JPH0824040B2 - Method for manufacturing hydrogen storage electrode - Google Patents

Method for manufacturing hydrogen storage electrode

Info

Publication number
JPH0824040B2
JPH0824040B2 JP1235145A JP23514589A JPH0824040B2 JP H0824040 B2 JPH0824040 B2 JP H0824040B2 JP 1235145 A JP1235145 A JP 1235145A JP 23514589 A JP23514589 A JP 23514589A JP H0824040 B2 JPH0824040 B2 JP H0824040B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage electrode
electrode
hydrogen
fep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1235145A
Other languages
Japanese (ja)
Other versions
JPH0398261A (en
Inventor
哲男 境
博 石川
信宏 栗山
淳 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyoda Jidoshokki Seisakusho KK filed Critical Agency of Industrial Science and Technology
Priority to JP1235145A priority Critical patent/JPH0824040B2/en
Publication of JPH0398261A publication Critical patent/JPH0398261A/en
Publication of JPH0824040B2 publication Critical patent/JPH0824040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素を負極活物質とするアルカリ二次電池
の負極として用いられる水素吸蔵電極の製造方法に関
し、詳しくは、大型電極の製造を容易化しかつその放電
特性の改善を図った水素吸蔵電極の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage electrode used as a negative electrode of an alkaline secondary battery using hydrogen as a negative electrode active material, and more specifically to the production of a large electrode. The present invention relates to a method for manufacturing a hydrogen storage electrode, which is facilitated and whose discharge characteristics are improved.

[従来技術] 従来、アルカリ二次電池の一つとして金属酸化物を正
極活物質とし水素を負極活物質とする金属酸化物/水素
電池があるが、この金属酸化物/水素電池の一つとし
て、水素を可逆的に吸蔵・放出する水素吸蔵合金を含有
する水素吸蔵電極を負極としたものがある。
[Prior Art] Conventionally, as one of the alkaline secondary batteries, there is a metal oxide / hydrogen battery using a metal oxide as a positive electrode active material and hydrogen as a negative electrode active material. , A negative electrode is a hydrogen storage electrode containing a hydrogen storage alloy that stores and releases hydrogen reversibly.

この水素吸蔵電極は水素の吸蔵放出が良好で、かつ低
抵抗とする必要があり、一般に、水素吸蔵合金粉末を結
着材と混合して成型される。
This hydrogen storage electrode is required to have good hydrogen storage / release and low resistance, and is generally formed by mixing hydrogen storage alloy powder with a binder.

上記結着材の使用例として、特開昭61−16470号公報
は、ポリテトラフルオロエチレン(PTFE)粉末を開示
し、特開昭61−214360号公報は、ポリビニルアルコール
溶液を開示している。
As an example of the use of the binder, Japanese Patent Laid-Open No. 61-16470 discloses polytetrafluoroethylene (PTFE) powder and Japanese Patent Laid-Open No. 61-214360 discloses a polyvinyl alcohol solution.

特開昭61−101957号公報は、水素吸蔵合金粉末の表面
を銅で被覆してマイクロカプセル化し、このマイクロカ
プセルとフッ素樹脂粉末(結着材)とを混練し、集電体
に圧接して水素吸蔵電極とすることを開示している。ま
た、この特開昭61−101957公報は上記マイクロカプセル
を集電体に圧着固定した後でこれをフッ素樹脂の懸濁液
に浸漬し引上げた後、不活性ガス又は水素ガス雰囲気中
で熱処理する方法も開示している。
JP-A-61-101957 discloses that the surface of a hydrogen-absorbing alloy powder is coated with copper to form microcapsules, and the microcapsules and fluororesin powder (binder) are kneaded and pressed against a current collector. Disclosed is a hydrogen storage electrode. Further, according to this Japanese Patent Laid-Open No. 61-101957, the microcapsules are pressure-bonded and fixed to a current collector, then immersed in a suspension of fluororesin and pulled up, and then heat-treated in an inert gas or hydrogen gas atmosphere. A method is also disclosed.

[発明が解決しようとする課題] 上記した各先行技術にもかかわらず、従来の水素吸蔵
電極は、水素吸蔵合金粉末が充放電により変形するので
形状安定性に劣る点と、急速(高率)放電時の容量低下
が大きい点とに問題があった。
[Problems to be Solved by the Invention] Despite each of the above-described prior arts, the conventional hydrogen storage electrode is inferior in shape stability because the hydrogen storage alloy powder is deformed by charging and discharging, and is rapid (high rate). There was a problem in that the capacity was greatly reduced during discharge.

