JPH0832973B2 - Method for producing activated carbon fiber - Google Patents

Method for producing activated carbon fiber

Info

Publication number
JPH0832973B2
JPH0832973B2 JP2034691A JP3469190A JPH0832973B2 JP H0832973 B2 JPH0832973 B2 JP H0832973B2 JP 2034691 A JP2034691 A JP 2034691A JP 3469190 A JP3469190 A JP 3469190A JP H0832973 B2 JPH0832973 B2 JP H0832973B2
Authority
JP
Japan
Prior art keywords
acf
activated carbon
carbon fiber
vgcf
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2034691A
Other languages
Japanese (ja)
Other versions
JPH03237011A (en
Inventor
正文 松本
勝英 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2034691A priority Critical patent/JPH0832973B2/en
Publication of JPH03237011A publication Critical patent/JPH03237011A/en
Publication of JPH0832973B2 publication Critical patent/JPH0832973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は活性炭素繊維の製造方法に係り、特に、有機
溶剤の吸着特性に優れた活性炭素繊維を製造する方法に
関する。
TECHNICAL FIELD The present invention relates to a method for producing activated carbon fibers, and more particularly to a method for producing activated carbon fibers having excellent adsorption characteristics for organic solvents.

[従来の技術] 活性炭は気相又は液相における微量有機化合物の除
去、回収に広く用いられている。近年、繊維状の活性炭
が高吸着能で優れた加工性を有することから各種分野で
の需要が高まりつつある。
[Prior Art] Activated carbon is widely used for removing and recovering a trace amount of organic compounds in a gas phase or a liquid phase. In recent years, since fibrous activated carbon has high adsorption ability and excellent processability, demand in various fields is increasing.

従来の提供される活性炭素繊維(以下「ACF」と言
う。)は、ピッチ系、ポリアクリロニトル系又はフェノ
ール系長繊維をベースにしたもので、これを炭化、賦活
処理して製造されている。
Conventionally provided activated carbon fibers (hereinafter referred to as "ACF") are based on pitch-based, polyacrylonitrile-based or phenol-based long fibers, which are manufactured by carbonizing and activating treatment. .

また、特開昭61−219710号には、気相成長炭素繊維
(VGCF)を酸化してACFを製造することが記載されてい
る。
Further, JP-A-61-219710 describes that ACF is produced by oxidizing vapor grown carbon fiber (VGCF).

[発明が解決しようとする課題] 従来のACFは、その表面に賦活処理による含酸素官能
基が多量に存在する。このため親水性を示し易く、有機
溶剤等の吸着性が十分ではないという欠点がある。特
に、ピッチ系のACFでは、不純物が多いために、吸着後
のスチーム再生時における酸生成の問題もある。
[Problems to be Solved by the Invention] A conventional ACF has a large amount of oxygen-containing functional groups by activation treatment on its surface. For this reason, it has a drawback that it tends to exhibit hydrophilicity and its adsorbability for organic solvents and the like is not sufficient. In particular, pitch-based ACF has a problem of acid generation during steam regeneration after adsorption due to the large amount of impurities.

特開昭61−219710号のACFは、繊維表面に含酸素官能
基が多量に付着しているため、親油性に劣る。また、細
孔分布が広いので、分子篩効果が得られない。
The ACF of JP-A No. 61-219710 has poor lipophilicity because a large amount of oxygen-containing functional groups are attached to the fiber surface. Moreover, since the pore distribution is wide, the molecular sieve effect cannot be obtained.

[課題を解決するための手段] 本発明のACFの製造方法は、Feを、Fe/気相成長炭素繊
維重量比1×10-3〜1×10-2の割合で担持させた気相成
長炭素繊維を酸化性雰囲気中、600〜1200℃で10〜120分
間賦活処理して比表面積を200〜450m2/gとすることを特
徴とする。
[Means for Solving the Problems] In the method for producing ACF of the present invention, vapor phase growth in which Fe is supported at a weight ratio of Fe / vapor grown carbon fiber of 1 × 10 −3 to 1 × 10 −2 is used. The carbon fiber is activated in an oxidizing atmosphere at 600 to 1200 ° C. for 10 to 120 minutes to have a specific surface area of 200 to 450 m 2 / g.

