JPH03175374A - Locating method for partial discharge position - Google Patents

Locating method for partial discharge position

Info

Publication number
JPH03175374A
JPH03175374A JP31400689A JP31400689A JPH03175374A JP H03175374 A JPH03175374 A JP H03175374A JP 31400689 A JP31400689 A JP 31400689A JP 31400689 A JP31400689 A JP 31400689A JP H03175374 A JPH03175374 A JP H03175374A
Authority
JP
Japan
Prior art keywords
partial discharge
intensity
pulse
discharge pulse
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31400689A
Other languages
Japanese (ja)
Other versions
JPH0833429B2 (en
Inventor
Takeshi Endo
遠藤 桓
Tadayoshi Ikeda
池田 忠禧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1314006A priority Critical patent/JPH0833429B2/en
Priority to NO900431A priority patent/NO302494B1/en
Priority to CA002008898A priority patent/CA2008898C/en
Priority to EP03000561A priority patent/EP1310803A3/en
Priority to EP90101895A priority patent/EP0424598B1/en
Priority to DE69033279T priority patent/DE69033279T2/en
Priority to DE69026186T priority patent/DE69026186T2/en
Priority to EP97111457A priority patent/EP0806676B1/en
Priority to DE69032763T priority patent/DE69032763T2/en
Priority to DE69032808T priority patent/DE69032808T2/en
Priority to EP97111472A priority patent/EP0806677A1/en
Priority to DE69033263T priority patent/DE69033263T2/en
Priority to EP94111232A priority patent/EP0628829B1/en
Priority to EP94111231A priority patent/EP0636890B1/en
Priority to EP94111230A priority patent/EP0629866B1/en
Publication of JPH03175374A publication Critical patent/JPH03175374A/en
Priority to US07/784,728 priority patent/US5323117A/en
Priority to US08/163,572 priority patent/US5469067A/en
Publication of JPH0833429B2 publication Critical patent/JPH0833429B2/en
Priority to NO963529A priority patent/NO304761B1/en
Priority to NO963530A priority patent/NO304126B1/en
Priority to NO963528A priority patent/NO301673B1/en
Priority to NO963527A priority patent/NO303304B1/en
Priority to NO974684A priority patent/NO309881B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To locate the generation section of partial discharge by measuring the intensity of a partial discharge pulse at least at three detection positions on a power cable line and calculating a position where the intensity of the partial discharge pulse becomes the max. CONSTITUTION:In a power cable 1 having a common connection part 2 and insulated connection parts 31 - 34, a pair of metal foil electrodes 41 - 44 are wound around the corrosion-proof sheaths of the insulating cylinders 31a - 34a of the connection parts 31 - 34 and respectively connected to detection impedances 51 - 54 and a pulse measuring apparatus having spectrum analyzer function not shown in a drawing is further connected to the respective detection impedances 51 - 54. Now, when partial discharge pulse is generated on the cable 1, the pulse is detected as the potential difference between both terminals of the impedances by the electrodes 41 - 44. Therefore, by calculating the presence position of the max. value of the intensity of the partial discharge pulse from the increase and decrease gradient of the intensity of the partial discharge pulse between the detection positions 31 - 34 along the length direction of the cable 1, the generation section of partial discharge can be located.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は部分放電位置標定方法、特に長尺型カケープル
線路における部分放電位置の標定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for locating a partial discharge position, particularly to a method for locating a partial discharge position in a long cable cable line.

〔従来の技術〕[Conventional technology]

