JPH1090343A - Method for measuring degradation of cable - Google Patents

Method for measuring degradation of cable

Info

Publication number
JPH1090343A
JPH1090343A JP26130696A JP26130696A JPH1090343A JP H1090343 A JPH1090343 A JP H1090343A JP 26130696 A JP26130696 A JP 26130696A JP 26130696 A JP26130696 A JP 26130696A JP H1090343 A JPH1090343 A JP H1090343A
Authority
JP
Japan
Prior art keywords
degraded
cable
point
phase cable
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26130696A
Other languages
Japanese (ja)
Inventor
Masakatsu Sato
政勝 佐藤
Satoshi Shinkai
敏 新海
Akio Miura
昭夫 三浦
Shigeru Tanaka
田中  滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Mitsubishi Cable Industries Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd, Tokyo Electric Power Co Inc filed Critical Mitsubishi Cable Industries Ltd
Priority to JP26130696A priority Critical patent/JPH1090343A/en
Publication of JPH1090343A publication Critical patent/JPH1090343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which the position and the degradation degree in the degraded point of a degraded-phase cable are detected easily in a live-conductor state. SOLUTION: A sound-phase cable 11 and a degraded-phase cable 12 indicate existing lines of the same length, they are laid in parallel, and a degraded point F exists in the degraded-phase cable 12. Test pulses are injected into near-ends of conductors 11a, 12a in a live-conductor state via injection impedances 14a, 14b. In the case of the sound-phase cable 11, reflected pulses at a remote end B or in a cable joint are returned to the near end A. In the case of the degraded-phase cable 12 which is degraded in the point F, the injected pulses are reflected partly even in the degraded point F, and the reflected pulses in the degraded point F can be obtained after a prescribed time. When the reflected pulses in both cables 11, 12 are observed by a waveform observation device 18 via a differential circuit 17, only the reflected pulses in the degraded point F are extracted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活線状態において
電力ケーブルの劣化点の位置及び劣化程度の測定を行う
ケーブルの劣化測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cable deterioration measuring method for measuring the position and degree of deterioration of a power cable in a live state.

【0002】[0002]

【従来の技術】電力ケーブルに不測の事故が発生した場
合に、この事故点をケーブルの端末からの距離として求
める方法は幾つか知られている。これらは、マーレール
ープ法やマーレーフイシャ法等に代表され、線路の導体
抵抗比を基に平衡条件を求めて測定するブリッジ法と、
進行波パルスの到達時間差を検出して測定するパルスレ
ーダ法に大別される。
2. Description of the Related Art When an unexpected accident occurs in a power cable, several methods are known for finding the point of the accident as a distance from a terminal of the cable. These are represented by the Murray loop method, the Murray Fischer method, etc., and are based on the bridge method, which measures the equilibrium condition based on the conductor resistance ratio of the line,
The method is broadly classified into a pulse radar method that detects and measures the arrival time difference of a traveling wave pulse.

【0003】比較的よく用いられるパルスレーダ法で
は、例えば図3に示すように事故相線1の近端Aの導体
2にパルス発生器3で生成した試験パルスを送出し、事
故点Fで反射されて戻ってくる反射パルスをオシロスコ
ープ4等で観測する。なお、活線状態で測定する場合に
は、試験パルスは注入インピーダンスを介して導体2に
注入することになる。
In the pulse radar method which is relatively frequently used, for example, as shown in FIG. 3, a test pulse generated by a pulse generator 3 is transmitted to a conductor 2 at a near end A of an accident phase line 1 and reflected at an accident point F. The returned reflected pulse is observed with the oscilloscope 4 or the like. When measuring in a live state, a test pulse is injected into the conductor 2 via an injection impedance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、ケーブル途中のジョイント部などでも
反射パルスが発生し、事故点Fの位置の特定及びその劣
化程度の大きさの判定は熟練者であっても容易ではな
い。
However, in the above-described conventional example, a reflected pulse is generated even at a joint portion in the middle of the cable, and the location of the accident point F and the determination of the degree of its deterioration are determined by an expert. Not easy.