以下に本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のACFの原料となる気相成長炭素繊維(以下「V
GCF」と言う。)は、触媒を核として炭化水素ガスの熱
分解反応により気相中で生成するものである。VGCFは通
常、直径0.005〜5μm、アスペクト比10以上、好まし
くは100〜1000、嵩密度0.01〜0.2g/cm3、炭素含有率99
重量%の炭素質ウィスカーである。
Vapor grown carbon fiber (hereinafter referred to as “V
GCF ”. ) Is produced in the gas phase by the thermal decomposition reaction of hydrocarbon gas with the catalyst as the nucleus. VGCF usually has a diameter of 0.005 to 5 μm, an aspect ratio of 10 or more, preferably 100 to 1000, a bulk density of 0.01 to 0.2 g / cm 3 , and a carbon content of 99.
% Carbonaceous whiskers.

本発明のACFの製造方法は、このようなVGCFを、Feを
担持させた後、二酸化炭素、水蒸気、空気、燃焼ガス等
の酸化性雰囲気中、600〜1200℃で10〜120分間賦活処理
して比表面積を200〜450m2/gとするものである。
The production method of ACF of the present invention, such VGCF, after supporting Fe, carbon dioxide, water vapor, air, in an oxidizing atmosphere such as combustion gas, activated treatment at 600 ~ 1200 ℃ 10 ~ 120 minutes. The specific surface area is 200 to 450 m 2 / g.

賦活処理の温度が600℃未満であるとVGCFは耐酸化性
があるため賦活反応が進行しない。1200℃を超えると賦
活反応が進みすぎ、歩留りがほとんどなくなる。また、
処理時間が、10分未満では賦活反応が充分進まず比表面
積が拡大しない。120分を超えると反応時間が長すぎる
ため、細孔が大きくなりすぎて比表面積が小さくなって
くる。好ましい賦活処理条件は、800〜1000℃で、30〜6
0分である。
If the activation temperature is lower than 600 ° C, VGCF has oxidation resistance and the activation reaction does not proceed. If it exceeds 1200 ° C, the activation reaction will proceed too much, and the yield will almost disappear. Also,
If the treatment time is less than 10 minutes, the activation reaction does not proceed sufficiently and the specific surface area does not expand. If it exceeds 120 minutes, the reaction time is too long, so that the pores become too large and the specific surface area becomes small. The preferred activation treatment conditions are 800 to 1000 ° C. and 30 to 6
0 minutes.

また、本発明においてACFの比表面積が200m2/g未満で
は、比表面積が小さ過ぎて、十分な吸着性能が得られな
い。逆に450m2/gを超えると繊維表面に含酸素官能基が
多量に付着し、親水性が付与されて有機溶剤の吸着特性
が損なわれる。
Further, in the present invention, when the specific surface area of ACF is less than 200 m 2 / g, the specific surface area is too small and sufficient adsorption performance cannot be obtained. On the other hand, if it exceeds 450 m 2 / g, a large amount of oxygen-containing functional groups will be attached to the fiber surface, imparting hydrophilicity and impairing the adsorption property of the organic solvent.

ACFの比表面積を上記範囲とするためには、Fe(NO3
・9H2O水溶液(エタノールを溶液/エタノール比7/3
で混合)にVGCFを含浸させてFeを担持させる。Feの担持
量は、Fe/VGCF重量比1×10-3〜1×10-2の範囲、好ま
しくは5×10-3とする。Feの触媒作用により賦活反応を
効率良く行なうことができる。
To keep the specific surface area of ACF within the above range, Fe (NO 3 )
3 · 9H 2 O solution (ethanol solution / ethanol ratio 7/3
(Mixed in) is impregnated with VGCF to support Fe. The supported amount of Fe is in the range of 1 × 10 −3 to 1 × 10 −2 Fe / VGCF weight ratio, and preferably 5 × 10 −3 . The activation reaction can be efficiently carried out by the catalytic action of Fe.