長尺型カケープル線路における部分放電位置を標定する
方法としては、従来TDR法(TimeDomain 
Reflectometry )が知られてし)る。こ
の方法は、長尺ケーブル線路において発生した部分放電
パルスが線路中を往復反射する現象を利用しており、パ
ルス波形の観察により部分放電の位置を標定する方法で
ある。
The conventional method for locating partial discharge positions in long cable lines is the TDR method (Time Domain
Reflectometry) is known. This method utilizes the phenomenon in which a partial discharge pulse generated in a long cable line is reflected back and forth in the line, and is a method for locating the position of a partial discharge by observing the pulse waveform.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この方法は忠実なパルス波形の観察が必要なた
め、低周波方式あるいは広帯域方式による部分放電測定
には適用できるが、同調式による部分放電測定には適用
できない。何故なら、同調式部分放電測定では部分放電
パルスを゛LC共振回路で共振させるので、パルスの波
形の特徴が失われてしまうからである。TDR法ではパ
ルスの波形の特徴が失われると、部分放電の位置を標定
することができない。
However, since this method requires faithful observation of pulse waveforms, it can be applied to partial discharge measurements using a low frequency method or a broadband method, but cannot be applied to partial discharge measurements using a tuned method. This is because in the tuned partial discharge measurement, the partial discharge pulse is caused to resonate in the LC resonant circuit, so the characteristics of the pulse waveform are lost. In the TDR method, if the characteristics of the pulse waveform are lost, the position of the partial discharge cannot be located.

部分放電測定においてS/N比を支配するノイズおよび
部分放電パルスの信号検出感度の両者は、電力ケーブル
のり、C成分による共振、***振、パルスの電力ケーブ
ル線路上での往復反射による定在波等の要因で、複雑な
周波数依存性を有している。従って、比較的高い検出感
度で部分 放電位置の標定を行うには、できるだけ高い
 S/N比の得られる周波数を選んで用いることができ
る同調式測定法を用いることが望まれる。
Both the noise that dominates the S/N ratio in partial discharge measurement and the signal detection sensitivity of partial discharge pulses are affected by power cable tension, resonance and anti-resonance due to the C component, and standing waves due to round-trip reflection of pulses on the power cable line. Due to these factors, it has a complicated frequency dependence. Therefore, in order to locate the partial discharge position with relatively high detection sensitivity, it is desirable to use a tunable measurement method that can select and use a frequency that provides the highest possible S/N ratio.

従って本発明の目的は、同調式部分放電測定が適用でき
、高いS/N比の得られる部分放電位置標定方法を提供
することにある。
Therefore, an object of the present invention is to provide a partial discharge position locating method to which tunable partial discharge measurement can be applied and a high S/N ratio can be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明では、電力ケーブル線
路上の少なくとも3つの検出位置(以下、検出点と言う
)で部分放電パルス強度を測定し、線路の長さ方向に沿
って検出位置の間での部分放電パルス強度の増加および
減少の勾配から部分放電パルス強度の極大値が存在する
位置を求め、部分放電の発生区間を標定するようにした
In order to achieve the above object, the present invention measures the partial discharge pulse intensity at at least three detection positions (hereinafter referred to as detection points) on the power cable line, and measures the partial discharge pulse intensity between the detection positions along the length of the line. The position where the maximum value of the partial discharge pulse intensity exists is determined from the slope of increase and decrease of the partial discharge pulse intensity at , and the area where the partial discharge occurs is located.

さらに、電力ケーブル線路上の各測定位置で部分放電パ
ルス強度の周波数スペクトルを測定して、部分放電の発
生点までの距離を推定することにより、部分放電の発生
位置を確認することができる。
Further, by measuring the frequency spectrum of the partial discharge pulse intensity at each measurement position on the power cable line and estimating the distance to the point where the partial discharge occurs, the position where the partial discharge occurs can be confirmed.

〔作用〕[Effect]

二つの検出点の間の区間に部分放電の発生点が含まれな
い場合には、発生点から遠い検出点から近い方の検出点
に向かって検出されるパルス強度が増加する。二つの検
出点の間の区間に部分放電の発生点が含まれる場合には
、検出されるパルス強度の差は極めて小さくなる。それ
故、電力ケーブル線路上の少なくとも3つの検出点で部
分放電パルス強度を測定し、線路の長さ方向に沿って検
出点の各区間での部分放電パルス強度の増加および減少
の勾配から、部分放電パルス強度の極大値が存在する位
置を求めることができる。
When a partial discharge generation point is not included in the section between two detection points, the detected pulse intensity increases from a detection point farther from the generation point toward a detection point closer to the generation point. If a partial discharge generation point is included in the area between two detection points, the difference in detected pulse intensity will be extremely small. Therefore, the partial discharge pulse intensity is measured at at least three detection points on the power cable line, and from the slope of the increase and decrease of the partial discharge pulse intensity at each section of the detection points along the length of the line, the partial The position where the maximum value of the discharge pulse intensity exists can be determined.

