JP3008519B2 - Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same - Google Patents

Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same

Info

Publication number
JP3008519B2
JP3008519B2 JP3049506A JP4950691A JP3008519B2 JP 3008519 B2 JP3008519 B2 JP 3008519B2 JP 3049506 A JP3049506 A JP 3049506A JP 4950691 A JP4950691 A JP 4950691A JP 3008519 B2 JP3008519 B2 JP 3008519B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
resin
hydrogen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3049506A
Other languages
Japanese (ja)
Other versions
JPH04284354A (en
Inventor
伸行 柳原
博志 川野
剛平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3049506A priority Critical patent/JP3008519B2/en
Publication of JPH04284354A publication Critical patent/JPH04284354A/en
Application granted granted Critical
Publication of JP3008519B2 publication Critical patent/JP3008519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素を電気化学的に吸蔵
・放出する水素吸蔵合金と結合剤を主体とする水素吸蔵
電極とその製造方法ならびにその水素吸蔵電極を負極に
用いた酸化金属−水素蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode mainly composed of a hydrogen storage alloy which electrochemically stores and releases hydrogen and a binder, a method for producing the same, and a metal oxide using the hydrogen storage electrode as a negative electrode. It relates to a hydrogen storage battery.

【0002】[0002]

【従来の技術】従来、可逆的に水素を吸蔵・放出する水
素吸蔵合金や、その水素化物に結合剤を混合して用いる
水素吸蔵電極およびその水素吸蔵電極を負極とし、酸化
ニッケルを正極とする酸化金属−水素蓄電池に関して、
多くの出願がなされている。例えば、水素吸蔵合金粉末
を耐アルカリ性でかつ撥水性の結着剤で混練して圧延成
形したシートを集電体に圧接して一体化する水素吸蔵電
極が特開昭59−60862号公報に開示されている。
またフッ素樹脂と水素吸蔵合金粉末の混合物をシート状
に成形したのち、集電体に圧着する製造方法も特開昭6
2−216163号公報に開示されている。このような
水素吸蔵電極は比較的安価に製造可能であるが、単に電
極支持体(集電体)に圧着固定しているだけで構成され
ているから、充放電サイクルのくりかえしによって電極
支持体からの水素吸蔵合金粉末層の剥離や脱落現象が発
生し、その結果電極の放電容量が低下する。また、電極
自体の内部抵抗が大きくなって急速充放電もできなくな
る。この現象はとくに、据置用電池のような開放形アル
カリ蓄電池で顕著に現われる。この現象を改良する目的
で、電極支持体(集電体)に発泡状金属多孔体あるいは
繊維状金属多孔体を用い、この電極支持体の内部に水素
吸蔵合金粉末を充填した水素吸蔵電極およびその水素吸
蔵電極を負極とした酸化金属−水素蓄電池なども提案さ
れている。しかし、比較的大きな容量を持つ電池では、
電極が大型化するため、やはり、水素吸蔵合金と電極支
持体との結合力が弱い上に、密着性が悪く水素吸蔵合金
粉末の脱落現象をおこし、同様に容量低下につながる。
2. Description of the Related Art Conventionally, a hydrogen storage alloy that reversibly stores and releases hydrogen, a hydrogen storage electrode using a hydride thereof mixed with a binder, the hydrogen storage electrode as a negative electrode, and nickel oxide as a positive electrode Regarding metal oxide-hydrogen storage batteries,
Many applications have been filed. For example, Japanese Unexamined Patent Publication (Kokai) No. 59-60862 discloses a hydrogen storage electrode in which a sheet obtained by kneading a hydrogen storage alloy powder with an alkali-resistant and water-repellent binder and rolling and forming the same is pressed against a current collector and integrated. Have been.
A method of forming a mixture of a fluororesin and a hydrogen storage alloy powder into a sheet and then pressing the mixture on a current collector is also disclosed in
It is disclosed in JP-A-2-216163. Such a hydrogen storage electrode can be manufactured relatively inexpensively, but since it is constituted only by pressure-fixing to an electrode support (current collector), the electrode support is repeatedly formed by repeated charge and discharge cycles. Of the hydrogen-absorbing alloy powder layer occurs, and as a result, the discharge capacity of the electrode decreases. Further, the internal resistance of the electrode itself becomes large, and rapid charging and discharging cannot be performed. This phenomenon is particularly remarkable in open alkaline storage batteries such as stationary batteries. In order to improve this phenomenon, a hydrogen storage electrode in which a foamed metal porous body or a fibrous metal porous body is used as an electrode support (current collector), and a hydrogen storage alloy powder is filled inside the electrode support, and A metal oxide-hydrogen storage battery using a hydrogen storage electrode as a negative electrode has also been proposed. However, for batteries with relatively large capacities,
Since the size of the electrode is increased, the bonding force between the hydrogen storage alloy and the electrode support is weak, the adhesion is poor, and the hydrogen storage alloy powder drops off, which also leads to a reduction in capacity.

【0003】[0003]

【発明が解決しようとする課題】電極支持体(集電体)
の両側から水素吸蔵合金粉末と結合剤の混合物からなる
シート状水素吸蔵合金層を圧着し、一体化させた水素吸
蔵電極、あるいは発泡状,繊維状金属多孔体内に水素吸
蔵合金粉末を充填する水素吸蔵電極がいわゆる非焼結式
電極として採用されている。従来、この種の水素吸蔵電
極は充放電サイクルを繰り返すと、水素吸蔵時と水素放
出時に膨張と収縮をくりかえすために水素吸蔵合金が微
細化される。しかも水素吸蔵合金粉末と電極支持体との
膨張係数が異なるので、この間の密着性が十分でなく、
水素吸蔵合金粉末の電極支持体からの剥離・亀裂が発生
し、最後には脱落起こる。そのため、電極自体の放電容
量が低下するとともに、電極の抵抗増加による充放電サ
イクル寿命が短くなるという課題を有している。
An electrode support (current collector)
A sheet-shaped hydrogen storage alloy layer made of a mixture of a hydrogen storage alloy powder and a binder is pressed from both sides of the steel sheet to form an integrated hydrogen storage electrode, or hydrogen filling the hydrogen storage alloy powder into a foamed or fibrous metal porous body. The storage electrode is employed as a so-called non-sintered electrode. Conventionally, when a charge and discharge cycle of this type of hydrogen storage electrode is repeated, the hydrogen storage alloy is miniaturized in order to repeatedly expand and contract during hydrogen storage and hydrogen release. Moreover, since the coefficient of expansion between the hydrogen storage alloy powder and the electrode support is different, the adhesion between them is not sufficient,
Peeling and cracking of the hydrogen storage alloy powder from the electrode support occur, and finally, the hydrogen storage alloy powder falls off. Therefore, there is a problem that the discharge capacity of the electrode itself is reduced and the charge / discharge cycle life is shortened due to an increase in the resistance of the electrode.

【0004】結合剤としてフッ素樹脂(PTFE)の分
散液を用いると、フッ素樹脂と水素吸蔵合金粉末を混練
するときにフッ素樹脂が繊維化し、ゴム状態に固まり均
一なシート状に形成すること困難になる。しかも水素吸
蔵合金粒子間の結合力が弱いので、結合力を強くするた
めに、フッ素樹脂などの結合剤を多量添加すると機械的
強度は向上するが、電極の電気抵抗が大きくなり、電極
の電気化学的特性が低下する。そこで、結合剤の添加量
を少なくして、フッ素樹脂の融解温度で熱処理すること
によって、水素吸蔵合金粒子を結合剤である溶融フッ素
樹脂で包囲すると、電極自体の機械的強度は向上するが
合金表面の触媒作用が減少し、過充電時に正極から発生
する酸素ガスが負極で吸収反応する速度が小さくなる。
そのため過充電時に電解液の分解量が多くなり補液の回
数が増加するという課題もある。
[0004] When a dispersion of fluororesin (PTFE) is used as a binder, the fluororesin becomes fibrous when kneading the fluororesin and the hydrogen-absorbing alloy powder, which makes it difficult to form a uniform sheet shape in a rubbery state. Become. Moreover, since the bonding force between the hydrogen storage alloy particles is weak, adding a large amount of a binder such as a fluororesin to enhance the bonding force improves the mechanical strength, but increases the electrical resistance of the electrode and increases the electrical resistance of the electrode. Chemical properties are reduced. Therefore, if the hydrogen storage alloy particles are surrounded by a molten fluororesin as a binder by reducing the amount of the binder added and performing a heat treatment at the melting temperature of the fluororesin, the mechanical strength of the electrode itself is improved, but the alloy is The catalytic action on the surface is reduced, and the rate at which the oxygen gas generated from the positive electrode during overcharge undergoes an absorption reaction at the negative electrode decreases.
Therefore, there is also a problem that the amount of decomposition of the electrolytic solution at the time of overcharging increases and the number of replacements increases.

【0005】とくに、補液などのメンテナンスが少な
く、しかも充放電サイクル寿命の長い用途、即ち、比較
的大容量の角形電槽からなる積層形蓄電池には採用でき
ない。何故ならば、電極基板を複数枚集合して負極群を
構成するので、充放電サイクル寿命とともに水素吸蔵合
金粉末の膨張,収縮作用により微細化現象・剥離・脱落
現象などを発生させ、同様に電極容量を小さくしたり充
放電サイクル寿命を短くすると云う課題を有している。
[0005] In particular, it cannot be used for applications requiring little maintenance such as replacement fluid and having a long charge / discharge cycle life, that is, a stacked storage battery comprising a rectangular battery case having a relatively large capacity. This is because a plurality of electrode substrates are assembled to form a negative electrode group, so that the charge / discharge cycle life and the expansion and contraction of the hydrogen-absorbing alloy powder cause microscopic phenomena, peeling-off and other phenomena. There is a problem of reducing the capacity or shortening the charge / discharge cycle life.

【0006】本発明はこのような課題を解決するもの
で、充放電サイクル寿命が長く、しかも補液などのメン
テナンスが少なく、急速充放電が可能な水素吸蔵電極と
その製造方法および水素吸蔵電極を負極とする酸化金属
−水素蓄電池を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and has a long charge / discharge cycle life, requires little maintenance such as replacement fluid, and is capable of rapid charge / discharge. It is an object of the present invention to provide a metal oxide-hydrogen storage battery.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
本発明は、水素吸蔵合金を単独あるいは溶媒とともにス
チレン・ブタジエン共重合体(SBR),スチレン・イ
ソプレン共重合体(SIR),スチレン・エチレン・ブ
タジエン・スチレン共重合体(SEBSR)などの熱可
塑性エラストマー,カルボオキシ・メチルセルロース
(CMC),メチルセルロース(CM),ポリビニルア
ルコール(PVA)などの親水性樹脂、ポリ四フッ化エ
チレン(PTFE),ポリ四フッ化エチレン・六フッ化
プロピレン(PTFE−PHFP)などのフッ素樹脂、
ポリエチレン(PE),シリコン樹脂などのうち少なく
とも2種類以上を含有した混合物からなり、その混合物
が電極支持体(集電体)例えば、発泡状,繊維状金属多
孔体あるいは金属ネット,エキスパンドメタル,パンチ
ングメタルを少なくとも1枚以上に充填あるいは塗着一
体化した水素吸蔵電極とその製造方法およびそれを用い
た酸化金属−水素蓄電池を提供するものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a styrene-butadiene copolymer (SBR), a styrene-isoprene copolymer (SIR), a styrene-ethylene -Thermoplastic elastomers such as butadiene-styrene copolymer (SEBSR), hydrophilic resins such as carboxymethylcellulose (CMC), methylcellulose (CM), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), polytetrafluoroethylene Fluororesins such as fluorinated ethylene and propylene hexafluoride (PTFE-PHFP),
It is composed of a mixture containing at least two of polyethylene (PE), silicone resin and the like, and the mixture is used as an electrode support (current collector), for example, a foamed or fibrous metal porous body or metal net, expanded metal, punched metal. An object of the present invention is to provide a hydrogen storage electrode in which at least one metal is filled or coated and coated, a method of manufacturing the same, and a metal oxide-hydrogen storage battery using the same.

【0008】本発明はまた水素吸蔵合金粉末を単独ある
いは溶媒とともに融点の異なる2種類以上のフッ素樹脂
単独あるいはこのフッ素樹脂に熱可塑性エラストマー
(合成ゴム)1種類以上、親水性樹脂1種類以上、ポリ
エチレン樹脂,シリコン樹脂の少なくとも1種類以上を
含有する混合物を電極支持体(集電体)に塗着あるいは
充填して一体化した構成の水素吸蔵電極とその製造方法
およびそれを用いた酸化金属−水素蓄電池を提供するも
のである。
The present invention also relates to a hydrogen storage alloy powder alone or in combination with a solvent, two or more fluororesins having different melting points, or one or more thermoplastic elastomers (synthetic rubber), one or more hydrophilic resins, and polyethylene. A hydrogen storage electrode having a configuration in which a mixture containing at least one of a resin and a silicon resin is applied or filled on an electrode support (current collector) and integrated, a method for producing the same, and metal oxide-hydrogen using the same It is intended to provide a storage battery.