本発明のACFは各種有機溶剤に対して極めて高い吸着
性能を示す。適用溶剤としては特に制限はないが、例え
ば次のようなものが挙げられる。
The ACF of the present invention exhibits extremely high adsorption performance for various organic solvents. The applicable solvent is not particularly limited, but examples thereof include the following.

適用溶剤 石油系炭化水素:ベンゼン、トルエン、n−ヘキサン、
ナフサ、シクロヘキサン ハロゲン化炭化水素:トリクロロエチレン、テトラクロ
ロエチレン、1,1,1−トリクロロエタン、塩化メチレ
ン、トリクロロベンゼン、クロロホルム、四塩化炭素、
フレオン ケトン類:アセトン、シクロヘキサノン エステル類:エチルアセテート、ブチルアセテート、メ
チルシクロヘキシル エーテル類:メチルエーテル、ジオキサン、THF(テト
ラヒドロフラン)、フルフラール アルコール類:メタノール、エタノール、イソプロピル
アルコール、ブタノール [作用] Feを担持したVGCFを特定条件で賦活処理して得られ
る、比表面積が200〜450m2/gのACFは、通常の活性炭に
比べて比表面積はさほど大きくはないが、ESCA(「Elec
tron Spectroscopy for Chemical Analysis」の略)分
析によれば、繊維表面に含酸素官能基が殆ど付着してお
らず、極めて高い親油性を示す。このため、有機溶剤に
対して著しく高い親和性を示す。そして、細孔分布は10
〜100Åの間の狭い範囲に存在しており、分子篩効果に
よる選択的吸着作用をも奏する。
Applicable solvents Petroleum hydrocarbons: benzene, toluene, n-hexane,
Naphtha, cyclohexane halogenated hydrocarbons: trichloroethylene, tetrachloroethylene, 1,1,1-trichloroethane, methylene chloride, trichlorobenzene, chloroform, carbon tetrachloride,
Freon Ketones: acetone, cyclohexanone Esters: ethyl acetate, butyl acetate, methylcyclohexyl Ethers: methyl ether, dioxane, THF (tetrahydrofuran), furfural Alcohols: methanol, ethanol, isopropyl alcohol, butanol [Action] Fe supported ACF having a specific surface area of 200 to 450 m 2 / g obtained by activating VGCF under specific conditions has a smaller specific surface area than ordinary activated carbon, but ESCA (“Elec
(Abbreviation for tron spectroscopy for chemical analysis) analysis shows that oxygen-containing functional groups are scarcely attached to the fiber surface, indicating extremely high lipophilicity. Therefore, it has a remarkably high affinity for organic solvents. And the pore distribution is 10
It exists in a narrow range between ~ 100Å and also exerts a selective adsorption action by the molecular sieve effect.

因みに、VGCFを酸化処理して得られる比表面積500〜3
000m2/gのACFは従来提案されているが(特開昭61−2197
10号)、このものは比表面積が高い反面、繊維表面に含
酸素官能基が多量に付着しているため、親油性に劣る。
また、細孔分布も広いので、分子篩効果は得られない。
By the way, the specific surface area obtained by oxidizing VGCF is 500 to 3
Although an ACF of 000 m 2 / g has been proposed in the past (JP-A-61-2197
No. 10), this product has a high specific surface area, but on the other hand, it has inferior lipophilicity because a large amount of oxygen-containing functional groups are attached to the fiber surface.
Moreover, since the pore distribution is wide, the molecular sieve effect cannot be obtained.

ところで、VGCFは前述のような物性を有する微細で嵩
密度が小さく軽量な炭素質ウィスカーである。
By the way, VGCF is a carbonaceous whisker that has the above-described physical properties and is fine, has a small bulk density, and is lightweight.

そして、VGCFはその生成機構上、耐熱性で炭素純度が
高く、高温加熱再生が可能で、スチーム再生処理による
酸生成等の問題もない。
VGCF has high heat resistance and high carbon purity due to its generation mechanism, can be regenerated at high temperature, and has no problems such as acid generation due to steam regeneration treatment.