検出点としては絶縁接続部が有利である。しかし普通接
続部も利用可能であり、またケーブル本体上でもよい。
Insulated connections are advantageous as detection points. However, normal connections can also be used, and even on the cable body.

ケーブル本体上で検出する場合には、ケーブルに巻きつ
けたコイル、近接して設けるサーチコイル、金属箔電極
等を用いれば、任意の位置で検出することができる。
When detecting on the cable body, it is possible to detect at any position by using a coil wrapped around the cable, a search coil provided nearby, a metal foil electrode, etc.

本発明では部分放電パルス強度はスペクトルアナライザ
により測定されてもよい。これは部分放電パルスは、周
波数の高い成分はど減衰量が大きくなるので、例えば0
.1MHz〜100MHzの範囲で比較的低い周波数と
比較的高い周波数で減衰量が測定できれば、その差から
部分放電発生位置の推定が可能になる。これを前述の極
大値の検出結果に併せて位置標定すれば、検出精度が更
に向上する。
In the present invention, the partial discharge pulse intensity may be measured by a spectrum analyzer. This is because the higher the frequency component of a partial discharge pulse, the greater the attenuation amount, so for example 0
.. If the amount of attenuation can be measured at a relatively low frequency and a relatively high frequency in the range of 1 MHz to 100 MHz, it becomes possible to estimate the partial discharge occurrence position from the difference. If this is combined with the detection result of the local maximum value and the position is determined, the detection accuracy will be further improved.

以下、実施例により本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例1〕 第1図(A)に本発明による部分放電位置標定に用いた
構成を示す。第1図で電力ケーブル1は、普通接続部(
NJB)2.絶縁接続部(I JB)31.32,33
.34を有している。IJB31.32,33.34の
各絶縁筒31a。
[Example 1] FIG. 1(A) shows a configuration used for partial discharge position location according to the present invention. In Figure 1, the power cable 1 has a normal connection (
NJB)2. Insulated connection part (I JB) 31, 32, 33
.. It has 34. Each insulating cylinder 31a of IJB31.32, 33.34.

32a  、33a、34aの両側の防食シースの上に
それぞれ一対の金属箔電極41.42,43゜44を巻
きつけた。各絶縁接続部の一対の金属箔電極41,42
,43.44はそれぞれ検出インピーダンス51,52
,53.54に接続されている。各検出インピーダンス
には、図示されないスペクトルアナライザの機能を有す
るパルス測定装置が接続される。
A pair of metal foil electrodes 41, 42, 43° 44 were wound on the anticorrosive sheaths on both sides of 32a, 33a, and 34a, respectively. A pair of metal foil electrodes 41, 42 at each insulated connection part
, 43 and 44 are detection impedances 51 and 52, respectively.
, 53.54. A pulse measurement device (not shown) having a spectrum analyzer function is connected to each detection impedance.

何れかの接続部または中間のケーブル上で部分放電が発
生すると、部分放電パルスは各一対の金属箔電極41.
42,43.44により検出インピーダンス51,52
,53.54の両端の電位差として検出される。
When a partial discharge occurs on either connection or intermediate cable, a partial discharge pulse is transmitted to each pair of metal foil electrodes 41.
Detected impedance 51, 52 by 42, 43, 44
, 53, and 54.