これら問題は特に大型電極において顕著である。 These problems are particularly remarkable in large electrodes.

すなわち体積変化や変形率が同じでも、大型電極は小
型電極よりも絶対的な体積変化量や変形量が大となり、
その結果として、水素吸蔵電極よりの合金粉末の脱落な
どの障害が生じる。結着材の増量により強度向上を図る
ことは可能であるが、そうすると、合金粉末分量の減
量、水素流通の妨害、電気抵抗の増加が生じ高率放電時
の容量低下が顕著となる。
That is, even if the volume change and the deformation rate are the same, the large electrode has a larger absolute volume change and deformation than the small electrode.
As a result, obstacles such as dropping of alloy powder from the hydrogen storage electrode occur. Although it is possible to improve the strength by increasing the amount of the binder, when this is done, the amount of alloy powder is reduced, the hydrogen flow is obstructed, and the electrical resistance increases, resulting in a marked decrease in capacity during high-rate discharge.

また、水素吸蔵合金粉末を集電体に圧着してから、フ
ッ素樹脂の懸濁液に浸漬する方法では、電極表面部では
フッ素樹脂の含有比率が高くなり過ぎてこの表面部の内
部抵抗が増加し、電極内部ではフッ素樹脂の含有比率が
低すぎて結合力が低下するという問題があった。
Further, in the method in which the hydrogen-absorbing alloy powder is pressure-bonded to the current collector and then immersed in the fluororesin suspension, the content ratio of the fluororesin on the electrode surface becomes too high and the internal resistance of this surface increases. However, there is a problem that the content ratio of the fluororesin inside the electrode is too low and the binding force is lowered.

本発明は、上記問題に鑑みなされたものであり、優れ
た放電特性及び形状保持性を有し大型電極に好適な水素
吸蔵電極の製造方法を提供することをその解決すべき課
題としている。
The present invention has been made in view of the above problems, and an object thereof is to provide a method for manufacturing a hydrogen storage electrode which has excellent discharge characteristics and shape retention and is suitable for a large electrode.

[課題を解決するための手段] 本発明の水素吸蔵電極の製造方法は、水素吸蔵合金粉
末の表面を銅又はニッケルで水素流通可能に被覆してマ
イクロカプセル化し、界面活性剤を含む水からなる分散
媒に分散質としてのFEP(四フッ化エチレンと六フッ化
プロピレンの共重合体)の粉末を分散させた分散液と前
記マイクロカプセルとを、固形分総量に対して分散質が
5〜10重量%となるように混練した後、集電体で支持し
て、240〜260℃の加熱温度、200〜400kg/cm2の成型圧力
により加熱加圧成型することを特徴としている。
[Means for Solving the Problem] The method for producing a hydrogen storage electrode of the present invention comprises water containing a surfactant, which is obtained by coating the surface of a hydrogen storage alloy powder with copper or nickel in a hydrogen flowable manner to form microcapsules. A dispersion liquid in which a powder of FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) as a dispersoid is dispersed in a dispersion medium and the microcapsules, the dispersoid is 5 to 10 relative to the total solid content. It is characterized in that after kneading so that the weight percentage is reached, it is supported by a current collector, and heated and pressed at a heating temperature of 240 to 260 ° C. and a molding pressure of 200 to 400 kg / cm 2 .

水素吸蔵粉末としては、チタン−ニッケル合金、ラン
タン−ニッケル合金、ジルコニウム−ニッケル合金など
を採用することができ、平均粒径は10〜100μm程度が
好適である。銅又はニッケルの被覆量はマイクロカプセ
ルの5〜30重量%とすることが望ましい。
As the hydrogen storage powder, a titanium-nickel alloy, a lanthanum-nickel alloy, a zirconium-nickel alloy, or the like can be used, and an average particle diameter of about 10 to 100 μm is preferable. The coating amount of copper or nickel is preferably 5 to 30% by weight of the microcapsules.