【0005】本発明の目的は、上述した従来例の問題点
を解消し、活線状態において電力ケーブルが事故に至る
以前の劣化状態で劣化点の位置及び劣化程度を、正確か
つ容易に測定することが可能なケーブルの劣化測定方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to accurately and easily measure the position and the degree of deterioration of a power cable in a deteriorated state before an accident occurs in a live state. It is an object of the present invention to provide a method for measuring the deterioration of a cable which is possible.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係るケーブルの劣化測定方法は、劣化点を
有する劣化相ケーブルと該劣化相ケーブルに並設した健
全相ケーブルとのそれぞれの遮蔽に接地インピーダンス
を介して活線状態において同時に試験パルスを注入し、
前記両ケーブル線路に注入した試験パルスと線路中で戻
ってくる反射パルス同士を差動的に検出し、得られた反
射パルスの伝送時間及び振幅から前記劣化相ケーブルの
劣化位置及びその劣化程度を求めることを特徴とする。
To achieve the above object, a method for measuring the deterioration of a cable according to the present invention comprises a method of measuring a deteriorated phase cable having a deteriorated point and a sound phase cable juxtaposed to the deteriorated phase cable. The test pulse is injected simultaneously in the live state through the ground impedance to the shield of
The test pulse injected into both cable lines and the reflected pulse returning in the line are differentially detected, and the deterioration position and the degree of deterioration of the deteriorated phase cable are determined from the transmission time and amplitude of the obtained reflected pulse. It is characterized by seeking.

【0007】[0007]

【発明の実施の形態】本発明による測定法を、図1、図
2に図示の実施例に基づいて詳細に説明する。図1はこ
の測定法の説明図であり、健全相ケーブル11及び劣化
相ケーブル12は同長の既設の線路であり、並列して布
線され、劣化相ケーブル12には劣化点Fが存在するも
のとする。ケーブル11、12の導体11a、12a
は、絶縁層11b、12bを介在して金属遮蔽層11
c、12cによって包囲されている。活線状態における
導体11a、12aに試験パルスを注入するために、パ
ルス発生器13をコンデンサから成る注入インピーダン
ス14a、14bを介して近端Aにおいて接続する。な
お、11d、12dは試験パルスを健全相ケーブル1
1、劣化相ケーブル12に注入するための閉回路形成用
静電容量であって、近端Aの導体11a、12aと周囲
の接地体との静電容量、或いは既設の電力用変圧器の巻
線静電容量、或いはケーブル11、12の近端Aに接続
された他のケーブルの静電容量などである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The measuring method according to the present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 is an explanatory diagram of this measurement method. The healthy phase cable 11 and the deteriorated phase cable 12 are existing lines having the same length, are laid in parallel, and the deteriorated phase cable 12 has a deterioration point F. Shall be. Conductors 11a, 12a of cables 11, 12
Is a metal shielding layer 11 with insulating layers 11b and 12b interposed.
c, 12c. In order to inject a test pulse into the conductors 11a, 12a in the hot state, a pulse generator 13 is connected at the near end A via injection impedances 14a, 14b consisting of capacitors. Note that 11d and 12d apply the test pulse to the sound phase cable 1
1. A closed circuit forming capacitance to be injected into the deteriorated phase cable 12, which is a capacitance between the conductors 11a and 12a at the near end A and a surrounding grounding body, or a winding of an existing power transformer. The line capacitance or the capacitance of another cable connected to the near end A of the cables 11 and 12.

【0008】また近端Aにおいて、導体11a、12a
と遮蔽層11c、12cに検出インピーダンス15、1
6を介して差動回路17を接続し、この差動回路17の
出力をオシロスコープなどの波形観測器18に接続す
る。更に、検出インピーダンス15、16のコモン回路
として、遮蔽層11c、12cには商用周波運転電圧に
よる充電々流の接地インピーダンス19a、19bを接
続し、これらの中点を接地すると共に差動回路7に接続
する。この接地インピーダンス19a、19bは商用周
波数に対しては低く、試験パルスに対しては高い特性を
有している。
At the near end A, conductors 11a, 12a
And the shielding layers 11c and 12c have detection impedances 15 and 1
The differential circuit 17 is connected via a line 6, and the output of the differential circuit 17 is connected to a waveform observer 18 such as an oscilloscope. Further, as a common circuit of the detection impedances 15 and 16, the shield layers 11c and 12c are connected to ground impedances 19a and 19b of charging currents by the commercial frequency operation voltage. Connecting. The ground impedances 19a and 19b have low characteristics with respect to the commercial frequency and high characteristics with respect to the test pulse.

【0009】ケーブルのサージインピーダンスZ0は、ケ
ーブルの長さをL、静電容量をCとすると、 Z0=(L/C)1/2 …(1) の式で表される。この場合の劣化相ケーブル12の劣化
点Fにおける劣化点インピーダンスをZ1とすると、劣化
点Fにおける試験パルスの反射係数mは、 m=(Z1−Z0)/(Z1+Z0) …(2) の式で表される。
The surge impedance Z0 of the cable is expressed by the following equation, where L is the length of the cable and C is the capacitance. Z0 = (L / C) 1/2 (1) Assuming that the impedance at the deterioration point F of the deterioration phase cable 12 in this case is Z1, the reflection coefficient m of the test pulse at the deterioration point F is m = (Z1−Z0) / (Z1 + Z0) (2) expressed.

【0010】健全相ケーブル11の場合には、パルス発
生器13から近端Aで導体11aに数μSの幅のパルス
Paのパルスを注入し、伝送時間を横軸にとると、図2
(a) に示すような時間軸に対する反射パルスが現れる。
即ち、近端Aには遠端BやケーブルジョイントJにおけ
る反射パルスPb、Pjが戻り、例えば遠端Bからの反射パ
ルスPbは時間t1後に戻ってくる。パルスの伝播速度vは
一定であるから、パルスの伝送時間t1は近端Aから反射
点までの距離に比例する。ここで、遠端Bの反射点まで
の距離をLとすると、 L=v・t1/2 …(3) という式が成立する。
In the case of the sound phase cable 11, a pulse having a width of several μS is applied from the pulse generator 13 to the conductor 11a at the near end A.
When the pulse of Pa is injected and the transmission time is plotted on the horizontal axis, Fig. 2
A reflected pulse on the time axis as shown in FIG.
That is, the reflected pulses Pb and Pj at the far end B and the cable joint J return to the near end A, and for example, the reflected pulses Pb from the far end B return after time t1. Since the pulse propagation speed v is constant, the pulse transmission time t1 is proportional to the distance from the near end A to the reflection point. Here, assuming that the distance from the far end B to the reflection point is L, the following equation is established: L = v · t1 / 2 (3)

【0011】次に、点Fに劣化を有する劣化相ケーブル
12では、上述したようにその劣化点Fの劣化点インピ
ーダンスZ1がサージインピーダンスZ0と異なると、近端
Aから注入したパルスPaは健全相ケーブル11と同様に
ケーブルジョイントJ、遠端Bで反射されると共に、劣
化点Fにおいても一部が反射され、図2(b) に示すよう
な劣化点Fにおける反射パルスPfが時間t2後に得られる
ことになる。また、遠端Bからの反射パルスPb等も得ら
れる。近端Aから劣化点Fまでの距離Lfは、(3) 式と同
様に、 Lf=v・t2/2 …(4) という関係式が成立する。従って、(3) 、(4) 式から、 Lf=(L/t1)・t2 …(5) なる式が導出される。
Next, in the deteriorated phase cable 12 having the deterioration at the point F, if the deterioration point impedance Z1 of the deterioration point F is different from the surge impedance Z0 as described above, the pulse Pa injected from the near end A becomes a sound phase. Like the cable 11, the light is reflected at the cable joint J and the far end B, and a part is also reflected at the deterioration point F. A reflection pulse Pf at the deterioration point F as shown in FIG. Will be done. Also, a reflected pulse Pb from the far end B and the like are obtained. The distance Lf from the near end A to the deterioration point F satisfies the relational expression Lf = v · t2 / 2 (4), similar to the expression (3). Therefore, from the equations (3) and (4), the following equation is derived: Lf = (L / t1) · t2 (5)