IJB31.IJB32.NJB2.IJB33、IJ
B34の間の距離がそれぞれ約600mである。各金属
箔電極に接続した検出インピーダンス51,52,53
.54には、それぞれ第1表に示す強度の信号が同時に
検出された。信号の検出には、周波数4.8MHzの同
調式パルス測定装置を用いた。第1表の測定結果を第1
図(B) に示す。
IJB31. IJB32. NJB2. IJB33, IJ
The distance between each B34 is approximately 600 m. Detection impedances 51, 52, 53 connected to each metal foil electrode
.. 54, signals with the intensities shown in Table 1 were simultaneously detected. A tunable pulse measuring device with a frequency of 4.8 MHz was used to detect the signal. The measurement results in Table 1 are
Shown in Figure (B).

第1表 上記の結果から、4点の測定点A、 B、 C,Dに基
づいて極大点Mを求めることができる。従って、部分放
電はIJB32とIJB33の間にあるNJB2または
その付近で発生したものと推定された。第1図(B)よ
り明らかな通り、極大点Mを求めるには、測定点は最少
3点あればよいことがわかる。
Table 1 From the above results, the maximum point M can be determined based on the four measurement points A, B, C, and D. Therefore, it was estimated that the partial discharge occurred at or near NJB2, which is between IJB32 and IJB33. As is clear from FIG. 1(B), in order to determine the maximum point M, a minimum of three measurement points are required.

次いで、I JB31およびIJB32に取り付けられ
た金属箔電極からの信号について、それぞれパルス測定
装置により周波数スペクトルを求めた。その結果は第2
図に示す通りであった。
Next, the frequency spectra of the signals from the metal foil electrodes attached to IJB31 and IJB32 were determined using a pulse measuring device. The result is the second
It was as shown in the figure.

第2図はI JB31およびIJB32の検出部分放電
信号の周波数特性を示す。雨検出点のIMHzでの信号
強度差V、とIOMHzでの信号強度差vI0との差Δ
V (=V、。−V、)と周波数差から、部分放電強度
発生位置を推定することができる。I JB31の検出
結果だけからも可能である。即ち、図示したIMHzの
信号強度V、lとIMHz(7)信号強度v、。’の差
AV’  (=V、。
FIG. 2 shows the frequency characteristics of the detected partial discharge signals of IJB31 and IJB32. Difference Δ between the signal strength difference V at IMHz and the signal strength difference vI0 at IOMHz at the rain detection point
The position where partial discharge intensity occurs can be estimated from V (=V, .-V,) and the frequency difference. It is possible to do this only from the detection results of IJB31. That is, the illustrated IMHz signal strength V,l and the IMHz(7) signal strength v,. 'difference AV' (=V,.

v+’)から、部分放電強度発生位置を推定することも
できる。第1図(B)の標定結果にこの推定を組み合わ
せると、標定精度はさらに向上する。
v+'), it is also possible to estimate the position where the partial discharge intensity occurs. When this estimation is combined with the orientation result shown in FIG. 1(B), the orientation accuracy is further improved.

〔実施例2〕 第3図(A)に本発明による部分放電位置標定に用いた
別の構成を示す。第3図で電力ケーブルlはNJB22
,23.IJB35,36,37゜38を有している。
[Example 2] FIG. 3(A) shows another configuration used for partial discharge position location according to the present invention. In Figure 3, power cable l is NJB22
, 23. It has IJB 35, 36, 37°38.

NJB22はIJB35と36の間に、NJB23はI
JB37”と38の間にそれぞれ位置する。IJB35
,36,37゜38の各絶縁筒35a、36a、37a
、38aの両側の防食シースの上にそれぞれ一対の金属
箔電極45,46,47.48を巻きつけた。各絶縁接
続部の一対の金属箔電極45,46.47゜48は、そ
れぞれ検出インピーダンス55,56゜57.58に接
続されている。各検出インピーダンスには、図示されな
いパルス測定装置を接続した。
NJB22 is between IJB35 and 36, NJB23 is between IJB35 and 36, and NJB23 is between IJB35 and 36.
Located between JB37” and 38.IJB35
, 36, 37° 38 insulating cylinders 35a, 36a, 37a
, 38a, a pair of metal foil electrodes 45, 46, 47 and 48 were respectively wound on the anti-corrosion sheath on both sides of the electrodes. A pair of metal foil electrodes 45, 46.47° 48 of each insulated connection part are connected to detection impedances 55, 56° 57.58, respectively. A pulse measuring device (not shown) was connected to each detection impedance.