FEP分散液としては、例えば、ダイキン工業株式会社
製のND−1、ND−2、ND−4などを用いることができ
る。なお、これらの分散液は、界面活性剤を含む水から
なる分散媒に分散質としてのFEP(四フッ化エチレンと
六フッ化プロピレンの共重合体)粉末を分散させたもの
である。分散質すなわちFEP含有量が上記混合物の5重
量%以下であると充分な結合力が得られず、10重量%を
超えると水素吸蔵電極の導電性が低下して高率放電時の
容量が減少する。
As the FEP dispersion liquid, for example, ND-1, ND-2, ND-4 manufactured by Daikin Industries, Ltd. can be used. Note that these dispersions are prepared by dispersing FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) powder as a dispersoid in a dispersion medium composed of water containing a surfactant. If the dispersoid, that is, the FEP content is 5% by weight or less of the above mixture, sufficient binding force cannot be obtained, and if it exceeds 10% by weight, the conductivity of the hydrogen storage electrode decreases and the capacity at high rate discharge decreases. To do.

成型時の加圧力が200kg/cm2を下回ると電極の機械的
強度が低下するため充分な結合力が得られず、マイクロ
カプセルの脱落が生じやすくなる。400kg/cm2を超える
とマイクロカプセル間が密になり過ぎて多孔構造が失わ
れ、電気化学的な水素の吸蔵放出が円滑に行なわれな
り、また、内部抵抗が増加して高率放電時の容量が低下
する。
If the pressing force at the time of molding is less than 200 kg / cm 2 , the mechanical strength of the electrode will be reduced and a sufficient bonding force will not be obtained, and the microcapsules will easily fall off. If it exceeds 400 kg / cm 2 , the microcapsules become too close to each other, the porous structure is lost, and the electrochemical hydrogen absorption and desorption is smoothly performed.In addition, the internal resistance increases and the high-rate discharge The capacity decreases.

成型時の加熱温度は約250℃近傍が好ましく、240℃を
下回るとFEPが溶融せず結合力が低下し、260℃を超える
と気孔が減少して電極内部の反応速度が低下する。
The heating temperature at the time of molding is preferably around 250 ° C. When the temperature is lower than 240 ° C., the FEP does not melt and the binding force decreases, and when it exceeds 260 ° C., the pores decrease and the reaction rate inside the electrode decreases.

[実施例] (第1実施例) 合金組成LaNi2.5CO2.4Al0.1を負極用の水素吸蔵合金
として用いた。この合金を機械的に100メッシュ以下の
粉末とし、市販のメッキ溶液を用いて無電解銅メッキを
行った。このときのメッキ量はマイクロカプセル、すな
わち銅メッキした合金粉末に対して、20重量%になるよ
うにした。
Was used as Example] (First Embodiment) hydrogen absorbing alloy for the alloy composition LaNi 2.5 CO 2.4 Al 0.1 negative electrode. This alloy was mechanically made into powder of 100 mesh or less, and electroless copper plating was performed using a commercially available plating solution. The plating amount at this time was set to 20% by weight with respect to the microcapsule, that is, the copper-plated alloy powder.

このマイクロカプセル0.6gに、マイクロカプセルと結
着剤とを合わせた総量に対して分散質が5重量%となる
ように市販のFEP分散液(ダイキン工業株式会社製のND
−1)を加え、混練して予備成型した後、その両側をニ
ッケルメッシュ(すなわち、本発明でいう集電体)で挟
んで250℃、300kg/cm2の圧力で加熱加圧成型して水素吸
蔵電極を製作した。なお、上記分散液におけるFEP含有
率は50重量%である。なお比較例として、マイクロカプ
セル0.6gに対してPTFE粉末を、それらの総量に対して5
重量%加えて混練し、加熱温度が300℃である他は前と
同じ条件で製造した水素吸蔵電極も用意した。各電極の
大きさは直径13mmで厚さは約1mmのコイン型とした。次
に、各水素吸蔵電極をニッケル極を対極として6Nか性カ
リ水溶液中に浸漬して充放電を繰り返し、完全に活性化
処理したものを電池用の負極として供した。この水素吸
蔵電極の初期容量は約100mAhであった。
To 0.6 g of the microcapsules, a commercially available FEP dispersion liquid (ND manufactured by Daikin Industries, Ltd. was used so that the dispersoid was 5% by weight based on the total amount of the microcapsules and the binder.
-1) is added, kneaded and preformed, and then both sides are sandwiched with nickel mesh (that is, the current collector in the present invention), heated and pressurized at 250 ° C. and a pressure of 300 kg / cm 2 , and hydrogen is formed. A storage electrode was manufactured. The FEP content in the above dispersion is 50% by weight. As a comparative example, PTFE powder was added to 0.6 g of the microcapsules, and 5% to the total amount thereof.
A hydrogen storage electrode was also prepared under the same conditions as above except that the weight% was added and kneaded and the heating temperature was 300 ° C. The size of each electrode was a coin type with a diameter of 13 mm and a thickness of about 1 mm. Next, each hydrogen storage electrode was immersed in a 6N aqueous potassium hydroxide solution with the nickel electrode as the counter electrode, repeated charging and discharging, and completely activated to serve as a negative electrode for a battery. The initial capacity of this hydrogen storage electrode was about 100 mAh.

次に、電解液として6Nか性カリ水溶液を用い、水素吸
蔵電極よりもはるかに容量の大きい焼結式酸化ニッケル
板を正極とし、水素吸蔵電極を負極として対置させ、酸
化水銀参照電極を使って負極のみの容量変化を調べる負
極規制の電池(公称容量100mAh)を構成した。
Next, using a 6N caustic aqueous solution as the electrolytic solution, a sintered nickel oxide plate having a much larger capacity than the hydrogen storage electrode was used as the positive electrode, the hydrogen storage electrode was placed as the negative electrode, and a mercury oxide reference electrode was used. A negative electrode regulated battery (nominal capacity 100 mAh) was constructed to check the capacity change of the negative electrode only.

製造した電池を20℃、0.5C(50mA)の電流で3時間充
電し、0.5C、1C、2C、3C、4C、5Cの各放電電流で放電終
了電圧0.6Vまで放電させて電池容量の放電電流依存性を
調べた。この結果を第1図に示す。
The manufactured battery is charged at 20 ° C and a current of 0.5C (50mA) for 3 hours, and discharged to the discharge end voltage of 0.6V at each discharge current of 0.5C, 1C, 2C, 3C, 4C and 5C to discharge the battery capacity. The current dependence was investigated. The results are shown in FIG.

この実験結果からわかるように、結着材としてFEP分
散液を用いた水素吸蔵電極は比較例のものに比べて高率
放電での容量低下が小さいことが判明した。
As can be seen from the results of this experiment, it was found that the hydrogen storage electrode using the FEP dispersion as the binder showed a smaller decrease in capacity at high rate discharge as compared with the comparative example.

(第2実施例) マイクロカプセルを6gとし、電極形状を縦4cm×横3cm
×厚さ約1mmの平板状とし初期容量を約1000mAhとした以
外は、実施例1と同一の水素吸蔵電極を負極とした。
(Second embodiment) The microcapsule is 6 g, and the electrode shape is 4 cm in length × 3 cm in width.
B. The same hydrogen storage electrode as in Example 1 was used as the negative electrode except that the thickness was about 1 mm and the initial capacity was about 1000 mAh.

次に、電解液として5Nか性カリ水溶液に水酸化リチウ
ムを1mol/リットルの割合で溶解したものを用い、正極
として容量350mAhの焼結式酸化ニッケル板を用い、セパ
レータとしてのナイロン不織布を挟んで、正、負極を対
置し、正極規制の電池(公称容量が350mAh)を構成し
た。比較例としてFEP粉末を5重量%混合した水素吸蔵
電極を有する同一条件の電池、分散質が5重量%となる
ようにPTFE分散液を加えた水素吸蔵電極を有する電池及
び上記PTFE粉末使用の電池も試験した。
Next, as the electrolytic solution, a solution obtained by dissolving lithium hydroxide in a 5N caustic potash solution at a ratio of 1 mol / liter was used, a sintered nickel oxide plate having a capacity of 350 mAh was used as a positive electrode, and a nylon nonwoven fabric was sandwiched as a separator. Positive and negative electrodes were placed opposite to each other to form a positive electrode regulated battery (nominal capacity: 350 mAh). As a comparative example, a battery under the same conditions having a hydrogen storage electrode mixed with 5% by weight of FEP powder, a battery having a hydrogen storage electrode added with a PTFE dispersion so that the dispersoid is 5% by weight, and a battery using the above PTFE powder. Also tested.

製造した電池を20℃で0.5C(175mA)の電流で3時間
充電し、0.5C、1C、2C、3C、4C、5Cの各放電電流で放電
終了電圧0.8Vまで放電させて電池容量の放電電流依存性
を調べた。この結果を第2図に示す。
Charge the manufactured battery at 20 ° C with 0.5C (175mA) current for 3 hours, and discharge to the discharge end voltage of 0.8V with each discharge current of 0.5C, 1C, 2C, 3C, 4C and 5C to discharge the battery capacity. The current dependence was investigated. The results are shown in FIG.

この実験結果からわかるように、結着材としてFEP分
散液を用いた水素吸蔵電極は比較例のものに比べて高率
放電での容量低下が小さいことが判明した。
As can be seen from the results of this experiment, it was found that the hydrogen storage electrode using the FEP dispersion as the binder showed a smaller decrease in capacity at high rate discharge as compared with the comparative example.

(第3実施例) 次に、結着剤として上記FEP分散液を用いたFEP含有量
と高率放電時の容量維持率との関係を第3図に示す。な
お、上記容量維持率は0.5C放電に対する5C放電時の放電
容量の割合を示す。他の条件は第2実施例と同じであ
る。
(Third Example) Next, FIG. 3 shows the relationship between the FEP content using the above FEP dispersion as a binder and the capacity retention rate during high-rate discharge. The above capacity retention ratio shows the ratio of the discharge capacity at 5C discharge to 0.5C discharge. Other conditions are the same as those in the second embodiment.

この結果から、FEP含有量を5〜10重量%とすると、
良好な容量維持率が得られることがわかった。
From this result, when the FEP content is 5 to 10% by weight,
It was found that a good capacity retention rate was obtained.

(第4実施例) 次に、結着剤としてFEP分散液を用いた水素吸蔵電極
の成型温度及び成型圧力と高率放電時の容量維持率との
関係を第4図、第5図に示す。FEP含有量は5重量%と
した。上記容量維持率も0.5C放電に対する5C放電時の放
電容量の割合を示し、他の条件は第2実施例と同じであ
る。
Fourth Example Next, FIGS. 4 and 5 show the relationship between the molding temperature and the molding pressure of the hydrogen storage electrode using the FEP dispersion as the binder and the capacity retention rate at the time of high rate discharge. . The FEP content was 5% by weight. The above capacity retention ratio also shows the ratio of the discharge capacity at 5C discharge to 0.5C discharge, and the other conditions are the same as in the second embodiment.

この結果から、成型圧力は200〜400kg/cm2、成形温度
は250℃近傍(例えば240〜260℃とすると、良好な容量
維持率が得られることが判明した。
From these results, it has been found that when the molding pressure is 200 to 400 kg / cm 2 and the molding temperature is around 250 ° C. (for example, 240 to 260 ° C.), a good capacity retention rate can be obtained.

[発明の効果] 以上説明したように、本発明の水素吸蔵電極の製造方
法は、マイクイロカプセルとFEP分散液と集電体とを素
材として上記した製造条件で製造することにより、高率
放電時の容量維持性に優れた水素吸蔵電極を得ることが
できる。
[Effects of the Invention] As described above, the method for producing a hydrogen storage electrode of the present invention is a high rate discharge by producing the microcapsules, the FEP dispersion liquid, and the current collector under the above production conditions. It is possible to obtain a hydrogen storage electrode that is excellent in capacity retention during storage.

結着材として、FEP粉末よりもFEP分散液が格段に優れ
ている理由について、理論的には不明であるが分散液と
することによって良好なマイクロカプセル保持性や形状
安定性が得られるものと思われる。マイクロカプセル保
持性や形状安定性が改善されると、内部抵抗の増加や水
素流通性の劣化が抑止され、結果として、高率放電時の
容量低下が抑制されるのではないかと考えられる。水素
吸蔵電極の形状安定性の向上は、大型電極用とにおいて
特に重要である。
As a binder, the reason why FEP dispersion is far superior to FEP powder is theoretically unknown, but it is possible to obtain good microcapsule retention and shape stability by using a dispersion. Seem. If the microcapsule retention and shape stability are improved, it is considered that the increase of internal resistance and the deterioration of hydrogen flowability are suppressed, and as a result, the capacity decrease at the time of high rate discharge is suppressed. Improving the shape stability of the hydrogen storage electrode is particularly important for large electrodes.