このような優れた特性を有するVGCFを原料とする本発
明のACFは、原料VGCFの優れた特性を引き継いでいるた
め、軽量で嵩密度の小さいウィスカーが絡んだバルク形
態を示すため、充填密度を自在に変えることができ、ま
た、充填槽の形状に左右されず、処理流体への圧損も殆
ど生じないという利点も備える。
The ACF of the present invention made from VGCF having such excellent properties as a raw material inherits the excellent properties of the raw material VGCF, and therefore exhibits a bulk morphology in which whiskers having a small weight and a small bulk density are entangled, so that the packing density is It has the advantage that it can be changed freely, and that it is not affected by the shape of the filling tank and that pressure loss to the processing fluid hardly occurs.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的
に説明するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist.

実施例1〜3,比較例1,2 下記物性のVGCFを、第1表に示す割合で繊維にFeを担
持させた後、第1表に示す条件にて賦活処理して、第1
表に示す比表面積のACFを得、その吸着性能(30℃にお
ける平衡吸着量(mg/gdb))及び細孔分布を調べ、結果
を第1表に示した。
Examples 1 to 3 and Comparative Examples 1 and 2 VGCF having the following physical properties was supported on the fibers with Fe at the ratio shown in Table 1, and then activated under the conditions shown in Table 1,
ACFs having specific surface areas shown in the table were obtained, and their adsorption performance (equilibrium adsorption amount at 30 ° C. (mg / gdb)) and pore distribution were examined, and the results are shown in Table 1.

VGCF物性 平均直径:0.05μm アスペクト比:100〜1000 嵩密度:0.05g/cm3 炭素含有率:99重量% 比較例3,4 ヤシガラ活性炭、石炭系活性炭について同様に吸着性
能及び細孔分布を調べ、結果を第1表に示した。
VGCF physical properties Average diameter: 0.05 μm Aspect ratio: 100-1000 Bulk density: 0.05 g / cm 3 Carbon content: 99% by weight Comparative Examples 3,4 Similarly, the adsorption performance and pore distribution of coconut shell activated carbon and coal-based activated carbon were investigated. The results are shown in Table 1.

第1表より、本発明のACFは、有機溶剤の吸着特性に
著しく優れ、また細孔分布領域も狭いことから、分子篩
効果による選択的吸着も期待されることが明らかである なお、実施例1〜3のACFと、比較例2のACFについ
て、ESCA分析を行なったところ、実施例1〜3のACFに
は含酸素官能基は全く付着していなかったが、比較例2
のACFには含酸素官能基の付着が確認された。
From Table 1, it is clear that the ACF of the present invention is remarkably excellent in the adsorption property of the organic solvent and has a narrow pore distribution region, so that selective adsorption due to the molecular sieve effect is also expected. When ESCA analysis was performed on the ACFs of Nos. 3 to 3 and the ACF of Comparative Example 2, no oxygen-containing functional group was attached to the ACFs of Examples 1 to 3, but Comparative Example 2
It was confirmed that oxygen-containing functional groups were attached to the ACF.

[発明の効果] 以上詳述した通り、本発明方法により製造されるACF
は、 親油性が著しく高く、気相、液相のいずれにおいて
も有機溶剤の吸着性能が極めて高い。
[Effects of the Invention] As described in detail above, the ACF produced by the method of the present invention
Has a remarkably high lipophilicity, and has an extremely high organic solvent adsorption performance in both the gas phase and the liquid phase.

細孔分布が狭いことから、分子篩効果による選択的
吸着作用が得られる。
Since the pore distribution is narrow, a selective adsorption effect due to the molecular sieve effect can be obtained.

バルク形態を呈するため、充填密度を自在に変える
ことができる。また、充填槽の形状に左右されず、処理
流体への圧損も殆ど生じない。
Since it has a bulk form, the packing density can be freely changed. Further, the pressure loss to the processing fluid hardly occurs regardless of the shape of the filling tank.