何れかの接続部または中間のケーブル上で部分放電が発
生すると、実施例1と同様に、部分放電パルスは各一対
の金属箔電極45,46,47゜48により検出インピ
ーダンス55,56,57゜58の両端の電位差として
検出される。
When a partial discharge occurs on any connection or intermediate cable, the partial discharge pulse is detected by each pair of metal foil electrodes 45, 46, 47 degrees 48 at impedances 55, 56, 57 degrees, as in the first embodiment. It is detected as a potential difference between both ends of 58.

IJB35.NJB22.IJB36.IJB37、N
JB23.IJB38の間の距離がそれぞれ約600m
である0周波数4.8MH2の同調式パルス測定装置を
用いて部分放電パルスを測定した。各絶縁接続部に設け
られた検出インピーダンス55,56.57.58には
、それぞれ第2表に示す強度の信号が同時に検出された
。第2表の測定結果を第3図(B)に示す。
IJB35. NJB22. IJB36. IJB37,N
JB23. The distance between IJB38 is approximately 600m each.
Partial discharge pulses were measured using a tunable pulse measuring device with a zero frequency of 4.8 MH2. Signals with the intensities shown in Table 2 were simultaneously detected at the detection impedances 55, 56, 57, and 58 provided at each insulated connection. The measurement results in Table 2 are shown in FIG. 3(B).

第2表 上記の結果から極大点が求められ、部分放電はIJB3
7とIJB38の間にあるNJB23またはその付近で
発生したものと推定された。
Table 2 From the above results, the maximum point is found, and the partial discharge is IJB3
It is estimated that the incident occurred at or near NJB 23, which is between NJB 7 and IJB 38.

〔発明の効果〕〔Effect of the invention〕

本発明によると、周波数の選択により高いS/N比が得
られる同調式部分放電測定法を用いて、部分放電位置を
標定することができる。結果として高い検出感度で部分
放電の位置標定を行うことができ、比較的小さい部分放
電、あるいは測定点から遠い場所で発生した部分放電で
も、発生位置の標定ができる。
According to the present invention, a partial discharge position can be located using a tunable partial discharge measurement method that can obtain a high S/N ratio by selecting a frequency. As a result, the position of partial discharge can be located with high detection sensitivity, and even if the partial discharge is relatively small or occurs far from the measurement point, the position of occurrence can be located.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明の一実施例の概要を示す説明図、
第1図(B)は実施例1において各絶縁接続部の検出イ
ンピーダンスで検出された信号の強度を示すグラフ、第
2図は本発明による一測定例で得られた周波数スペクト
ルのグラフ、第3図(A)は本発明の他の実施例の概要
を示す説明図、第3図(B)は実施例2において各絶縁
接続部の検出インピーダンスで検出された信号の強度を
示すグラフである。 符号の説明 1−・・−・−・−・−・・−−−一−−−−−−−−
・−−−−−−−一電力ケーブル2.22.23−−・
−・−・−−−−−一−−−〜普通接続部(NJB)3
1.32.33.34゜ 35、 36. 37. 38−・−・絶縁接続部(I
JB)31a、32a、33a、34a。 35a、36a、37a、38a・・−・−・・絶縁筒
41.42,43,44゜ 45.46,47.48・・−・−・・金属箔電極51
.52.53,54゜ 55.55,57.58−・−・・・−・−・−検出イ
ンピー第2図
FIG. 1(A) is an explanatory diagram showing an outline of an embodiment of the present invention;
FIG. 1(B) is a graph showing the intensity of the signal detected by the detection impedance of each insulated connection in Example 1, FIG. 2 is a graph of the frequency spectrum obtained in one measurement example according to the present invention, and FIG. FIG. 3(A) is an explanatory diagram showing an outline of another embodiment of the present invention, and FIG. 3(B) is a graph showing the intensity of the signal detected by the detection impedance of each insulated connection portion in the second embodiment. Explanation of symbols 1-・・−・−・−・−・・−−−1−−−−−−−
・-----Power cable 2.22.23--・
−・−・−−−−−1−−−−Normal connection part (NJB) 3
1.32.33.34°35, 36. 37. 38---Insulated connection part (I
JB) 31a, 32a, 33a, 34a. 35a, 36a, 37a, 38a... Insulating cylinder 41.42, 43, 44° 45.46, 47.48... Metal foil electrode 51
.. 52.53, 54゜55.55, 57.58-・-・・・・−・Detection impy Fig. 2

Claims (3)

【特許請求の範囲】[Claims] (1)電力ケーブル線路上の少なくとも3つの検出位置
で部分放電パルス強度を測定し、線路の長さ方向に沿っ
て検出位置の間での部分放電パルス強度の増加または減
少の勾配から部分放電パルス強度の極大値が存在する位
置を求め、この位置を部分放電の発生位置として標定す
ることを特徴とする部分放電位置標定方法。
(1) Measure the partial discharge pulse intensity at at least three detection positions on the power cable line, and calculate the partial discharge pulse intensity from the gradient of increase or decrease in the partial discharge pulse intensity between the detection positions along the length of the line. A partial discharge position locating method characterized by determining a position where a maximum value of intensity exists and locating this position as a partial discharge occurrence position.
(2)部分放電パルス強度を同調式測定法で測定する請
求項第1項の部分放電位置標定方法。
(2) The partial discharge position locating method according to claim 1, wherein the partial discharge pulse intensity is measured by a tunable measurement method.
(3)前記部分放電パルス強度の測定値を周波数分析し
、前記測定値が周波数の増大に対応して伝播減衰量が大
になることを考慮して放電位置を標定する請求項第1項
の部分放電位置標定方法。
(3) The measured value of the partial discharge pulse intensity is subjected to frequency analysis, and the discharge position is determined by taking into account that the measured value increases the propagation attenuation as the frequency increases. Partial discharge position locating method.
JP1314006A 1989-10-25 1989-12-02 Local discharge location method for long power cable lines Expired - Lifetime JPH0833429B2 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP1314006A JPH0833429B2 (en) 1989-12-02 1989-12-02 Local discharge location method for long power cable lines
NO900431A NO302494B1 (en) 1989-10-25 1990-01-30 A method for detecting a partial discharge in an electrical power cable insulation
CA002008898A CA2008898C (en) 1989-10-25 1990-01-30 Method for detecting partial discharge in an insulation of an electric power apparatus
DE69033263T DE69033263T2 (en) 1989-10-25 1990-01-31 Method for comparing frequency spectra
EP94111230A EP0629866B1 (en) 1989-10-25 1990-01-31 Method for locating faults in an electric power cable line
DE69033279T DE69033279T2 (en) 1989-10-25 1990-01-31 Method for measuring partial discharges in a wire with a detection electrode
DE69026186T DE69026186T2 (en) 1989-10-25 1990-01-31 Method for determining partial discharges in the insulation of an electrical power cable
EP97111457A EP0806676B1 (en) 1989-10-25 1990-01-31 Use of detecting electrode to measure partial discharge in a wire
DE69032763T DE69032763T2 (en) 1989-10-25 1990-01-31 Use of a magnetic core for measuring partial discharges
DE69032808T DE69032808T2 (en) 1989-10-25 1990-01-31 Procedure for locating faults in electrical power cables
EP97111472A EP0806677A1 (en) 1989-10-25 1990-01-31 Method for detecting partial discharge
EP03000561A EP1310803A3 (en) 1989-10-25 1990-01-31 Method for detecting partial discharge
EP94111232A EP0628829B1 (en) 1989-10-25 1990-01-31 Use of magnetic core to measure partial discharge
EP94111231A EP0636890B1 (en) 1989-10-25 1990-01-31 Method for comparing frequency spectrums
EP90101895A EP0424598B1 (en) 1989-10-25 1990-01-31 Method for detecting partial discharge in an insulation of an electric power cable
US07/784,728 US5323117A (en) 1989-10-25 1991-10-28 Method for detecting partial discharge in an insulation of an electric power apparatus
US08/163,572 US5469067A (en) 1989-10-25 1993-12-08 Detecting partial discharge using a detection coil and analysis of output signal and noise frequency spectrums
NO963529A NO304761B1 (en) 1989-10-25 1996-08-23 A method of detecting partial discharge in an insulation of an electr
NO963530A NO304126B1 (en) 1989-10-25 1996-08-23 A method for detecting partial discharge in an insulation for electrical devices
NO963528A NO301673B1 (en) 1989-10-25 1996-08-23 Method for detecting partial discharge in an insulation of an electrical device
NO963527A NO303304B1 (en) 1989-10-25 1996-08-23 A method of detecting a partial discharge in an insulation of an electric power cable or similar
NO974684A NO309881B1 (en) 1989-10-25 1997-10-10 Method for Detecting Partial Discharge in Power Cables Coupled by Insulation Joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314006A JPH0833429B2 (en) 1989-12-02 1989-12-02 Local discharge location method for long power cable lines