【0009】[0009]

【作用】水素吸蔵合金あるいは水素化物からなる水素吸
蔵電極を長寿命化し、耐久性を向上させるためには水素
吸蔵電極の機械的強度を高めることと電極の電気抵抗を
大きくしないことおよび過充電時に電解液の排出(減
少)を防止することが重要である。このことが高信頼性
とメンテナンスフリーにつながる。そこで、水素吸蔵電
極の機械的強度を高めるためには水素吸蔵合金粒子間、
および水素吸蔵合金粒子と電極支持体との密着性を強め
ることが重要であり、密着強度は結合剤の添加、結合剤
の形状などの物理的性質に基因する所が大きい。単に結
合剤を多く加えると電極の機械的強度は向上するが、電
極自体の電気抵抗が増大し電極容量の低下をまねくこと
になり好ましくない。しかも、正極律速の酸化金属−水
素蓄電池では、過充電時に正極から発生する酸素ガスを
負極で吸収する反応速度が減少し、電池内の圧力が上昇
するとともに電解液の減少につながる。そこで、水素吸
蔵合金粉末が電極支持体(集電体)から脱落することを
防止し、集電効率を向上させるとともに、充放電サイク
ル寿命が長く、しかも急速充放電が可能な水素吸蔵電極
であれば、補液などのメンテナンスが少ない酸化金属−
水素蓄電池を得ることが可能になる。
[Function] In order to prolong the life of the hydrogen storage electrode made of a hydrogen storage alloy or hydride and improve the durability, it is necessary to increase the mechanical strength of the hydrogen storage electrode, not to increase the electric resistance of the electrode, and at the time of overcharging. It is important to prevent discharge (reduction) of the electrolyte. This leads to high reliability and maintenance-free. Therefore, in order to increase the mechanical strength of the hydrogen storage electrode, between the hydrogen storage alloy particles,
In addition, it is important to enhance the adhesion between the hydrogen storage alloy particles and the electrode support, and the adhesion strength largely depends on physical properties such as the addition of the binder and the shape of the binder. Simply adding a large amount of binder improves the mechanical strength of the electrode, but undesirably increases the electrical resistance of the electrode itself and leads to a decrease in electrode capacity. In addition, in a metal oxide-hydrogen storage battery having a positive electrode rate control, the reaction rate of absorbing the oxygen gas generated from the positive electrode at the time of overcharging by the negative electrode decreases, and the pressure inside the battery increases and the electrolyte decreases. Therefore, a hydrogen storage electrode that prevents the hydrogen storage alloy powder from falling off from the electrode support (current collector), improves the current collection efficiency, has a long charge / discharge cycle life, and is capable of rapid charge / discharge. For example, metal oxide with low maintenance such as replacement fluid
It becomes possible to obtain a hydrogen storage battery.

【0010】本発明の作用として、まず水素吸蔵合金粉
末または水素化物含有粉末を単独あるいは溶媒とともに
熱可塑性エラストマー,親水性樹脂,フッ素樹脂,ポリ
エチレン樹脂,シリコン樹脂のうち少なくとも2種類以
上を含有した混合物からなり、この混合物が電極支持体
に塗着あるいは充填して一体化することにより、その複
数種混合された結合剤の物性の差異によって水素吸蔵合
金粉末と結合剤が有機的に作用し、ガス吸収機能,機械
的強度,導電性を保持した水素吸蔵電極を製造すること
ができる。親水性樹脂、とくに水溶性の合成樹脂は、そ
の水溶液でまず水素吸蔵合金粒子表面の一部を包囲し、
その後にフッ素樹脂の分散液を混合し、ペースト状態に
すると水素吸蔵合金は直接フッ素ゴムと接触する度合が
減少し、ゴム状に固形化しにくくなるので均一なシート
状に電極支持体の表面に塗着することができる。同様に
発泡状,繊維状金属多孔体内にも均一に効率よく充填す
ることができる。このようにペースト状の混合物を塗着
あるいは充填した電極基板を静間プレス、あるいはホッ
トプレスすることによって水素吸蔵合金粒子間の結合を
フッ素樹脂の熱処理条件によってフッ素樹脂の粒子ある
いは溶融状態のフッ素樹脂で行なうことになるので、水
素吸蔵合金粒子間の結合および電極支持体との密着性が
よくなり、耐久性のある水素吸蔵電極を得ることができ
る。したがって、充放電サイクル寿命が長い水素吸蔵電
極を負極とした長寿命の酸化金属−水素蓄電池を得るこ
とができる。
As an effect of the present invention, first, a mixture containing at least two or more of a hydrogen storage alloy powder or a hydride-containing powder alone or together with a solvent, of a thermoplastic elastomer, a hydrophilic resin, a fluororesin, a polyethylene resin, or a silicone resin. The mixture is applied or filled on the electrode support to be integrated, whereby the hydrogen storage alloy powder and the binder organically act due to the difference in the physical properties of the mixed binder, and the gas A hydrogen storage electrode having an absorption function, mechanical strength, and conductivity can be manufactured. Hydrophilic resin, especially water-soluble synthetic resin, first surrounds part of the surface of the hydrogen storage alloy particles with the aqueous solution,
After that, when the dispersion liquid of the fluororesin is mixed to form a paste, the degree of direct contact of the hydrogen storage alloy with the fluororubber is reduced, and it is difficult to solidify into a rubber-like form. You can wear it. Similarly, the foamed or fibrous metal porous body can be uniformly and efficiently filled. The bonding between the hydrogen-absorbing alloy particles is performed by static pressing or hot pressing the electrode substrate coated or filled with the paste-like mixture as described above, with the fluororesin particles or the molten fluororesin depending on the heat treatment conditions of the fluororesin. As a result, the bonding between the hydrogen storage alloy particles and the adhesion to the electrode support are improved, and a durable hydrogen storage electrode can be obtained. Therefore, it is possible to obtain a long-life metal oxide-hydrogen storage battery using a hydrogen storage electrode having a long charge-discharge cycle life as a negative electrode.

【0011】上記の構成では水素吸蔵電極の中に導電性
を下げる結合剤を加えるので、電極の導電性を改良する
ために、水素吸蔵電極基板の表面に集電体あるいは補強
用の金属多孔体を配置、さらには金属薄膜等を形成させ
ることによって、急速充放電特性の向上を図ることがで
きる。
In the above structure, a binder for lowering the conductivity is added to the hydrogen storage electrode. Therefore, in order to improve the conductivity of the electrode, a current collector or a reinforcing metal porous body is provided on the surface of the hydrogen storage electrode substrate. By disposing them, and further forming a metal thin film or the like, rapid charge / discharge characteristics can be improved.

【0012】また、水素吸蔵合金粉末を単独あるいは溶
媒とともに融点の異なる2種類以上のフッ素樹脂単独あ
るいはこのフッ素樹脂に熱可塑性エラストマー(合成ゴ
ム),親水性樹脂,ポリエチレン樹脂,シリコン樹脂の
少なくとも1種類以上を含有する混合物を電極支持体
(集電体)に塗着し、粘性の強い樹脂で水素吸蔵合金粒
子間の結合力を保持し、撥水性の強い樹脂で水素吸蔵合
金粒子表面における三相界面上での触媒作用を発揮させ
ることが可能となる。とくに、この作用・機能を強める
ために、融点の異なる2種類以上のフッ素樹脂の中で、
あるいは混合された樹脂の中で、最も低融点の樹脂の融
解温度で熱処理して、加圧成形する。例えば、ホットプ
レス,ホットローラープレスなどの工程を経て、低融点
のフッ素樹脂、あるいは他の低融点の樹脂、熱可塑性エ
ラストマー(合成ゴム)などは融解するが、融点の高い
樹脂は粒子状で存在し、融解した樹脂が水素吸蔵合金粒
子間を強く結合し、機械的強度を向上させる高融点のフ
ッ素樹脂などは粒子状で存在するので、水素吸蔵合金の
結合を強めるとともに、水素吸蔵合金表面での触媒とし
て作用する。したがって、この水素吸蔵電極を負極に用
いる酸化金属−水素蓄電池はサイクル寿命が長くしかも
補液等のメンテナンスが少なくなると云う作用を有す
る。
The hydrogen-absorbing alloy powder may be used alone or in combination with a solvent together with at least two kinds of fluorocarbon resins having different melting points, or at least one of a thermoplastic elastomer (synthetic rubber), a hydrophilic resin, a polyethylene resin and a silicone resin. A mixture containing the above is applied to an electrode support (current collector), and the bonding force between the hydrogen-absorbing alloy particles is maintained with a highly viscous resin. It is possible to exert a catalytic action on the interface. In particular, in order to strengthen this function and function, in two or more kinds of fluororesins with different melting points,
Alternatively, it is heat-treated at the melting temperature of the resin having the lowest melting point among the mixed resins, and is subjected to pressure molding. For example, through a process such as hot pressing or hot roller pressing, low-melting fluororesin, other low-melting resins, thermoplastic elastomers (synthetic rubber), etc. melt, but high-melting resins exist in particulate form. Then, the molten resin strongly bonds between the hydrogen storage alloy particles, and the high melting point fluororesin etc. which improves the mechanical strength exists in the form of particles, so the bonding of the hydrogen storage alloy is strengthened and the surface of the hydrogen storage alloy is strengthened. Acts as a catalyst. Therefore, a metal oxide-hydrogen storage battery using this hydrogen storage electrode as a negative electrode has an effect that the cycle life is long and maintenance such as replacement fluid is reduced.

【0013】水素吸蔵合金表面上での触媒作用をさらに
向上させるためと水素吸蔵合金の脱落を防止するために
水素吸蔵電極の表面に撥水性の強いフッ素樹脂層を形成
させ、低融点のフッ素樹脂を表面に形成させる時はその
低融点のフッ素樹脂の融点で熱処理して、表面に結合力
の強いフッ素樹脂層を形成させて、水素吸蔵合金の脱落
を防止する。逆に高融点のフッ素樹脂を表面に形成させ
る時は、低融点のフッ素樹脂の融解温度で熱処理し、電
極表面には粒子状で撥水性の強い層を形成させ、電極内
部には融解した低融点のフッ素樹脂の粘着力によって結
合力が強く、電極自体の機械的強度の向上を図ってい
る。
In order to further improve the catalytic action on the surface of the hydrogen storage alloy and to prevent the falling of the hydrogen storage alloy, a highly water-repellent fluororesin layer is formed on the surface of the hydrogen storage electrode, and the low melting point fluororesin Is formed on the surface by heat treatment at the melting point of the low melting point fluororesin to form a fluororesin layer having a strong bonding force on the surface, thereby preventing the hydrogen storage alloy from falling off. Conversely, when a high melting point fluororesin is formed on the surface, heat treatment is performed at the melting temperature of the low melting point fluororesin to form a particulate, highly water-repellent layer on the electrode surface, and the molten low melting point inside the electrode. The bonding strength is strong due to the adhesive strength of the fluororesin having the melting point, and the mechanical strength of the electrode itself is improved.

【0014】このように、融点の異なるフッ素樹脂ある
いは他の結合剤の融点の差異によって、その熱処理温度
を調整することにより、水素吸蔵合金の機械的強度,導
電性,触媒作用などの機能をバランスよく作り出すこと
ができる。
As described above, by adjusting the heat treatment temperature according to the difference in the melting points of the fluororesins or other binders having different melting points, the functions such as mechanical strength, conductivity, and catalytic action of the hydrogen storage alloy can be balanced. Can produce well.

【0015】また、水素吸蔵合金の中に結合剤を含有す
るので、水素吸蔵電極の内部抵抗が増大する。これを補
うため、導電性金属で部分的に被覆した水素吸蔵合金粉
末を用い、上記のように融点の異なる2種類以上のフッ
素樹脂を単独、あるいは他の結合剤と併用して、低融点
の樹脂の融解温度で熱処理・加圧成型(ホットプレス,
ホットローラープレスなど)した水素吸蔵電極を形成す
る。この電極を負極とする酸化金属−水素蓄電池は急速
充放電特性が優れる。
Further, since the binder is contained in the hydrogen storage alloy, the internal resistance of the hydrogen storage electrode increases. To compensate for this, use a hydrogen-absorbing alloy powder partially coated with a conductive metal, and use two or more fluororesins with different melting points as described above, alone or in combination with other binders to reduce the melting point. Heat treatment and pressure molding at the melting temperature of the resin (hot press,
(Hot roller press etc.) to form a hydrogen storage electrode. A metal oxide-hydrogen storage battery having this electrode as a negative electrode has excellent rapid charge / discharge characteristics.

【0016】一方、水素吸蔵電極内部および表面に撥水
性を有する結合剤あるいは結合力の強い結合剤を混入し
て構成することにより、電解液の保持を抑制する可能性
がある。セパレータ内の電解液の保持力を維持させるた
めに、正極と負極間に介在するセパレータの表面に有機
合成樹脂を融解固定させるか、あるいはポリプロピレン
とナイロン(不織布)を含む2種類以上の繊維からなる
混合繊維を用いることによって、セパレータ内の電解液
がセパレータ外に移動することを抑制し、酸化金属−水
素蓄電池の長寿命化を図ることができる。セパレータ内
に保持している電解液が充放電サイクルの進行とともに
電極が膨張するので、セパレータを圧迫し、セパレータ
外への電解液の移動が起こり、電池の内部抵抗が増大
し、電池容量の低下につながる。本発明はこの現象を抑
制する作用を有することになる。
On the other hand, by mixing the inside and the surface of the hydrogen storage electrode with a binder having water repellency or a binder having a strong binding force, the retention of the electrolyte may be suppressed. In order to maintain the holding power of the electrolyte in the separator, an organic synthetic resin is melted and fixed on the surface of the separator interposed between the positive electrode and the negative electrode, or is made of two or more types of fibers including polypropylene and nylon (nonwoven fabric). By using the mixed fiber, it is possible to suppress the electrolyte solution in the separator from moving outside the separator, and to extend the life of the metal oxide-hydrogen storage battery. As the electrolyte held in the separator expands as the charge / discharge cycle progresses, the electrodes squeeze, causing pressure on the separator and movement of the electrolyte out of the separator, increasing the internal resistance of the battery and reducing the battery capacity. Leads to. The present invention has the function of suppressing this phenomenon.

【0017】また、正極が電極支持体(集電体)に結合
剤とともに活物質であるNi(OH)2が塗着された非
焼結式電極である場合は、負極と同様の結合剤を正極に
採用することにより、比較的安価で、強い機械的強度と
耐久性を有する酸化金属−水素蓄電池を得ることができ
る。
When the positive electrode is a non-sintered electrode in which Ni (OH) 2 as an active material is coated on an electrode support (current collector) together with a binder, the same binder as the negative electrode is used. By employing the positive electrode, a metal oxide-hydrogen storage battery that is relatively inexpensive and has high mechanical strength and durability can be obtained.

【0018】[0018]

【実施例】以下に本発明の一実施例を図面を参照しなが
ら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0019】(実施例1)水素吸蔵合金を構成する金属
としては純度99.9%以上の市販品を用いてAB5
多元系合金を作成した。この水素吸蔵合金は高周波誘導
加熱溶解法またはプラズマアーク放電加熱溶解法で製造
した。水素吸蔵合金の組成は、一例としてMmNi3.8
Mn0.4Al0.3Co0.5を撰択した(Mmは希土類金属
の混合物である)。この水素吸蔵合金を粉砕機で機械的
に平均粒子径が約30〜50μmになるまで細かく粉砕
し、負極用の水素吸蔵合金粉末とした。この合金粉末に
耐アルカリ性の有機合成樹脂結合剤として、親水性樹脂
とフッ素樹脂の2種類を用いた。親水性樹脂としてはP
VA,CMC,MCなどの2wt%水溶液を用い、添加量
として0.5wt%になるように調製した。フッ素樹脂と
してはPTFE,PTFE−PHFP(共重合体)など
の10wt%分散液を用い、添加量として2〜3wt%にな
るように調製した。
[0019] was prepared (Example 1) AB 5 type multicomponent alloy with a purity of 99.9% or more commercial products as metal constituting the hydrogen absorbing alloy. This hydrogen storage alloy was manufactured by a high-frequency induction heating melting method or a plasma arc discharge heating melting method. The composition of the hydrogen storage alloy is, for example, MmNi 3.8
Mn 0.4 Al 0.3 Co 0.5 was selected (Mm is a mixture of rare earth metals). This hydrogen storage alloy was finely pulverized mechanically with a pulverizer until the average particle diameter became about 30 to 50 μm to obtain a hydrogen storage alloy powder for a negative electrode. Two kinds of hydrophilic resins and fluororesins were used as alkali-resistant organic synthetic resin binders in this alloy powder. P as hydrophilic resin
A 2 wt% aqueous solution of VA, CMC, MC or the like was used, and the amount was adjusted to 0.5 wt% as an addition amount. As the fluororesin, a 10 wt% dispersion such as PTFE or PTFE-PHFP (copolymer) was used, and the dispersion was adjusted to be 2 to 3 wt%.

【0020】まず、水素吸蔵合金粉末に親水性樹脂であ
るPVA水溶液,CMC水溶液あるいはMC水溶液を加
え、十分に混合した後、PTFEあるいはPTFE−P
HFP共重合体の分散液を加え、混練してペースト状混
合物を電極支持体(集電体)であるエキスパンドメタ
ル,パンチングメタルあるいは金属ネットなどの表面に
ある一定の厚さで塗着する。その後乾燥し、加圧して一
体化する。あるいは発泡状、あるいは繊維状金属多孔体
内に充填して乾燥し、ある一定の厚さに加圧して一体化
して水素吸蔵電極とした。この水素吸蔵電極の構成を図
1(イ),(ロ)に示す。図1(イ)は電極支持体であ
るエキスパンドメタル1の表面に2種類以上の結合剤を
含む水素吸蔵合金粉末2が塗着された構造である。図1
(ロ)は電極支持体である発泡状金属多孔体3内に2種
類以上の結合剤を含む水素吸蔵合金粉末4が充填された
構造となっている。水素吸蔵合金粒子と2種類以上の結
合剤の結合状態を模型的に拡大した構成を図2に示す。
水素吸蔵合金粒子5の表面をPVA樹脂6が部分的に被
覆し、さらにフッ素樹脂(PTFE)7の微粒子がこの
PVA樹脂6を部分的に介して水素吸蔵合金粒子5間で
結合する役目を果している。図3に示すように、この水
素吸蔵電極を負極8とし、公知のニッケル正極9,セパ
レータ10,アルカリ性電解液11を用いてニッケル−
水素蓄電池を構成した。電槽12には安全弁を兼ねた注
液栓16が取り付けてある蓋13が装備され、さらに電
力を取り出すための負極リード端子14と正極リード端
子15が取り付けてある。図1(イ)の負極で構成した
電池をA、図1(ロ)の負極で構成した電池をBとす
る。負極の大きさは70mm×100mm×0.6mmtで、
この負極板を5枚用いた。正極の大きさは70mm×10
0mm×0.8mmtで、この正極板を4枚用いて電池を構
成した。この電池は正極律速で、放電容量は10Ahであ
る。負極の容量は正極の容量の約1.5倍に設定した。
充放電サイクル寿命試験はすべて0.5C(電流5A)
充電,1C(電流10A)放電とした。充電量は電池容
量の120%とし、放電終止電圧は1.0Vとした。
First, an aqueous PVA solution, an aqueous CMC solution or an aqueous MC solution, which is a hydrophilic resin, is added to the hydrogen-absorbing alloy powder, mixed well, and then mixed with PTFE or PTFE-P.
A dispersion of the HFP copolymer is added, and the mixture is kneaded, and the paste mixture is applied to a surface of an electrode support (current collector), such as an expanded metal, a punching metal, or a metal net, with a certain thickness. Then, it is dried and pressurized to be integrated. Alternatively, it was filled in a foamed or fibrous metal porous body, dried, pressurized to a certain thickness and integrated to form a hydrogen storage electrode. The structure of this hydrogen storage electrode is shown in FIGS. FIG. 1A shows a structure in which a hydrogen storage alloy powder 2 containing two or more binders is applied to a surface of an expanded metal 1 as an electrode support. FIG.
(B) has a structure in which a hydrogen storage alloy powder 4 containing two or more binders is filled in a foamed metal porous body 3 as an electrode support. FIG. 2 shows a configuration in which the bonding state between the hydrogen storage alloy particles and two or more types of binders is enlarged in a model.
The surface of the hydrogen storage alloy particles 5 is partially covered with the PVA resin 6, and the fine particles of the fluororesin (PTFE) 7 serve to bond between the hydrogen storage alloy particles 5 through the PVA resin 6 partially. I have. As shown in FIG. 3, this hydrogen storage electrode is used as a negative electrode 8, and a nickel negative electrode 9, a separator 10 and an alkaline electrolyte 11
A hydrogen storage battery was constructed. The battery case 12 is equipped with a lid 13 to which a liquid injection plug 16 also serving as a safety valve is attached, and further attached with a negative electrode lead terminal 14 and a positive electrode lead terminal 15 for extracting electric power. The battery constituted by the negative electrode in FIG. 1A is denoted by A, and the battery constituted by the negative electrode in FIG. The size of the negative electrode is 70 mm x 100 mm x 0.6 mm t ,
Five such negative electrode plates were used. The size of the positive electrode is 70mm x 10
At 0 mm × 0.8 mm t , a battery was constructed using four of the positive electrode plates. This battery has a positive electrode rate control and a discharge capacity of 10 Ah. The capacity of the negative electrode was set to about 1.5 times the capacity of the positive electrode.
All charge and discharge cycle life tests are 0.5C (5A current)
Charge and 1C (current 10A) discharge. The charge amount was 120% of the battery capacity, and the discharge end voltage was 1.0 V.

【0021】(実施例2)耐アルカリ性の合成樹脂結合
剤として、熱可塑性エラストマーのトルエン溶液の一例
として、SBR溶液,SIR溶液,SEBSR溶液など
を用い、その添加量が約0.5〜1wt%になるように調
製した。溶媒を除去した後、フッ素樹脂としてPTFE
粉末を加え、十分混合した後、この混合物を電極支持体
(集電体)であるパンチングメタル(ニッケル製または
鉄−ニッケルメッキ製)の表面に塗着,乾燥し、加圧し
て一体化するか、あるいは繊維状金属多孔体内に充填
し、加圧して一体化して水素吸蔵電極を形成した。この
電極の構成を図4に示す。図に示すように、電極支持体
として繊維状金属多孔体内に水素吸蔵合金と結合剤の混
合物16が金属繊維15によって包囲され保持されてい
る。この状態を模型的に拡大した構成を図5に示す。金
属繊維15で形成された空間部に水素吸蔵合金粒子5が
充填され、この水素吸蔵合金粒子5の表面には部分的に
SBR,SIR,SEBSRなどの薄膜17が形成され
ている。さらにPTFE粉末18は金属繊維15との間
でネットワークを形成し、水素吸蔵合金5間の結合力と
金属繊維15との結合力を高めている。同時に、撥水性
を有するPTFEの微粉末18が水素吸蔵合金粒子5の
表面に介在し、いわゆる三相界面を形成しており、過充
電時に正極から発生した酸素ガスを効率よく吸収する働
きをしている。その他は実施例1と同じ水素吸蔵電極で
あり、この電極を負極とするニッケル−水素蓄電池をC
とする。
(Example 2) As an alkali-resistant synthetic resin binder, an SBR solution, an SIR solution, a SEBSR solution or the like is used as an example of a toluene solution of a thermoplastic elastomer, and the added amount is about 0.5 to 1% by weight. Was prepared. After removing the solvent, PTFE
After the powder is added and mixed well, the mixture is applied to the surface of a punching metal (made of nickel or iron-nickel plating), which is an electrode support (current collector), dried and pressed to be integrated. Alternatively, it was filled in a fibrous metal porous body, pressurized and integrated to form a hydrogen storage electrode. FIG. 4 shows the configuration of this electrode. As shown in the figure, a mixture 16 of a hydrogen storage alloy and a binder is surrounded and held by metal fibers 15 in a fibrous metal porous body as an electrode support. FIG. 5 shows a configuration in which this state is schematically enlarged. The space formed by the metal fibers 15 is filled with the hydrogen storage alloy particles 5, and a thin film 17 such as SBR, SIR, or SEBSR is partially formed on the surface of the hydrogen storage alloy particles 5. Further, the PTFE powder 18 forms a network with the metal fibers 15 to increase the bonding force between the hydrogen storage alloy 5 and the bonding force with the metal fibers 15. At the same time, the PTFE fine powder 18 having water repellency is interposed on the surface of the hydrogen storage alloy particles 5 to form a so-called three-phase interface, and functions to efficiently absorb oxygen gas generated from the positive electrode during overcharge. ing. Others are the same hydrogen storage electrode as in Example 1, and a nickel-hydrogen storage battery having this electrode as a negative electrode is C-type.
And

【0022】(実施例3)実施例1で用いた水素吸蔵電
極の表面に集電体あるいは補強用の金属多孔体を加圧し
て一体化した水素吸蔵合金を負極とする以外はすべて実
施例1と同じ構成で電池を作成した。その電極構成を図
6(イ),(ロ)に示す。図6(イ)は例えばエキスパ
ンドメタルで形成した電極支持体1の表面に水素吸蔵合
金粉末2を塗着し、さらにその表面に集電体あるいは補
強用の金属多孔体19を配設したものである。この水素
吸蔵電極を負極とするニッケル−水素蓄電池をDとす
る。図6(ロ)は電極支持体3として、例えば発泡状金
属多孔体内に水素吸蔵合金粉末4を充填した水素吸蔵電
極の表面にさらに集電体あるいは補強用の金属多孔体2
0を配設したものである。この水素吸蔵電極を負極とし
て構成したニッケル−水素蓄電池をEとする。
Example 3 A hydrogen absorbing alloy obtained by pressing a current collector or a porous metal body for reinforcement on the surface of the hydrogen absorbing electrode used in Example 1 was used as a negative electrode except that a negative electrode was used. A battery was created with the same configuration as that described above. The electrode configuration is shown in FIGS. FIG. 6 (a) shows a structure in which a hydrogen storage alloy powder 2 is applied to the surface of an electrode support 1 made of, for example, expanded metal, and a current collector or a porous metal body 19 for reinforcement is further provided on the surface. is there. D is a nickel-hydrogen storage battery having the hydrogen storage electrode as a negative electrode. FIG. 6B shows, as an electrode support 3, for example, a collector or reinforcing metal porous body 2 on the surface of a hydrogen absorbing electrode in which a hydrogen absorbing alloy powder 4 is filled in a foamed metal porous body.
0 is provided. A nickel-hydrogen storage battery in which this hydrogen storage electrode is configured as a negative electrode is denoted by E.

【0023】(実施例4)実施例1で用いた水素吸蔵電
極の表面に公知の無電解メッキ,電解メッキあるいは蒸
着などの手段によって金属薄膜を形成した水素吸蔵電極
を負極とする以外は実施例1と同様に電池を構成した。
この水素吸蔵電極の構成を図7に示す。水素吸蔵合金4
を発泡状金属多孔体3内に充填した水素吸蔵電極の表面
に金属薄膜21を形成させた水素吸蔵電極を負極とする
ニッケル−水素蓄電池をFとする。
(Example 4) The hydrogen absorbing electrode used in Example 1 was formed on the surface thereof by a known method such as electroless plating, electrolytic plating or vapor deposition. A battery was constructed in the same manner as in Example 1.
FIG. 7 shows the configuration of this hydrogen storage electrode. Hydrogen storage alloy 4
F is a nickel-hydrogen storage battery having a hydrogen storage electrode in which a metal thin film 21 is formed on the surface of a hydrogen storage electrode filled in a foamed metal porous body 3 and having a negative electrode.

【0024】(実施例5)実施例4で用いた金属薄膜付
き水素吸蔵電極の表面に図8に示すように、さらにPT
FEの粉末またはPTFE−PHFP共重合体の粉末を
主体とする撥水性樹脂層22を形成した水素吸蔵電極を
負極とするニッケル−水素蓄電池を構成する。その他は
実施例4と同じである。このニッケル−水素蓄電池をG
とする。
(Example 5) As shown in FIG. 8, the surface of the hydrogen storage electrode with a metal thin film used in Example 4 was further covered with PT.
A nickel-hydrogen storage battery having a negative electrode as a hydrogen storage electrode on which a water-repellent resin layer 22 mainly composed of FE powder or PTFE-PHFP copolymer powder is formed. Others are the same as the fourth embodiment. This nickel-hydrogen battery is called G
And

【0025】(実施例6)水素吸蔵合金粉末にフッ素樹
脂としてPTFE−PHFP共重合体の粉末(m.p2
75℃)とPE樹脂微粉末(m.p120℃)を混合
し、加圧・成型した後、PE樹脂の融解温度(120
℃)で約10〜20分間熱処理あるいはホットプレス,
ホットローラープレスなどで再度加圧・熱処理して形成
した水素吸蔵電極を負極とするニッケル−水素蓄電池を
製造した。その他は実施例1と同じである。このニッケ
ル−水素蓄電池をH,Iとする。この水素吸蔵電極を構
成する水素吸蔵合金粒子5と結合剤であるPTFE−P
HFP共重合体23とPE樹脂24の結合状態を図9に
示す。水素吸蔵合金粒子5は溶融したPE樹脂24を介
して結合しており、フッ素樹脂23は粒子状態となって
水素吸蔵合金粒子間に存在し、PE樹脂で電極の機械的
強度を保持し、フッ素樹脂の存在によって、負極におけ
る酸素ガスの吸収反応を促進している。
(Example 6) PTFE-PHFP copolymer powder (mp2
75 ° C.) and PE resin fine powder (mp 120 ° C.), and after pressing and molding, melt the PE resin at a melting temperature (120 ° C.).
° C) for about 10-20 minutes or heat press,
A nickel-hydrogen storage battery having a negative electrode of a hydrogen storage electrode formed by pressurizing and heat-treating again with a hot roller press or the like was manufactured. Others are the same as the first embodiment. The nickel-hydrogen storage batteries are designated as H and I. The hydrogen storage alloy particles 5 constituting the hydrogen storage electrode and PTFE-P as a binder are used.
FIG. 9 shows a bonding state between the HFP copolymer 23 and the PE resin 24. The hydrogen storage alloy particles 5 are bonded via the molten PE resin 24, and the fluororesin 23 is present in a particle state between the hydrogen storage alloy particles, and the PE resin maintains the mechanical strength of the electrode, The presence of the resin promotes the oxygen gas absorption reaction in the negative electrode.

【0026】(実施例7)結合剤として融点の異なる2
種類のフッ素樹脂、例えばPTFE(m,p327℃)
とPTFE−PHFP共重合体(m.p275℃)を単
独で用いる。あるいは、これらのフッ素樹脂の他に親水
性樹脂としてPVA,CMC,MCなどの水溶液を用い
る。その他は実施例1と同じである。フッ素樹脂として
は融点の異なるPTFEとPTFE−PHFP共重合体
の粉末あるいは分散液を用いることができる。この時、
フッ素樹脂の融解温度より低い温度で熱処理を行なう。
熱処理後、融点の低いPTFE−PHFP共重合体は溶
融状態となって流動性が高くなり、水素吸蔵合金粒子の
表面を部分的に包囲し、水素吸蔵合金粒子間の結合を強
くしている。一方、融点の高いPTFE樹脂は粒子状で
水素吸蔵合金粒子間に存在する。このPTFE樹脂は水
素吸蔵合金粒子の表面での触媒作用を促進している。単
に静圧プレス,ローラープレスのみでも強い結合力が得
られるが、ホットプレスまたはホットローラープレスに
よる成型の方が結合力が一層強くなる。この水素吸蔵電
極を負極とするニッケル−水素蓄電池をJとする。
(Example 7) 2 having different melting points as a binder
Kinds of fluororesin, for example, PTFE (m, p327 ° C)
And a PTFE-PHFP copolymer (mp 275 ° C.) alone. Alternatively, an aqueous solution of PVA, CMC, MC or the like is used as a hydrophilic resin in addition to these fluororesins. Others are the same as the first embodiment. Powders or dispersions of PTFE and PTFE-PHFP copolymer having different melting points can be used as the fluororesin. At this time,
The heat treatment is performed at a temperature lower than the melting temperature of the fluororesin.
After the heat treatment, the PTFE-PHFP copolymer having a low melting point is in a molten state and has high fluidity, partially surrounds the surfaces of the hydrogen storage alloy particles, and strengthens the bonds between the hydrogen storage alloy particles. On the other hand, the PTFE resin having a high melting point is present in the form of particles between the hydrogen storage alloy particles. This PTFE resin promotes the catalytic action on the surface of the hydrogen storage alloy particles. Although a strong bonding force can be obtained by simply using a static pressure press or a roller press, molding by a hot press or a hot roller press further increases the bonding force. A nickel-hydrogen storage battery using this hydrogen storage electrode as a negative electrode is denoted by J.

【0027】一方、前もって、PVA,CMC,MCな
どの水溶液で水素吸蔵合金粒子の表面に塗布し、粒子表
面の一部をPVA,CMC,MCなどの親水性樹脂で被
覆しておくと、フッ素樹脂などの粒子が凝集せず均質な
混合物ができる。しかも、熱処理の工程を加えると親水
性樹脂の被覆層が一部炭化し、導電性を向上する効果が
得られる。この水素吸蔵電極を負極に用いたニッケル−
水素蓄電池をKとする。
On the other hand, if the surface of the hydrogen storage alloy particles is previously coated with an aqueous solution of PVA, CMC, MC or the like and a part of the particle surface is coated with a hydrophilic resin such as PVA, CMC or MC, fluorine A homogeneous mixture can be formed without aggregation of particles such as resin. In addition, when the heat treatment step is added, the coating layer of the hydrophilic resin is partially carbonized, and an effect of improving conductivity is obtained. Nickel using this hydrogen storage electrode as a negative electrode
Let K be the hydrogen storage battery.

【0028】(実施例8)水素吸蔵合金粉末にPE樹脂
と融点の異なる2種類のフッ素樹脂である低融点のPT
FE−PHFP共重合体(m.p275℃)と高融点の
PTFE(m.p327℃)を加え、混合して加圧成型
した後、最も融点の低いPE樹脂(m.p120℃)融
解温度で加熱処理、ホットプレスまたはホットローラー
プレスを行なって一体化した水素吸蔵電極を負極とする
ニッケル−水素蓄電池をLとする。また低融点のフッ素
樹脂の融解温度で加熱処理,ホットプレスまたはホット
ローラープレスを行なって一体化した水素吸蔵電極を負
極とするニッケル−水素蓄電池をMとする。その他は実
施例1と同様に構成した。電池L,Mにおける水素吸蔵
電極を構成する水素吸蔵合金粒子5と結合剤との結合状
態を図10(イ),(ロ)に示す。図10(イ)に示す
フッ素樹脂23,25は粒子状で存在し、PE樹脂24
が融解し、水素吸蔵合金の結合力を強めている。図10
(ロ)に示すPTFE樹脂25は粒子状で存在し、PT
FE−PHFP共重合体23とPE樹脂24が融解し、
さらに合金の結合力を高めている。粒状のPTFE樹脂
25は過充電時に正極から発生する酸素ガスの吸収を助
ける働きをする。
Example 8 A low-melting point PT, which is two kinds of fluororesins having different melting points from PE resin, is added to the hydrogen-absorbing alloy powder.
A FE-PHFP copolymer (mp 275 ° C.) and PTFE (mp 327 ° C.) having a high melting point were added, mixed and pressed, and then melted at a melting point of the PE resin having the lowest melting point (mp 120 ° C.). A nickel-hydrogen storage battery having a negative electrode of a hydrogen storage electrode integrated by heat treatment, hot pressing or hot roller pressing is denoted by L. M is a nickel-hydrogen storage battery having a hydrogen storage electrode integrated as a negative electrode by heat treatment, hot pressing or hot roller pressing at the melting temperature of a low melting point fluororesin. Other configurations were the same as in the first embodiment. FIGS. 10A and 10B show the bonding state between the hydrogen storage alloy particles 5 constituting the hydrogen storage electrode and the binder in the batteries L and M. FIG. The fluororesins 23 and 25 shown in FIG.
Melts, increasing the bonding strength of the hydrogen storage alloy. FIG.
The PTFE resin 25 shown in (b) exists in the form of particles,
The FE-PHFP copolymer 23 and the PE resin 24 melt,
Furthermore, the bonding strength of the alloy is increased. The granular PTFE resin 25 functions to help absorb oxygen gas generated from the positive electrode during overcharge.

【0029】(実施例9)低融点のフッ素樹脂層を水素
吸蔵電極の表面に形成させ、その融点で熱処理または加
圧成型してなる水素吸蔵電極を負極とするニッケル−水
素蓄電池をNとする。その他は実施例7,8と同様に構
成した。本実施例では水素吸蔵電極の表面あるいは表面
近傍の粒子の結合力を強化し、水素吸蔵合金粉末の脱落
を防止する。
(Example 9) A nickel-hydrogen storage battery having a low-melting point fluororesin layer formed on the surface of a hydrogen storage electrode and heat-treating or press-molding at the melting point and using the hydrogen storage electrode as a negative electrode is designated as N. . Other configurations were the same as in Examples 7 and 8. In the present embodiment, the bonding force of the particles at or near the surface of the hydrogen storage electrode is strengthened to prevent the hydrogen storage alloy powder from falling off.

【0030】(実施例10)高融点のフッ素樹脂層を水
素吸蔵電極の表面に形成させ、低融点のフッ素樹脂の融
解温度で熱処理・加圧成型してなる水素吸蔵電極を負極
とするニッケル−水素蓄電池をOとする。その他は実施
例7,8と同様に構成した。本実施例では水素吸蔵電極
の表面で、酸素ガスの吸収反応が促進され、電極内部で
の合金粒子の結合力が強化される。
(Example 10) A high-melting-point fluororesin layer was formed on the surface of a hydrogen-absorbing electrode, and heat treatment was performed at the melting temperature of the low-melting-point fluororesin. It is assumed that the hydrogen storage battery is O. Other configurations were the same as in Examples 7 and 8. In this embodiment, the oxygen gas absorption reaction is promoted on the surface of the hydrogen storage electrode, and the bonding force of the alloy particles inside the electrode is strengthened.

【0031】(実施例11)導電性金属が部分的に被覆
されている水素吸蔵合金粉末を用いる以外はすべて実施
例7と同じである。この合金粉末に親水性樹脂を加えた
後、ついで、融点の異なる2種類以上のフッ素樹脂単独
あるいは溶媒とともに混合し、発泡状,繊維状金属多孔
体内に充填あるいは金属ネット,パンチングメタル,エ
キスパンドメタルに塗着し、その低融点フッ素樹脂の融
解温度で、熱処理後加圧成型あるいはホットプレス,ホ
ットローラープレスして水素吸蔵電極を製造する。この
電極を負極とするニッケル−水素蓄電池をPとする。
Example 11 The same as Example 7 except that a hydrogen-absorbing alloy powder partially covered with a conductive metal was used. After adding a hydrophilic resin to this alloy powder, two or more kinds of fluororesins having different melting points are used alone or mixed together with a solvent and filled into a foamed or fibrous metal porous body, or formed into a metal net, punching metal, or expanded metal. After applying the heat treatment and the heat treatment at the melting temperature of the low melting point fluororesin, pressure molding or hot pressing or hot roller pressing is performed to produce a hydrogen storage electrode. A nickel-hydrogen storage battery having this electrode as a negative electrode is denoted by P.

【0032】(実施例12)融点の異なる2種類以上の
フッ素樹脂と水素吸蔵合金粉末を溶媒とともに混合し、
乾燥した後、ゴム状に固形化した水素吸蔵合金を粉砕し
て再度粒状とし、この水素吸蔵合金粉末に親水性樹脂,
熱可塑性エラストマー,ポリエチレン樹脂,シリコン樹
脂とともに電極支持体に塗着あるいは充填し、加圧一体
化あるいは熱処理・加圧一体化した水素吸蔵電極を負極
とするニッケル−水素蓄電池を製造する。その他は実施
例1と同じである。このニッケル−水素蓄電池をQとす
る。
Example 12 Two or more kinds of fluororesins having different melting points and a hydrogen storage alloy powder were mixed together with a solvent.
After drying, the hydrogen-absorbing alloy solidified into a rubber state is pulverized into granules again, and a hydrophilic resin,
A nickel-hydrogen storage battery is manufactured by coating or filling an electrode support together with a thermoplastic elastomer, a polyethylene resin, and a silicon resin, and using a hydrogen storage electrode that is integrated under pressure or heat treated and integrated under pressure as a negative electrode. Others are the same as the first embodiment. This nickel-hydrogen storage battery is designated as Q.

【0033】(実施例13)正極と負極間にセパレータ
を配置し、このセパレータがポリプロピレンとナイロン
を主体とする2種類以上の材料からなる混合繊維を選
び、しかもその表面上にポリエチレン樹脂粉末を散布
し、120℃で熱処理し、ポリエチレン樹脂をセパレー
タ表面上に融解固定させ、凸部材とした。この凸部材付
きセパレータを用いたニッケル−水素蓄電池を製作し
た。その他は実施例1と同じである。このニッケル−水
素蓄電池をRとする。
Example 13 A separator was placed between a positive electrode and a negative electrode, and the separator selected a mixed fiber composed of two or more materials mainly composed of polypropylene and nylon, and sprayed polyethylene resin powder on the surface thereof. Then, heat treatment was performed at 120 ° C., and the polyethylene resin was melted and fixed on the surface of the separator to obtain a convex member. A nickel-hydrogen storage battery using this separator with a convex member was manufactured. Others are the same as the first embodiment. This nickel-hydrogen storage battery is denoted by R.

【0034】(実施例14)正極が電極支持体(集電
体)に結合剤と主成分がNi(OH)2である活物質が
塗着されている非焼結式電極であり、この正極と実施例
1の負極からなるニッケル−水素蓄電池を製造した。そ
の他は実施例1と同じである。このニッケル−水素蓄電
池をSとする。
Example 14 A positive electrode is a non-sintered electrode in which a binder and an active material whose main component is Ni (OH) 2 are coated on an electrode support (current collector). And a nickel-hydrogen storage battery comprising the negative electrode of Example 1. Others are the same as the first embodiment. This nickel-hydrogen storage battery is designated as S.

【0035】(実施例15)融点の異なる2種類以上の
フッ素樹脂粉末と炭素粉末を表面改質装置を用いて複合
化した複合粒子とした以外は実施例1と同じである。こ
の水素吸蔵電極を負極に用いたニッケル−水素蓄電池を
Tとする。
Example 15 Example 15 is the same as Example 1, except that two or more kinds of fluororesin powders and carbon powders having different melting points were formed into composite particles using a surface reforming apparatus. A nickel-hydrogen storage battery using this hydrogen storage electrode as a negative electrode is denoted by T.

【0036】(比較例1)水素吸蔵合金粉末にPTFE
の分散液を加え、混合し、ゴム状に固化した混合物を加
圧成型し、約0.5mmの厚さのシート状とし、電極支持
体(エキスパンドメタル)の両面に圧着して加圧一体化
した水素吸蔵電極を負極とするニッケル−水素蓄電池を
製造した。その他は実施例1と同じである。
(Comparative Example 1) PTFE was added to the hydrogen storage alloy powder.
Is added, mixed, and the mixture solidified into a rubber state is pressure-formed to form a sheet having a thickness of about 0.5 mm, and is pressure-bonded to both surfaces of an electrode support (expanded metal) to be pressure-integrated. A nickel-hydrogen storage battery using the hydrogen storage electrode thus obtained as a negative electrode was manufactured. Others are the same as the first embodiment.

【0037】(比較例2)水素吸蔵合金粉末にPTFE
−PHFP共重合体粉末を加え、混合し、電極支持体で
ある発泡状金属多孔体内に充填し、加圧成型後、融解温
度近くで熱処理して一体化した水素吸蔵電極を負極とす
るニッケル−水素蓄電池を製造した。その他は実施例1
と同じである。図11に水素吸蔵合金粒子5の表面に融
解状態のフッ素樹脂26が固着された状態を示す。
(Comparative Example 2) PTFE was added to the hydrogen storage alloy powder.
-Add a PHFP copolymer powder, mix, fill into a foamed metal porous body as an electrode support, press-mold, heat-treat near the melting temperature, and use the integrated hydrogen storage electrode as a negative electrode. A hydrogen storage battery was manufactured. Others are Example 1.
Is the same as FIG. 11 shows a state in which the fluorine resin 26 in a molten state is fixed to the surface of the hydrogen storage alloy particles 5.

【0038】実施例1〜15,比較例1〜2における水
素吸蔵電極を負極としたニッケル−水素蓄電池のサイク
ル寿命試験結果を(表1)に示す。サイクル寿命は初期
放電容量の80%に容量が低下したサイクルとし、試験
温度は25℃とした。過充電時に負極での酸素ガスの吸
収反応が不十分で電解液の排出がおこる場合には、必要
に応じて、補液を行なうことにより電池容量が回復す
る。そこで、補液回数も評価基準とし、補液回数の少な
い方が優れていることになる。つまり、過充電時に正極
から発生する酸素ガスが負極で十分に吸収されると、電
解液の減少がなく、1回の補液で長い充放電サイクルが
可能となる。
Table 1 shows the cycle life test results of the nickel-hydrogen storage batteries in Examples 1 to 15 and Comparative Examples 1 and 2 using the hydrogen storage electrode as the negative electrode. The cycle life was a cycle in which the capacity was reduced to 80% of the initial discharge capacity, and the test temperature was 25 ° C. In the case where the oxygen gas absorption reaction at the negative electrode is insufficient at the time of overcharging and the electrolyte solution is discharged, the battery capacity is recovered by performing replacement fluid as necessary. Therefore, the number of replacement fluids is also used as an evaluation criterion, and the smaller the number of replacement fluids, the better. In other words, when the oxygen gas generated from the positive electrode during overcharge is sufficiently absorbed by the negative electrode, there is no decrease in the electrolytic solution, and a long charge / discharge cycle can be performed with one replacement liquid.

【0039】[0039]

【表1】 [Table 1]

【0040】(表1)には初期放電容量、1回補液での
充放電サイクル回数、500サイクル後の放電容量およ
び放電容量の低下率を測定した結果を示す。本発明の電
池のA〜Tおよび従来の電池である比較例1,2の初期
放電容量はすべて正極の放電容量であって、10〜1
0.5Ahを示している。1回の補液での充放電サイクル
数は、過充電時に正極から発生した酸素ガスを負極で吸
収する能力が高い電池では約20%充放電サイクル寿命
が永くなっている。本発明の電極を負極に用いた電池を
含めて、充放電サイクルが220〜280サイクルにお
いては、放電容量は8Ah以下に低下している。容量の低
下原因はすべて電解液が減少して、電池の内部抵抗が上
昇するためである。何故ならば、この電池に電解液を補
給すると再度放電容量は回復する。
Table 1 shows the results of measurement of the initial discharge capacity, the number of charge / discharge cycles with one replacement fluid, the discharge capacity after 500 cycles, and the rate of decrease in the discharge capacity. The initial discharge capacities of the batteries A to T of the present invention and Comparative Examples 1 and 2 which are conventional batteries are all the discharge capacities of the positive electrodes,
0.5 Ah is shown. The number of charge / discharge cycles for one replacement fluid is about 20% longer for a battery having a high ability to absorb oxygen gas generated from the positive electrode during overcharge at the negative electrode. The discharge capacity is reduced to 8 Ah or less when the charge and discharge cycle is 220 to 280, including the battery using the electrode of the present invention as the negative electrode. The cause of the decrease in capacity is that the electrolyte decreases and the internal resistance of the battery increases. Because, when the battery is replenished with the electrolyte, the discharge capacity is restored again.

【0041】電池A・B・D・Eで示すように、電極支
持体がパンチングメタル,エキスパンドメタル,金属ネ
ットのような一次元構造のものよりは、発泡状・繊維状
の金属多孔体のような三次元構造のものの方が負極のガ
ス吸収能力が優れている。このように充放電サイクルが
長くなるのは、ある程度、発泡状,繊維状の金属骨格
(マトリックス)によって、電極自体の導電性向上とと
もに表面積が大きくなっているためと考えられる。水素
吸蔵電極内に溶解状態から結合剤を介在させた電池A・
B・C・D・E・F・Gは結合剤の作用によって、後か
ら加えるフッ素樹脂粒子が水素吸蔵合金と固形化状態に
ならず均質な水素吸蔵合金と2種類の結合剤間で最適な
ネットワークを形成したシート状の水素吸蔵電極基板を
構成している。この電池の中で電池D・E・F・Gは電
極基板の表面に集電体,補強用金属多孔体,金属薄膜さ
らにはこれらの表面に撥水性のあるフッ素樹脂粉末層を
形成させると充放電サイクル寿命が伸長している。負極
表面で最適な三相界面を形成し酸素ガスの還元作用・触
媒作用を発揮しているためと考えられる。
As shown by batteries A, B, D, and E, the electrode support is more like a foamed or fibrous metal porous body than a one-dimensional structure such as punched metal, expanded metal, or metal net. The three-dimensional structure is more excellent in the gas absorption capacity of the negative electrode. It is considered that the reason why the charge / discharge cycle is lengthened is that the surface area is increased to some extent by the foamed or fibrous metal skeleton (matrix) as well as the conductivity of the electrode itself is improved. Battery A with a binder interposed from the dissolved state in the hydrogen storage electrode
B, C, D, E, F, and G are optimally used between the homogeneous hydrogen storage alloy and the two types of binders without the fluororesin particles added later being solidified with the hydrogen storage alloy due to the action of the binder. A sheet-shaped hydrogen storage electrode substrate on which a network is formed is configured. Among these batteries, the batteries D, E, F, and G are filled with a current collector, a reinforcing metal porous body, a metal thin film, and a water-repellent fluororesin powder layer formed on the surface of the electrode substrate. Discharge cycle life is extended. This is probably because an optimal three-phase interface was formed on the negative electrode surface to exert the reducing and catalytic actions of oxygen gas.

【0042】一方、水素吸蔵電極内に溶解状態(溶融状
態)の結合剤を介在させた電池H・I・J・K・L・M
・N・Oは、溶融した結合剤の作用によって、電極の機
械的強度の向上を図り、フッ素樹脂(PTFE)のよう
な融点の高い結合剤は熱処理しても粒状で水素吸蔵合金
間に存在し、最適なネットワークを形成し、水素吸蔵電
極表面および内部において、最適な三相界面を形成し酸
素ガスの還元・触媒作用を発揮しているものと考えられ
る。
On the other hand, a battery HIJKLKLM in which a binder in a dissolved state (molten state) is interposed in a hydrogen storage electrode.
-N / O improves the mechanical strength of the electrode by the action of the molten binder, and a binder with a high melting point, such as fluororesin (PTFE), is granular and exists between the hydrogen storage alloys even after heat treatment. Then, it is considered that an optimal network is formed, an optimal three-phase interface is formed on the surface and inside of the hydrogen storage electrode, and the oxygen gas is reduced and catalyzed.

【0043】電池Pは水素吸蔵合金の表面に導電性金属
で被覆し、水素吸蔵合金の導電性と耐食性の向上を図っ
ているため、上記の作用と合わせてさらに長寿命化を図
れると考えられる。
In the battery P, since the surface of the hydrogen storage alloy is coated with a conductive metal to improve the conductivity and corrosion resistance of the hydrogen storage alloy, it is considered that the life can be further extended in combination with the above-mentioned effects. .

【0044】電池Qは、製造工程が複雑となる問題点は
あるが、一度、水素吸蔵合金とフッ素樹脂をゴム状に固
化させ、再度粒状に粉砕する工程を有しているため、比
較的大きな表面積を保持し、これにPE樹脂を加え熱処
理しているため、機械的強度とガス吸収能力の向上を図
っている。したがって従来型電池よりはさらに長寿命化
が期待できる。
The battery Q has a problem that the manufacturing process is complicated, but since the battery Q has a process of once solidifying the hydrogen storage alloy and the fluororesin into a rubber-like form and then pulverizing the hydrogen-absorbing alloy and the fluororesin again into a granular form, it is relatively large. Since the surface area is maintained and the PE resin is added thereto and heat-treated, the mechanical strength and the gas absorption capacity are improved. Therefore, a longer life can be expected compared with the conventional battery.

【0045】これに対して比較例1,比較例2に示した
従来型電池では100〜150サイクルの充放電サイク
ル寿命である。これは、過充電時に正極から発生する酸
素ガスを負極で吸収する能力が低いためと考えられる。
比較例1の電池は水素吸蔵合金とフッ素樹脂(PTFE
の分散液)の混合物はゴム状に固形化し、このままシー
ト状に加圧成型すると電極自体の表面積も小さく、酸素
ガスの吸収に対して最適なネットワークを形成していな
いためである。
On the other hand, the conventional batteries shown in Comparative Examples 1 and 2 have a charge / discharge cycle life of 100 to 150 cycles. This is probably because the ability of the negative electrode to absorb oxygen gas generated from the positive electrode during overcharge is low.
The battery of Comparative Example 1 was made of a hydrogen storage alloy and a fluororesin (PTFE).
This is because the mixture of (dispersion liquid) is solidified into a rubber-like state, and when pressed as it is in a sheet form, the surface area of the electrode itself is small, and an optimum network for absorbing oxygen gas is not formed.

【0046】比較例2の電池はフッ素樹脂(PTFE−
PHFP共重合体)と水素吸蔵合金の混合物を融解温度
で熱処理しているため、図11に示すように電極自体の
機械的強度は向上するが表面積が小さくなるので、同様
に負極におけるガス吸収能力が低下し、過充電時に電解
液の減少が大きくなると考えられる。充放電サイクル完
了後、電池の重量を測定すると本発明の電池よりは軽く
なっていることからもそのことが理解できる。
The battery of Comparative Example 2 was made of a fluororesin (PTFE-
Since the mixture of the (PHFP copolymer) and the hydrogen storage alloy is heat-treated at the melting temperature, the mechanical strength of the electrode itself is improved as shown in FIG. 11, but the surface area is reduced. Is considered to decrease, and the decrease of the electrolytic solution at the time of overcharge increases. After completion of the charge / discharge cycle, the weight of the battery is measured, which is understood to be lighter than that of the battery of the present invention.

【0047】充放電サイクルをさらに継続し、500サ
イクル後の容量を比較した。ただし、電解液を調整した
後電池容量を測定し、水素吸蔵電極の特性が比較できる
ようにした。
The charge / discharge cycle was further continued, and the capacities after 500 cycles were compared. However, after adjusting the electrolytic solution, the battery capacity was measured so that the characteristics of the hydrogen storage electrode could be compared.

【0048】本発明の電池では放電容量は9.0〜10
Ahを示し、その低下率は4〜14%にとどまっている。
この電池は単極電位の測定から、まだ正極容量で律速さ
れていることを確認している。したがって、この容量の
低下は正極の容量によるものであって、負極の影響はま
だ見られなく、正極の改良によりさらに長寿命化が期待
できる。電池Sは正極に塗着型の非焼結式電極を用いて
いるため、正極活物質の脱落および電極支持体との剥離
などが一部観察され、容量が低下している。それ以外の
電池において、容量の低下が8〜10%を示す電池は負
極の容量が他の電池より大きいと考えられる。負極の容
量低下の成分も電池特性に影響を与えていると考えられ
る。しかし、従来型電池よりはまだ2〜4倍程優れてい
る。これは結合剤の結合力低下とガス吸収能および電極
支持体の差異によることが大きい。結合剤の熱処理によ
って、低融点の樹脂が融解し、水素吸蔵合金粒子間の結
合を強くし、水素吸蔵合金の電極支持体からの脱落,剥
離現象が少なく長寿命化が図られている。これに対し
て、従来型電池は500サイクル後の容量が6.2〜
8.0Ahまで低下し、低下率は22〜39%と大きくな
っている。したがってサイクル寿命を容量保持率と80
%定義しているので、従来型電池の寿命は500サイク
ル以下ということになる。この原因は、図11に示すよ
うに、合金の表面積が小さく負極における酸素ガスの吸
収能力も比較的小さい。また、比較例1の電池は水素吸
蔵合金シートと電極支持体との剥離により内部抵抗が大
きくなり、また、水素吸蔵合金の脱落により容量低下を
おこしている。とくに過充電時にガス吸収が不十分な場
合、このガスによる合金の脱落現象が促進されることと
なる。
The discharge capacity of the battery of the present invention is 9.0 to 10
Ah, and the decrease rate is only 4 to 14%.
The measurement of the unipolar potential confirmed that the battery was still limited by the positive electrode capacity. Therefore, this decrease in capacity is due to the capacity of the positive electrode, and the effect of the negative electrode has not yet been observed, and a longer life can be expected by improving the positive electrode. Since the battery S uses a coating-type non-sintered electrode for the positive electrode, a drop in the positive electrode active material and a separation from the electrode support are partially observed, and the capacity is reduced. In the other batteries, the battery whose capacity is reduced by 8 to 10% is considered to have a larger capacity of the negative electrode than the other batteries. It is considered that the component of the capacity reduction of the negative electrode also affects the battery characteristics. However, they are still 2 to 4 times better than conventional batteries. This is largely due to a decrease in the binding strength of the binder, a difference in gas absorption capacity, and a difference in the electrode support. By the heat treatment of the binder, the resin having a low melting point is melted, the bond between the hydrogen storage alloy particles is strengthened, and the hydrogen storage alloy is less likely to fall off and separate from the electrode support, and the life is extended. In contrast, the conventional battery has a capacity of 6.2 to 6.2 after 500 cycles.
It decreased to 8.0 Ah, and the decrease rate was as large as 22 to 39%. Therefore, the cycle life is reduced by the capacity retention rate and 80%.
Therefore, the life of the conventional battery is 500 cycles or less. This is because, as shown in FIG. 11, the surface area of the alloy is small and the ability of the negative electrode to absorb oxygen gas is relatively small. In the battery of Comparative Example 1, the internal resistance was increased due to the separation of the hydrogen storage alloy sheet and the electrode support, and the capacity was reduced due to the drop of the hydrogen storage alloy. In particular, when gas absorption is insufficient at the time of overcharging, the phenomenon of alloy falling off due to this gas is promoted.

【0049】比較例2の電池は電極の機械的強度は保持
しているが、図11に示すように水素吸蔵合金5の表面
を溶融樹脂26が多く包囲し、水素吸蔵効率を低下さ
せ、効率的なネットワークを構成していない。したがっ
て、結合剤を1種類のみ使用した場合、水素吸蔵合金の
結合力を強め、負極での酸素ガスとの反応性,および水
素ガスの効率的な吸蔵と機械的な強度をすべて保持する
ことはできない。これに対して、本発明の電池は、水素
ガスの吸蔵ネットワークを形成し、負極での酸素ガスの
吸収反応効率の向上と機械的強度を高める作用をすべて
兼ねている。したがって、従来型電池よりは充放電サイ
クルが長く、長寿命な電池を得ることができる。
Although the battery of Comparative Example 2 retained the mechanical strength of the electrode, as shown in FIG. 11, the surface of the hydrogen storage alloy 5 was surrounded by a large amount of the molten resin 26, and the hydrogen storage efficiency was reduced. Network is not configured. Therefore, when only one type of binder is used, it is necessary to increase the bonding strength of the hydrogen storage alloy, maintain the reactivity with oxygen gas at the negative electrode, and maintain all the efficient storage and mechanical strength of hydrogen gas. Can not. On the other hand, the battery of the present invention forms a hydrogen gas occlusion network, and has both functions of improving the oxygen gas absorption reaction efficiency at the negative electrode and increasing the mechanical strength. Therefore, a battery having a longer charge / discharge cycle and a longer life than the conventional battery can be obtained.

【0050】さらに、本発明の電池R,Tにおいても、
従来型電池より優れている。まず、セパレータの材質に
よって電解液の保液性が異なる。ここではナイロンとポ
リプロピレンの不織布からなる混合繊維を用いることに
よって、保液性と耐久性が優れるため、比較的サイクル
寿命が長く、容量低下の少ない電池を得ることができ
る。このセパレータの表面に合成樹脂を溶融させた凸部
材を設けることにより、電解液の保持力がさらに向上
し、容量の低下を抑制している。
Furthermore, in the batteries R and T of the present invention,
Better than conventional batteries. First, the liquid retention of the electrolytic solution differs depending on the material of the separator. Here, by using a mixed fiber composed of a nonwoven fabric of nylon and polypropylene, the liquid retention property and the durability are excellent, so that a battery having a relatively long cycle life and a small capacity reduction can be obtained. By providing a convex member obtained by melting a synthetic resin on the surface of the separator, the holding power of the electrolytic solution is further improved, and a decrease in capacity is suppressed.

【0051】また、一般に採用されている表面改質装置
(例えばケミカルヒュージョン,ハイブリダイゼーショ
ンなど)を用いて、フッ素樹脂粉末の表面を導電性材
料、例えば、カーボンやニッケルの微粒子で被覆あるい
は結合させることによって、撥水性を保持しつつ、導電
性を持たせることができるので、電極の内部抵抗を下げ
ずに、しかも負極でのガス吸収能力をある程度保持する
ことができるので、サイクル寿命が長く、容量低下が少
ない電池を実現できる。とくに高融点の粉末状フッ素樹
脂に適用すると効果的である。また水素吸蔵合金と共
に、同時に表面改質処理することも可能である。
Further, the surface of the fluororesin powder is coated or bonded with a conductive material, for example, fine particles of carbon or nickel, using a generally employed surface modification device (for example, chemical fusion, hybridization, etc.). As a result, it is possible to impart conductivity while maintaining water repellency, so that the internal resistance of the electrode can be maintained without lowering the gas absorption capacity of the negative electrode to a certain extent. A battery with little reduction can be realized. It is particularly effective when applied to powdered fluororesin having a high melting point. It is also possible to perform a surface modification treatment simultaneously with the hydrogen storage alloy.

【0052】電池Pのように水素吸蔵合金の表面に導電
性金属を被覆すると、急速充放電特性が優れる一方、負
極でのガス吸収能力も向上する。結合剤として熱可塑性
エラストマー(合成ゴム)のトルエン溶液を採用してい
るが、その添加量が0.5wt%以下ではその結合力が弱
く、水素吸蔵電極の耐久性に欠ける。一方、5wt%以上
になると結合力は強くなるが、水素吸蔵電極自体の抵抗
が大きくなり、電極電圧の低下、容量低下をひきおこ
す。したがって、その添加量が0.5〜5重量%の範囲
が望ましい。
When the surface of the hydrogen storage alloy is coated with a conductive metal as in the battery P, the rapid charge / discharge characteristics are excellent, and the gas absorbing ability at the negative electrode is also improved. Although a toluene solution of a thermoplastic elastomer (synthetic rubber) is used as a binder, when the amount of addition is 0.5 wt% or less, the binding strength is weak, and the durability of the hydrogen storage electrode is lacking. On the other hand, when the content is 5 wt% or more, the bonding force becomes strong, but the resistance of the hydrogen storage electrode itself becomes large, which causes a decrease in electrode voltage and a decrease in capacity. Therefore, the addition amount is desirably in the range of 0.5 to 5% by weight.

【0053】親水性樹脂の添加量が0.1wt%以下では
フッ素樹脂の均質な混合が困難になり、均質なシートが
できにくい。5wt%以上になると水素吸蔵合金粒子の表
面全体を樹脂で包囲してしまうので、電極容量の低下を
ひきおこし、電池を構成しても、電池寿命が短くなる、
電池容量が小さい。したがって、その添加量が0.1〜
5重量%の範囲が望ましい。
When the amount of the hydrophilic resin is less than 0.1% by weight, it is difficult to uniformly mix the fluororesin, and it is difficult to form a uniform sheet. If the content is more than 5 wt%, the entire surface of the hydrogen storage alloy particles will be surrounded by the resin, so that the electrode capacity will be reduced and the battery life will be shortened even if the battery is configured.
Battery capacity is small. Therefore, the addition amount is 0.1 to
A range of 5% by weight is desirable.

【0054】フッ素樹脂の添加量が1wt%以下では結合
力も小さく、電極の耐久性に欠ける。また合金表面にお
いて、三相界面が形成されにくく、酸素ガスの吸収が円
滑に進行しない。電池を構成した場合、電解液の排出量
が多くなり、メンテナンスを多く要するようになる。一
方、10wt%以上になると結合力も強くなるが、水素吸
蔵電極自体の抵抗が大きくなり、電池容量の低下をまね
く。したがってその添加量が1〜10重量%の範囲が望
ましい。
When the addition amount of the fluororesin is 1 wt% or less, the bonding strength is small and the durability of the electrode is poor. Further, a three-phase interface is hardly formed on the alloy surface, and absorption of oxygen gas does not proceed smoothly. When a battery is configured, the amount of discharge of the electrolytic solution increases, so that much maintenance is required. On the other hand, when the content is 10 wt% or more, the bonding strength is increased, but the resistance of the hydrogen storage electrode itself is increased, which leads to a decrease in battery capacity. Therefore, the addition amount is desirably in the range of 1 to 10% by weight.

【0055】なお、ここでは、正極として焼結式電極を
採用したが、本発明はこれに限定されるものではなく発
泡式,繊維式電極をも用いることができる。また、結合
剤として、有機合成樹脂であるPE,フッ素樹脂,シリ
コン樹脂あるいは熱可塑性エラストマーを用いたが、要
するに水,有機溶媒の溶解状態の樹脂から形成させるか
あるいは熱処理して溶融状態の樹脂を形成させると同時
に粒子状の樹脂(PTFE)が混在しているネットワー
クを構成するものであれば、どのような結合剤であって
もよい。
Although a sintered electrode is used as the positive electrode here, the present invention is not limited to this, and a foamed electrode or a fiber electrode can also be used. As the binder, PE, a fluorine resin, a silicone resin or a thermoplastic elastomer, which is an organic synthetic resin, is used. In short, it is formed from a resin in a dissolved state of water or an organic solvent, or a resin in a molten state by heat treatment. Any binder may be used as long as it forms a network in which a particulate resin (PTFE) is mixed at the same time as being formed.

【0056】また、水素吸蔵合金としてAB5型多元系
合金を用いたがAB2,AB型多元系合金を用いること
もできる。また導電材としてニッケル,銅粉末を約5wt
%〜30wt%加えると効果的である。
Although the AB 5 type multi-element alloy was used as the hydrogen storage alloy, AB 2 and AB type multi-element alloys can also be used. About 5wt% nickel and copper powder as conductive material
% To 30 wt% is effective.

【0057】上記のように、水素吸蔵合金の結合剤とし
て2種類以上の融点の異なる結合剤を用い、融点の低い
方の結合剤で熱処理し、あるいは溶液状態と粒子状態の
結合剤を混合したり、または導電性金属被覆水素吸蔵合
金を用いたり、水素吸蔵電極基板の表面に集電体,金属
薄膜および合成樹脂層を形成させたりして、電極内部,
表面に合成樹脂と合金のネットワークを形成し、電極の
機械的強度とガス吸収能力,水素吸蔵特性の向上を図
り、水素吸蔵電極およびそれを用いた酸化金属−水素蓄
電池の長寿命化・大容量化を達成することができる。
As described above, two or more kinds of binders having different melting points are used as the binder of the hydrogen storage alloy, and heat treatment is performed with the binder having the lower melting point, or the binder in the solution state and the particle state is mixed. Or by using a conductive metal-coated hydrogen storage alloy, or by forming a current collector, a metal thin film and a synthetic resin layer on the surface of the hydrogen storage electrode substrate.
A network of synthetic resin and alloy is formed on the surface to improve the mechanical strength, gas absorption capacity, and hydrogen storage characteristics of the electrode. The hydrogen storage electrode and metal oxide-hydrogen storage battery using it have a longer life and larger capacity. Can be achieved.

【0058】[0058]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明によれば、電極自体の機械的強度(耐久性)が
向上し、しかも集電能力が増加することにより大電流で
の充放電特性に優れ、充放電サイクル寿命が永く、メン
テナンスが容易な水素吸蔵電極とその製造方法およびそ
れを用いた酸化金属−水素蓄電池を実現することができ
る。
As is clear from the above description of the embodiment, according to the present invention, the mechanical strength (durability) of the electrode itself is improved, and the current collecting capability is increased, so that a large current can be obtained. A hydrogen storage electrode having excellent charge / discharge characteristics, a long charge / discharge cycle life, and easy maintenance, a method for manufacturing the same, and a metal oxide-hydrogen storage battery using the same can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)は本発明の一実施例の電極支持体を有す
る水素吸蔵電極の要望拡大断面図 (ロ)は同電極支持体として多孔性材料を用いた水素吸
蔵合金の要部拡大断面図
1A is an enlarged cross-sectional view of a hydrogen storage electrode having an electrode support according to one embodiment of the present invention, and FIG. 1B is an enlarged view of a main part of a hydrogen storage alloy using a porous material as the electrode support. Sectional view

【図2】同水素吸蔵合金粒子と2種類の結合剤との結合
状態を示す要部拡大断面図
FIG. 2 is an enlarged sectional view of a main part showing a bonding state between the hydrogen storage alloy particles and two kinds of binders.

【図3】同水素吸蔵電極を負極に用いたニッケル−水素
蓄電池の断面図
FIG. 3 is a cross-sectional view of a nickel-hydrogen storage battery using the hydrogen storage electrode as a negative electrode.

【図4】同繊維状金属多孔体内に水素吸蔵合金を充填し
た水素吸蔵電極の要部拡大断面図
FIG. 4 is an enlarged sectional view of a main part of a hydrogen storage electrode in which a fibrous metal porous body is filled with a hydrogen storage alloy.

【図5】同繊維状金属多孔体内に水素吸蔵合金を充填し
た水素吸蔵電極の微細ネットワークを示す断面図
FIG. 5 is a sectional view showing a fine network of a hydrogen storage electrode in which the fibrous metal porous body is filled with a hydrogen storage alloy.

【図6】(イ)は同表面に集電体を設けたネット型水素
吸蔵電極の断面図 (ロ)は同表面に集電体を設けた発泡体型水素吸蔵電極
の断面図
6A is a cross-sectional view of a net-type hydrogen storage electrode provided with a current collector on the same surface, and FIG. 6B is a cross-sectional view of a foam-type hydrogen storage electrode provided with a current collector on the same surface.

【図7】同表面に金属薄膜を形成した発泡状型水素吸蔵
電極の断面図
FIG. 7 is a cross-sectional view of a foamed hydrogen storage electrode having a metal thin film formed on the same surface.

【図8】同表面に金属薄膜とフッ素樹脂層を形成した水
素吸蔵電極の断面図
FIG. 8 is a cross-sectional view of a hydrogen storage electrode having a metal thin film and a fluororesin layer formed on the same surface.

【図9】同水素吸蔵合金粒子とPTFE−PHFP共重
合体とPE樹脂の結合状態を示す断面図
FIG. 9 is a cross-sectional view showing a bonding state of the hydrogen storage alloy particles, the PTFE-PHFP copolymer, and the PE resin.

【図10】(イ)は同水素吸蔵合金粒子と3種類の結合
剤の結合状態で1種類の結合剤のみ溶融した状態を示す
断面図 (ロ)は同水素吸蔵合金粒子と3種類の結合剤の結合状
態で1種類の結合剤のみ粒子状態であることを示す断面
FIG. 10A is a cross-sectional view illustrating a state in which the hydrogen storage alloy particles are bonded to three types of binders and only one type of binder is melted, and FIG. 10B is a cross-sectional view illustrating the hydrogen storage alloy particles and three types of bonding. Sectional view showing that only one type of binder is in a particle state in the binding state of the agent

【図11】従来の水素吸蔵合金粒子の結合状態を示す断
面図
FIG. 11 is a cross-sectional view showing a bonding state of conventional hydrogen storage alloy particles.

【符号の説明】[Explanation of symbols]

1 ネット型電極支持体 2,4,16 水素吸蔵合金 3 発泡型電極支持体 5 水素吸蔵合金粒子 6 融解状態の結合剤 7 粒子状態の結合剤 8 負極 9 正極 10 セパレータ 15 金属繊維 17 融解状態の合成ゴム 18 PEの微粒子 19,20 集電体 21 金属薄膜 22 撥水性樹脂層 23 PTFE−PHFP共重合体粒子 24 融解状態のPE樹脂 25 PTFE粒子 DESCRIPTION OF SYMBOLS 1 Net-type electrode support 2, 4, 16 Hydrogen storage alloy 3 Foamed electrode support 5 Hydrogen storage alloy particles 6 Binder in a molten state 7 Binder in a particle state 8 Negative electrode 9 Positive electrode 10 Separator 15 Metal fiber 17 In a molten state Synthetic rubber 18 PE fine particles 19, 20 Current collector 21 Metal thin film 22 Water-repellent resin layer 23 PTFE-PHFP copolymer particles 24 PE resin in a molten state 25 PTFE particles

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−250260(JP,A) 特開 平2−135665(JP,A) 特開 平1−267960(JP,A) 特開 平2−201870(JP,A) 特開 平1−211857(JP,A) 特開 昭63−266767(JP,A) 特開 平2−291665(JP,A) 特開 昭61−39362(JP,A) 特公 昭48−21222(JP,B1) (58)調査した分野(Int.Cl.7,DB名) H01M 2/16,4/24 H01M 4/26,4/62 H01M 10/24 - 10/30 H01M 10/34 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-250260 (JP, A) JP-A-2-135665 (JP, A) JP-A-1-267960 (JP, A) JP-A-2-267 201870 (JP, A) JP-A-1-211857 (JP, A) JP-A-63-266767 (JP, A) JP-A-2-291665 (JP, A) JP-A-61-39362 (JP, A) JP-B-48-21222 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 2 / 16,4 / 24 H01M 4 / 26,4 / 62 H01M 10/24-10 / 30 H01M 10/34