【0012】両ケーブル11、12における反射パルス
Pb、Pj、Pfを差動回路17を介して波形観測器18で観
測すると、遠端Bの位置やジョイント部の位置は両ケー
ブル11、12で共通しているので、これらの個所にお
ける反射波Pb、Pjはほぼ打ち消される。そして、図2
(c) に示すような劣化点Fにおける反射パルスPfのみが
抽出される。なお、実際に得られる反射波信号は、大き
な振幅の商用周波数に僅かに重畳されているために、接
地インピーダンス19a、19bによって商用周波数等
の基本波は除去される。
The reflected pulse on both cables 11 and 12
When Pb, Pj, and Pf are observed by the waveform observer 18 through the differential circuit 17, the positions of the far end B and the joint are common to the cables 11 and 12, so the reflected waves at these points are Pb and Pj are almost cancelled. And FIG.
Only the reflection pulse Pf at the deterioration point F as shown in FIG. Since the actually obtained reflected wave signal is slightly superimposed on the commercial frequency having a large amplitude, the fundamental wave such as the commercial frequency is removed by the ground impedances 19a and 19b.

【0013】近端Aから劣化点Fまでの距離Lfは、反射
パルスPfが戻ってくる時間t2から求めることができる。
即ち、ケーブル11、12の全長Lを往復する時間t1を
予め測定しておけば、反射パルスPfの伝送時間t2を測定
するだけで、(5) 式から劣化点Fの位置を知ることがで
きる。
The distance Lf from the near end A to the deterioration point F can be obtained from the time t2 when the reflected pulse Pf returns.
That is, if the time t1 for reciprocating the entire length L of the cables 11 and 12 is measured in advance, the position of the deterioration point F can be known from the equation (5) only by measuring the transmission time t2 of the reflected pulse Pf. .

【0014】また、劣化が進行すると劣化点インピーダ
ンスZ1がサージインピーダンスZ0と大きく異なり、(2)
式から反射係数mも大きくなるので、波形観測器18で
観察される劣化点Fによる反射パルスPfの振幅が大きく
なる。従って、反射パルスPfの振幅値から劣化相ケーブ
ル12の劣化程度を知ることが可能となる。
When the deterioration proceeds, the impedance Z1 of the deterioration point is significantly different from the surge impedance Z0.
Since the reflection coefficient m also increases from the equation, the amplitude of the reflection pulse Pf due to the deterioration point F observed by the waveform observer 18 increases. Therefore, it is possible to know the degree of deterioration of the deteriorated phase cable 12 from the amplitude value of the reflected pulse Pf.

【0015】[0015]

【発明の効果】以上説明したように本発明に係るケーブ
ルの劣化測定方法によれば、活線状態において健全相ケ
ーブルと劣化相ケーブルに同時に試験パルスを注入し、
両反射パルスを差動的に求めて劣化点における反射パル
スのみを抽出するので、劣化点の位置及び劣化程度を正
確かつ容易に検出することが可能になる。
As described above, according to the method for measuring deterioration of a cable according to the present invention, a test pulse is simultaneously injected into a healthy phase cable and a deteriorated phase cable in a live state.
Since both reflected pulses are obtained differentially and only the reflected pulse at the deterioration point is extracted, the position and the degree of deterioration of the deterioration point can be accurately and easily detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための構成図である。FIG. 1 is a configuration diagram for implementing the present invention.

【図2】パルスのタイミングチャート図である。FIG. 2 is a timing chart of a pulse.

【図3】従来例の構成図である。FIG. 3 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

11 健全相ケーブル 12 劣化相ケーブル 13 パルス発生器 14a、14b 注入インピーダンス 15、16 検出インピーダンス 17 差動回路 18 波形観測器 19 接地インピーダンス DESCRIPTION OF SYMBOLS 11 Healthy phase cable 12 Degraded phase cable 13 Pulse generator 14a, 14b Injection impedance 15, 16 Detection impedance 17 Differential circuit 18 Waveform observer 19 Ground impedance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 昭夫 埼玉県熊谷市新堀1008番地 三菱電線工業 株式会社熊谷製作所内 (72)発明者 田中 滋 東京都千代田区丸の内三丁目4番1号 三 菱電線工業株式会社東京事務所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akio Miura 1008 Niibori, Kumagaya-shi, Saitama Mitsubishi Cable Industries, Ltd. Kumagaya Works (72) Inventor Shigeru Tanaka 3-4-1 Marunouchi, Chiyoda-ku, Tokyo Industrial Co., Ltd. Tokyo Office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 劣化点を有する劣化相ケーブルと該劣化
相ケーブルに並設した健全相ケーブルとのそれぞれの遮
蔽と大地間に接地インピーダンスを介して活線状態にお
いて同時に試験パルスを注入し、前記両ケーブル線路に
注入した試験パルスと線路中で戻ってくる反射パルス同
士を差動的に検出し、得られた反射パルスの伝送時間及
び振幅から前記劣化相ケーブルの劣化位置及びその劣化
程度を求めることを特徴とするケーブルの劣化測定方
法。
1. A test pulse is simultaneously injected in a live state between a shield and a ground of a degraded phase cable having a degraded point and a sound phase cable juxtaposed to the degraded phase cable via a ground impedance. The test pulse injected into both cable lines and the reflected pulse returning in the line are differentially detected, and the deterioration position and the degree of deterioration of the deteriorated phase cable are obtained from the transmission time and amplitude of the obtained reflected pulse. A method for measuring deterioration of a cable, comprising:
JP26130696A 1996-09-10 1996-09-10 Method for measuring degradation of cable Pending JPH1090343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26130696A JPH1090343A (en) 1996-09-10 1996-09-10 Method for measuring degradation of cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26130696A JPH1090343A (en) 1996-09-10 1996-09-10 Method for measuring degradation of cable

Publications (1)

Publication Number Publication Date
JPH1090343A true JPH1090343A (en) 1998-04-10

Family

ID=17359966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26130696A Pending JPH1090343A (en) 1996-09-10 1996-09-10 Method for measuring degradation of cable

Country Status (1)

Country Link
JP (1) JPH1090343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023105A (en) * 2004-07-06 2006-01-26 Hitachi Cable Ltd Method of detecting disconnection in electric wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023105A (en) * 2004-07-06 2006-01-26 Hitachi Cable Ltd Method of detecting disconnection in electric wire

Similar Documents

Publication Publication Date Title
US5352984A (en) Fault and splice finding system and method
US4438389A (en) Method for utilizing three-dimensional radiated magnetic field gradients for detecting serving faults in buried cables
TWI619950B (en) Pseudo-point calibration device
JPH1090337A (en) Method for deterioration measurement of cable
JP3247049B2 (en) Cable deterioration diagnosis method
JPH1090343A (en) Method for measuring degradation of cable
JPS6255570A (en) Location of fault point for cable line
Gu et al. On-line calibration of partial discharge monitoring for power cable by HFCT method
JPH1090342A (en) Method for measuring degradation of power cable
Mardiana et al. Phase difference method for two-end partial discharge location in power cables
JP3131057B2 (en) Cable electrical length measurement method
JPH0436329B2 (en)
Kwak et al. Application of time-frequency domain reflectometry for measuring load impedance
JPH01161165A (en) Locating method for power transmission line accident point
JP2568143B2 (en) Method of measuring accumulated space charge distribution of power cable
Hong et al. Development of a Multiple HFCT-Based Reflectometry System for Live Cable Diagnosis
JP2782078B2 (en) How to measure cable fault points
JPS5912632Y2 (en) Cable sheath surge shielding coefficient measurement circuit
Kojima et al. Fault point localization of power feeding lines in optical submarine cables
JPH0353583B2 (en)
RU2013781C1 (en) Device for measurement of parameters of electromagnetic pulse
JPH09211063A (en) Method and apparatus for injecting calibration pulse
JPH03175374A (en) Locating method for partial discharge position
JPH03246473A (en) Partial discharge measuring method
JPH08178997A (en) Partial discharge measuring method for power cable