また、FEPはPTFEなどに比較して融点付近での溶融粘
度が極端に低いので(FEP:104〜105poise、PTFE:1011
1013poise)、分散性に優れており、その結果としてPTF
Eなどに比較して一層、マイクロカプセル保持性や形状
安定性が良好になるのではないかと思われる。
In addition, since FEP has an extremely low melt viscosity near the melting point compared to PTFE, etc. (FEP: 10 4 ~ 10 5 poise, PTFE: 10 11 ~
10 13 poise), with excellent dispersibility, resulting in PTFs
It seems that the microcapsule retention and shape stability will be better than those of E and the like.

更に、本発明では水素吸蔵合金粉末はその表面が多孔
性被膜により被膜されて平滑化されているのでFEPの微
小粒子がマイクロカプセル間に良好に分散することがで
きる利点もある。
Further, in the present invention, since the surface of the hydrogen storage alloy powder is coated with the porous coating and smoothed, there is an advantage that fine particles of FEP can be well dispersed between the microcapsules.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、本発明の製造方法で製造された水
素吸蔵電極を用いた電池の放電容量と放電電流の関係を
示す特性図である。第3図はFEP含有量と容量維持率と
の関係を示す特性図、第4図は成型温度と容量維持率と
の関係を示す特性図、第5図は成型圧力と容量維持率と
の関係を示す特性図である。
1 and 2 are characteristic diagrams showing the relationship between the discharge capacity and the discharge current of a battery using the hydrogen storage electrode manufactured by the manufacturing method of the present invention. Fig. 3 is a characteristic diagram showing the relationship between FEP content and capacity retention rate, Fig. 4 is a characteristic diagram showing the relationship between molding temperature and capacity retention rate, and Fig. 5 is a relationship between molding pressure and capacity retention rate. FIG.

フロントページの続き 審査官 鈴木 正紀Continuation of front page Examiner Masaki Suzuki

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金粉末の表面を銅又はニッケル
で水素流通可能に被覆してマイクロカプセル化し、界面
活性剤を含む水からなる分散媒に分散質としてのFEP
(四フッ化エチレンと六フッ化プロピレンの共重合体)
の粉末を分散させた分散液と前記マイクロカプセルと
を、固形分総量に対して分散質が5〜10重量%となるよ
うに混練した後、該混合物を集電体で支持して、240〜2
60℃の加熱温度、200〜400kg/cm2の成型圧力により加熱
加圧成型することを特徴とする水素吸蔵電極の製造方
法。
1. A FEP as a dispersoid in a dispersion medium composed of water containing a surfactant, which is obtained by coating the surface of a hydrogen-absorbing alloy powder with copper or nickel so that hydrogen can flow therethrough to form microcapsules.
(Copolymer of tetrafluoroethylene and propylene hexafluoride)
The dispersion liquid in which the powder was dispersed and the microcapsules were kneaded so that the dispersoid was 5 to 10% by weight with respect to the total solid content, and the mixture was supported by a current collector to give 240- 2
A method for producing a hydrogen storage electrode, comprising heating and pressing at a heating temperature of 60 ° C. and a molding pressure of 200 to 400 kg / cm 2 .
JP1235145A 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0824040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235145A JPH0824040B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235145A JPH0824040B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH0398261A JPH0398261A (en) 1991-04-23
JPH0824040B2 true JPH0824040B2 (en) 1996-03-06

Family

ID=16981721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235145A Expired - Lifetime JPH0824040B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0824040B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183964A (en) * 1989-01-09 1990-07-18 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183964A (en) * 1989-01-09 1990-07-18 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode

Also Published As

Publication number Publication date
JPH0398261A (en) 1991-04-23

Similar Documents

Publication Publication Date Title
US5360687A (en) Hydrogen-occulusion electrode
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS5937667A (en) Metal oxide-hydrogen battery
JPH02291665A (en) Alkali battery and manufacture of its negative electrode
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP3008519B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPH11162468A (en) Alkaline secondary battery
JPH0824040B2 (en) Method for manufacturing hydrogen storage electrode
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH11288710A (en) Foam-less nickel positive electrode and its manufacture
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH11135112A (en) Positive electrode for alkaline storage battery
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP2631324B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH0763004B2 (en) Sealed alkaline storage battery
JP3184607B2 (en) Metal oxide / hydrogen battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JP2823303B2 (en) Hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
CA1263437A (en) Cadmium negative electrode
JP2958786B2 (en) Hydrogen storage electrode
JP2925591B2 (en) Method for producing hydrogen storage electrode
JP2854920B2 (en) Nickel-metal hydride battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term