等の優れた特性を備える。従って、本発明により製造さ
れるACFは有機溶剤の効率的な分離・回収に極めて有用
である。
It has excellent characteristics such as. Therefore, the ACF produced by the present invention is extremely useful for efficient separation / recovery of organic solvents.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Feを、Fe/気相成長炭素繊維重量比1×10
-3〜1×10-2の割合で担持させた気相成長炭素繊維を酸
化性雰囲気中、600〜1200℃で10〜120分間賦活処理して
比表面積を200〜450m2/gとすることを特徴とする活性炭
素繊維の製造方法。
1. The weight ratio of Fe to vapor grown carbon fiber is 1 × 10.
-Activate the vapor-grown carbon fibers supported at a ratio of -3 to 1 x 10 -2 in an oxidizing atmosphere at 600 to 1200 ° C for 10 to 120 minutes to obtain a specific surface area of 200 to 450 m 2 / g. A method for producing activated carbon fiber, comprising:
JP2034691A 1990-02-15 1990-02-15 Method for producing activated carbon fiber Expired - Fee Related JPH0832973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2034691A JPH0832973B2 (en) 1990-02-15 1990-02-15 Method for producing activated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034691A JPH0832973B2 (en) 1990-02-15 1990-02-15 Method for producing activated carbon fiber

Publications (2)

Publication Number Publication Date
JPH03237011A JPH03237011A (en) 1991-10-22
JPH0832973B2 true JPH0832973B2 (en) 1996-03-29

Family

ID=12421406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034691A Expired - Fee Related JPH0832973B2 (en) 1990-02-15 1990-02-15 Method for producing activated carbon fiber

Country Status (1)

Country Link
JP (1) JPH0832973B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339818A (en) * 1992-06-11 1993-12-21 Mitsui Eng & Shipbuild Co Ltd Carbon fiber made by activated vapor phase
CA2453968A1 (en) 2001-09-11 2003-03-27 Showa Denko K.K. Activated carbon material, and production method and use thereof
JP2005052713A (en) * 2003-08-01 2005-03-03 Kazuo Miyatani Carbon fiber supported porous titanium oxide photocatalyst and filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219710A (en) * 1985-03-23 1986-09-30 Asahi Chem Ind Co Ltd Activated carbonaceous fiber

Also Published As

Publication number Publication date
JPH03237011A (en) 1991-10-22

Similar Documents

Publication Publication Date Title
Hou et al. Multi-step purification of carbon nanotubes
US5626650A (en) Process for separating components from gaseous streams
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
US5413866A (en) High performance carbon filament structures
US5458784A (en) Removal of contaminants from aqueous and gaseous streams using graphic filaments
US5149584A (en) Carbon fiber structures having improved interlaminar properties
US8562937B2 (en) Production of carbon nanotubes
US5968650A (en) Three dimensional interpenetrating networks of macroscopic assemblages of randomly oriented carbon fibrils and organic polymers
JP2008517863A (en) Improved ozonolysis of carbon nanotubes
US20030012722A1 (en) High yiel vapor phase deposition method for large scale sing walled carbon nanotube preparation
US6113819A (en) Three dimensional interpenetrating networks of macroscopic assemblages of oriented carbon fibrils and organic polymers
EP1194211A1 (en) Method for introducing hydrogen into layered nanostructures
US20100038602A1 (en) Method for preparing carbon fibrils and/or nanotubes from a carbon source integrated with the catalyst
KR20020084087A (en) High yield vapor phase deposition method for large scale single walled carbon nanotube preparation
CN112973625A (en) Lignin-based carbon nanotube and preparation method and application thereof
JPH0832973B2 (en) Method for producing activated carbon fiber
CN1699151A (en) Process for preparing nano carbon tube
JP2005097024A (en) Method for refining composition containing carbon nanotube
JP2004352605A (en) Method for refining composition comprising carbon nanotube
JP3791528B2 (en) Method for purifying a composition containing carbon nanotubes
Li et al. Preparation and characterization of porous carbon beads and their application in dispersing small metal crystallites
KR101038231B1 (en) Platelet-type slit vapor-grown carbon fiber and process for production thereof
JP2981023B2 (en) Porous carbon fiber, method for producing the same, method for producing porous graphite fiber, and method for treating porous carbon fiber
KR100726368B1 (en) Fibrous nano-carbon
CN117396429A (en) Long and narrow diameter carbon nanotubes and catalysts for preparing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees