable
SU1392516A1 (en) Method of determining relative measurement error of mean wave impedance of coaxial microwave transmission line
JP2951523B2 (en) Partial discharge measurement method for power cable lines

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14