Publications (2)

Publication Number Publication Date
JPH03175374A true JPH03175374A (en) 1991-07-30
JPH0833429B2 JPH0833429B2 (en) 1996-03-29

Family

ID=18048080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314006A Expired - Lifetime JPH0833429B2 (en) 1989-10-25 1989-12-02 Local discharge location method for long power cable lines

Country Status (1)

Country Link
JP (1) JPH0833429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354248A (en) * 2003-05-29 2004-12-16 Asahi Electric Works Ltd Conductive line determination method and measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315771A (en) * 1989-06-14 1991-01-24 Hitachi Ltd Method and device for locating abnormality of gas insulation electric apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315771A (en) * 1989-06-14 1991-01-24 Hitachi Ltd Method and device for locating abnormality of gas insulation electric apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354248A (en) * 2003-05-29 2004-12-16 Asahi Electric Works Ltd Conductive line determination method and measuring device

Also Published As

Publication number Publication date
JPH0833429B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
WO2016019666A1 (en) Method and device for detecting partial discharge of cable
US7385932B2 (en) Wideband frequency domain reflectometry to determine the nature and location of subscriber line faults
CN109342515A (en) Concrete mix moisture percentage measuring device and its measurement method based on TDT with phase bit comparison
US11340185B2 (en) Reflectometry devices and methods for detecting pipe defects
CA2536083C (en) Method and apparatus for measuring impedance of electrical component under high interference conditions
JP2006133088A (en) Method and system for measuring moisture distribution in soil
JPH03175374A (en) Locating method for partial discharge position
CN106918604B (en) Inhaul cable defect detection system based on electromagnetic wave transmission line theory and detection method thereof
JP2003232829A (en) Partial discharge detection device of winding equipment
CN115128404A (en) Non-contact cable fault positioning method
JPH1090337A (en) Method for deterioration measurement of cable
WO2004001430A1 (en) Electric power line on-line diagnostic method
CN209132203U (en) Concrete mix moisture percentage measuring device based on TDT with phase bit comparison
JP2013257150A (en) Insulation defect position locating device and insulation defect position locating method for power cable
JPS6255570A (en) Location of fault point for cable line
JP3236770B2 (en) Partial discharge measurement method for CV cable line
Hoek et al. Fundamental Differences of the PD Measurement according to IEC 60270 and in UHF range
JP2782078B2 (en) How to measure cable fault points
JP2951523B2 (en) Partial discharge measurement method for power cable lines
Furse et al. Towards a spread spectrum VNA
Kwak et al. Load impedance measurement on a coaxial cable via time-frequency domain reflectometry
CN218272549U (en) Cable oversheath fault locating device
RU2413234C1 (en) Method to detect location of insulation damage in power transmission line
JPH04331381A (en) Calibrating method of partial discharge measurement
Kwak et al. Application of time-frequency domain reflectometry for measuring load impedance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 14