Claims (27)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素吸蔵合金粒子を単独あるいは溶媒と
ともに熱可塑性エラストマー親水性樹脂、もしくはそ
れにフッ素樹脂、ポリエチレン樹脂またはシリコン樹脂
からなる群から選ばれる1種以上をさらに混合し、前記
混合物を主体として集電を兼ねる電極支持体に塗着あ
るいは充填して一体化した水素吸蔵電極。
1. A thermoplastic elastomer a hydrogen storage alloy particles, alone or in a solvent and a hydrophilic resin, or its
Les fluororesin, a polyethylene resin or a silicone resin
Further a mixture of one or more selected from the group consisting of hydrogen storage electrode formed by integrating the mixture Nurigi or filling to the the electrode support also serving as a current collector mainly.
【請求項2】熱可塑性エラストマーがスチレン・ブタジ
エン共重合体,スチレン・イソプレン共重合体またはス
チレン・エチレン・ブタジエン・スチレン共重合体のい
ずれか一種類以上を主体とし、前記熱可塑性エラストマ
ーの添加量が0.5〜5.0重量%である請求項1記載
の水素吸蔵電極。
2. The thermoplastic elastomer is mainly composed of at least one of styrene / butadiene copolymer, styrene / isoprene copolymer or styrene / ethylene / butadiene / styrene copolymer, and the amount of the thermoplastic elastomer added. Is 0.5 to 5.0% by weight.
【請求項3】親水性樹脂がカルボオキシ・メチルセルロ
ース,メチルセルロースまたはポリビニルアルコールの
いずれか1種類以上を主体とし、前記親水性樹脂の添加
量が0.1〜5.0重量%である請求項1記載の水素吸
蔵電極。
3. The method according to claim 1, wherein the hydrophilic resin is mainly composed of one or more of carboxoxymethylcellulose, methylcellulose and polyvinyl alcohol, and the amount of the hydrophilic resin is 0.1 to 5.0% by weight. Hydrogen storage electrode.
【請求項4】フッ素樹脂が四フッ化エチレンまたは四フ
ッ化エチレンと六フッ化プロピレン共重合体のいずれか
1種類以上を主体とし、前記フッ素樹脂の添加量が1〜
10重量%である請求項1記載の水素吸蔵電極。
4. The fluororesin is mainly composed of at least one of ethylene tetrafluoride or a copolymer of ethylene tetrafluoride and propylene hexafluoride.
The hydrogen storage electrode according to claim 1, which is 10% by weight.
【請求項5】集電体を兼ねる電極支持体が三次元構造の
発泡状,繊維状金属多孔体、あるいは一枚構成または二
枚構成の金属ネット,エキスパンドメタルまたはパンチ
ングメタルのいずれかである請求項1記載の水素吸蔵電
極。
5. An electrode support serving also as a current collector is a foamed or fibrous metal porous body having a three-dimensional structure, or a metal net having one or two sheets, an expanded metal or a punching metal. Item 7. A hydrogen storage electrode according to Item 1.
【請求項6】水素吸蔵電極板の表面に集電体を兼ねる補
強用の金属多孔体を加圧して一体化した請求項1記載の
水素吸蔵電極。
6. The hydrogen storage electrode according to claim 1, wherein a reinforcing metal porous body also serving as a current collector is integrated by pressing on the surface of the hydrogen storage electrode plate.
【請求項7】水素吸蔵電極板の表面にさらに無電解,電
解メッキまたは金属蒸着などの手段により金属の薄膜を
形成する請求項1記載の水素吸蔵電極。
7. The hydrogen storage electrode according to claim 1, wherein a metal thin film is further formed on the surface of the hydrogen storage electrode plate by means such as electroless, electrolytic plating, or metal deposition.
【請求項8】水素吸蔵電極板の表面にさらに撥水性樹脂
層を形成させれる請求項1,6または7のいずれかに記
載の水素吸蔵電極。
8. The hydrogen storage electrode according to claim 1, wherein a water-repellent resin layer is further formed on the surface of the hydrogen storage electrode plate.
【請求項9】 水素吸蔵合金粉末単独にあるいは溶媒と
ともに親水性樹脂を混合した後、さらに熱可塑性エラス
トマー、あるいはさらにフッ素樹脂、ポリエチレン樹脂
またはシリコン樹脂からなる群から選ばれる1種類以上
を順次加え最も融点の低い樹脂の融解温度あるいはその
温度以下でシート状に加圧成型してなる水素吸蔵電極の
製造方法。
9. After mixing the hydrophilic resin with the hydrogen storage alloy powder alone or together with the solvent, further add a thermoplastic elastomer.
Tomer, or even fluororesin, polyethylene resin
Alternatively, a method for producing a hydrogen storage electrode, in which one or more types selected from the group consisting of silicone resins are sequentially added and the resin is pressed into a sheet at the melting temperature of the resin having the lowest melting point or at a temperature lower than the melting temperature.
【請求項10】水素吸蔵電極板の表面に撥水性を有する
フッ素樹脂粉末を塗着固定し、静圧プレス,ローラープ
レス,ホットプレスまたはホットローラプレスする工程
のいずれかを少なくとも1工程以上を有する請求項9記
載の水素吸蔵電極の製造方法。
10. A method of applying and fixing a water-repellent fluororesin powder on the surface of a hydrogen-absorbing electrode plate and performing at least one of static pressure pressing, roller pressing, hot pressing and hot roller pressing. A method for producing a hydrogen storage electrode according to claim 9.
【請求項11】水素吸蔵合金粉末を単独あるいは溶媒と
ともに融点の異なる2種類以上のフッ素樹脂単独あるい
は前記2種類のフッ素樹脂に熱可塑性エラストマー,親
水性樹脂,ポリエチレン樹脂,シリコン樹脂のいずれか
を含有する混合物を電極支持体に塗着あるいは充填して
一体化構成した水素吸蔵電極。
11. A hydrogen-absorbing alloy powder alone or together with a solvent containing two or more fluororesins having different melting points, or a thermoplastic elastomer, a hydrophilic resin, a polyethylene resin or a silicone resin contained in the two types of fluororesins. A hydrogen storage electrode integrally formed by applying or filling a mixture to be applied to an electrode support.
【請求項12】融点の異なる2種類以上のフッ素樹脂粉
末を水素吸蔵電極の表面に塗着し、低融点のフッ素樹脂
の層を水素吸蔵電極板の表面に形成する請求項11記載
の水素吸蔵電極。
12. The hydrogen storage device according to claim 11, wherein two or more types of fluororesin powders having different melting points are applied to the surface of the hydrogen storage electrode, and a layer of a low melting point fluororesin is formed on the surface of the hydrogen storage electrode plate. electrode.
【請求項13】融点の異なる2種類以上のフッ素樹脂粉
末を水素吸蔵電極板表面に塗着し、最も高融点のフッ素
樹脂の層を水素吸蔵電極板の表面に形成する請求項11
記載の水素吸蔵電極。
13. The hydrogen storage electrode plate, wherein two or more kinds of fluororesin powders having different melting points are applied to the surface of the hydrogen storage electrode plate, and a layer of the fluorine resin having the highest melting point is formed on the surface of the hydrogen storage electrode plate.
The hydrogen storage electrode as described in the above.
【請求項14】水素吸蔵合金粉末を単独あるいは溶媒と
ともに融点の異なる2種類以上のフッ素樹脂単独あるい
はこのフッ素樹脂に熱可塑性エラストマー1種類以上,
親水性樹脂1種類以上,ポリエチレン樹脂またはシリコ
ン樹脂のいずれかを少なくとも1種類以上を含有する混
合物を電極支持体に塗着あるいは充填する工程におい
て、融点の異なる2種類以上のフッ素樹脂あるいは混合
された樹脂の中で、低融点樹脂の融解温度で熱処理し、
加熱成型する工程を有する水素吸蔵電極の製造方法。
14. A hydrogen storage alloy powder, alone or together with a solvent, at least two kinds of fluororesins having different melting points, or one or more kinds of thermoplastic elastomers,
In the step of applying or filling a mixture containing at least one kind of hydrophilic resin and at least one kind of polyethylene resin or silicone resin to the electrode support, two or more kinds of fluororesins having different melting points or mixed with each other are used. In the resin, heat treatment at the melting temperature of the low melting point resin,
A method for producing a hydrogen storage electrode having a step of heating and molding.
【請求項15】融点の異なる2種類以上のフッ素樹脂単
独あるいは前記フッ素樹脂に熱可塑性エラストマー(合
成ゴム)1種類以上,親水性樹脂1種類以上,ポリエチ
レン樹脂またはシリコン樹脂のいずれかを少なくとも1
種類を含有する水素吸蔵電極板の表面に、さらに低融点
のフッ素樹脂粉末を塗着固定し、その低融点フッ素樹脂
の融解温度で、熱処理後加圧成型、あるいはホットプレ
スまたはホットローラープレスする工程を少なくとも1
種類以上を有する水素吸蔵電極の製造方法。
15. At least two kinds of fluororesins having different melting points, or at least one kind of thermoplastic elastomer (synthetic rubber), at least one kind of hydrophilic resin, and at least one of polyethylene resin and silicone resin are used.
A step of further applying and fixing a low melting point fluororesin powder on the surface of the hydrogen-absorbing electrode plate containing the type, and then heat-treating at the melting temperature of the low melting point fluororesin, followed by pressure molding, or hot pressing or hot roller pressing. At least one
A method for producing a hydrogen storage electrode having at least one type.
【請求項16】融点の異なる2種類以上のフッ素樹脂単
独あるいは、このフッ素樹脂に熱可塑性エラストマー1
種類以上,親水性樹脂1種類以上,ポリエチレン樹脂、
またはシリコン樹脂のいずれかを少なくとも1種類を含
有する水素吸蔵電極板の表面に、さらに高融点のフッ素
樹脂粉末を塗着固定し、低融点のフッ素樹脂の融解温度
で、熱処理後加圧成型、あるいはホットプレスまたはホ
ットローラープレスする工程を少なくとも1種類以上を
有する水素吸蔵電極の製造方法。
16. A thermoplastic elastomer comprising two or more fluororesins having different melting points, or
More than one kind, more than one kind of hydrophilic resin, polyethylene resin,
Alternatively, a high-melting fluororesin powder is further applied and fixed on the surface of the hydrogen storage electrode plate containing at least one of silicon resins, and then heat-treated at a melting temperature of the low-melting fluororesin, followed by pressure molding, Alternatively, a method for producing a hydrogen storage electrode having at least one or more steps of hot pressing or hot roller pressing.
【請求項17】導電性金属が部分的に被覆されている水
素吸蔵合金粉末に親水性樹脂を加えた後、ついで融点の
異なる2種類以上のフッ素樹脂を単独あるいは溶媒とと
もに混合し、発泡状または繊維状金属多孔体内に充填す
るか、あるいは金属ネット,パンチングメタルまたはエ
キスパンドメタルに塗着固定し、前記低融点フッ素樹脂
の融解温度で、熱処理後加圧成型あるいはホットプレス
またはホットローラープレスする工程を少なくとも1種
類以上を有する水素吸蔵電極の製造方法。
17. After adding a hydrophilic resin to the hydrogen-absorbing alloy powder partially covered with a conductive metal, two or more kinds of fluororesins having different melting points are mixed alone or together with a solvent, and then foamed or mixed. A step of filling in a fibrous metal porous body, or coating and fixing it on a metal net, punching metal or expanded metal, and heat-treating at the melting temperature of the low melting point fluororesin, followed by pressure molding or hot pressing or hot roller pressing. A method for producing a hydrogen storage electrode having at least one type.
【請求項18】融点の異なる2種類以上のフッ素樹脂と
水素吸蔵合金粉末を溶媒とともに混合し、乾燥後、ゴム
状に固形化した水素吸蔵合金を粉砕して再度、粒状とな
し、この水素吸蔵合金粉末を単独あるいは熱可塑性エラ
ストマー,親水性樹脂,ポリエチレン樹脂またはシリコ
ン樹脂の少なくとも1種類以上とともに発泡状または繊
維状金属多孔体内に充填しあるいは金属ネット,パンチ
ングメタルまたはエキスパンドメタルの表面に塗着固定
し、その後、静圧プレス,ローラープレス,ホットプレ
スまたはホットローラープレスのいずれか1種類以上の
工程を有する水素吸蔵電極の製造方法。
18. A hydrogen storage alloy powder mixed with two or more kinds of fluororesins having different melting points and a hydrogen storage alloy powder together with a solvent, dried, and the rubber-solidified hydrogen storage alloy is pulverized into granules again. Filling the alloy powder alone or together with at least one of thermoplastic elastomer, hydrophilic resin, polyethylene resin or silicone resin into a foamed or fibrous metal porous body, or coating and fixing it on the surface of a metal net, punching metal or expanded metal And thereafter, a method for producing a hydrogen storage electrode including at least one of static pressure press, roller press, hot press and hot roller press.
【請求項19】ニッケル正極と水素を電気化学的に吸蔵
・放出する水素吸蔵合金または水素化物を含有する負極
とアルカリ性電解液を備え、前記負極が請求項1〜8の
いずれかに記載の水素吸蔵電極を主体とする酸化金属−
水素蓄電池。
19. A hydrogen electrode according to claim 1, comprising a nickel positive electrode, a negative electrode containing a hydrogen storage alloy or hydride for electrochemically storing and releasing hydrogen, and an alkaline electrolyte. Metal oxide mainly composed of occlusion electrodes
Hydrogen storage battery.
【請求項20】ニッケル正極と水素を電気化学的に吸蔵
・放出する水素吸蔵合金または水素化物を含有する負極
とアルカリ性電解液を備え、前記負極が請求項11〜1
3のいずれかに記載の水素吸蔵電極を主体とする酸化金
属−水素蓄電池。
20. A negative electrode comprising a nickel positive electrode, a negative electrode containing a hydrogen storage alloy or hydride for electrochemically storing and releasing hydrogen, and an alkaline electrolyte.
3. A metal oxide-hydrogen storage battery mainly comprising the hydrogen storage electrode according to any one of 3.
【請求項21】融点の異なる2種類以上のフッ素樹脂の
中で、低融点樹脂の融解温度で熱処理した水素吸蔵電極
を負極とする請求項20記載の酸化金属−水素蓄電池。
21. The metal oxide-hydrogen storage battery according to claim 20, wherein a hydrogen storage electrode heat-treated at a melting temperature of the low melting point resin among two or more kinds of fluororesins having different melting points is used as a negative electrode.
【請求項22】ニッケル正極と水素を電気化学的に吸蔵
・放出する水素吸蔵合金または水素化物を含有する負極
とアルカリ性電解液を備え、前記負極が導電性金属で部
分的に被覆されている水素吸蔵合金粉末と少なくとも融
点の異なる2種類以上のフッ素樹脂からなる混合物が発
泡状または繊維状金属多孔体内に充填され、あるいは金
属ネット,パンチングメタルまたはエキスパンドメタル
に塗着固定され、前記低融点のフッ素樹脂の融解温度で
熱処理後加圧成型あるいはホットプレスまたはホットロ
ーラープレスされた水素吸蔵電極からなる酸化金属−水
素蓄電池。
22. A nickel positive electrode, a negative electrode containing a hydrogen storage alloy or hydride for electrochemically storing and releasing hydrogen and an alkaline electrolyte, wherein the negative electrode is partially coated with a conductive metal. A mixture of an occlusion alloy powder and at least two kinds of fluororesins having different melting points is filled in a foamed or fibrous metal porous body, or is coated and fixed on a metal net, punching metal or expanded metal, A metal oxide-hydrogen storage battery comprising a hydrogen storage electrode that has been heat-treated at the melting temperature of the resin and then pressed or hot-pressed or hot-rolled.
【請求項23】ニッケル正極と水素を電気化学的に吸蔵
・放出する水素吸蔵合金または水素化物を含有する負極
とアルカリ性電解液を備え、前記正極と負極間にセパレ
ータを配置し、前記セパレータの表面に有機合成樹脂粒
子を溶融固定させた、請求項1記載の水素吸蔵電極から
なる酸化金属−水素蓄電池。
23. A nickel positive electrode, a negative electrode containing a hydrogen storage alloy or hydride for electrochemically storing and releasing hydrogen and an alkaline electrolyte, a separator disposed between the positive electrode and the negative electrode, and a surface of the separator. A metal oxide-hydrogen storage battery comprising the hydrogen storage electrode according to claim 1, wherein organic synthetic resin particles are fixed by melting.
【請求項24】正極と負極間に介在させたセパレータが
少なくともポリプロピレン繊維またはナイロン繊維を含
む2種類以上の繊維の不織布からなる請求項23記載の
酸化金属−水素蓄電池。
24. The metal oxide-hydrogen storage battery according to claim 23, wherein the separator interposed between the positive electrode and the negative electrode is made of a nonwoven fabric of two or more fibers including at least a polypropylene fiber or a nylon fiber.
【請求項25】ニッケル正極と水素を電気化学的に吸蔵
・放出する水素吸蔵合金または水素化物を含有する負極
とアルカリ性電解液を備え、前記正極が電極支持体に結
合剤とともに水酸化ニッケルを主体とする活物質が塗着
された非焼結式電極からなり、前記負極が請求項1〜4
のいずれかに記載の水素吸蔵電極を主体とする酸化金属
−水素蓄電池。
25. A nickel positive electrode, a negative electrode containing a hydrogen storage alloy or hydride for electrochemically storing and releasing hydrogen, and an alkaline electrolyte, wherein the positive electrode mainly comprises nickel hydroxide together with a binder on an electrode support. And a non-sintered electrode coated with an active material, wherein the negative electrode is
A metal oxide-hydrogen storage battery mainly comprising the hydrogen storage electrode according to any one of the above.
【請求項26】正極が電極支持体を介して活物質である
水酸化ニッケルと結合剤の混合物を塗着された非焼結式
電極からなり、前記結合剤が、熱可塑性エラストマーを
1種類以上、親水性樹脂を1種類以上、フッ素樹脂を1
種類以上の中から少なくとも2種類以上を主体とする請
求項25記載の酸化金属−水素蓄電池。
26. A positive electrode comprising a non-sintered electrode coated with a mixture of nickel hydroxide as an active material and a binder via an electrode support, wherein the binder comprises one or more thermoplastic elastomers. , One or more hydrophilic resins and one fluororesin
26. The metal oxide-hydrogen storage battery according to claim 25, wherein at least two or more of the types are mainly used.
【請求項27】水素吸蔵合金にフッ素樹脂粉末,ポリエ
チレン樹脂粉末と導電性材料で複合化した混合物を加
え、前記混合物が電極支持体を塗着あるいは充填一体化
した水素吸蔵電極を負極とした酸化金属−水素蓄電池。
27. A mixture obtained by adding a mixture of a fluororesin powder, a polyethylene resin powder and a conductive material to a hydrogen storage alloy, and the mixture is coated with an electrode support or filled and integrated with the hydrogen storage electrode as a negative electrode. Metal-hydrogen storage batteries.
JP3049506A 1991-03-14 1991-03-14 Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same Expired - Lifetime JP3008519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049506A JP3008519B2 (en) 1991-03-14 1991-03-14 Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049506A JP3008519B2 (en) 1991-03-14 1991-03-14 Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same

Publications (2)

Publication Number Publication Date
JPH04284354A JPH04284354A (en) 1992-10-08
JP3008519B2 true JP3008519B2 (en) 2000-02-14

Family

ID=12833021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049506A Expired - Lifetime JP3008519B2 (en) 1991-03-14 1991-03-14 Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same

Country Status (1)

Country Link
JP (1) JP3008519B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050306A (en) * 1996-07-31 1998-02-20 Toyota Autom Loom Works Ltd Manufacture of hydrogen storage alloy electrode
JP5127369B2 (en) * 2007-08-31 2013-01-23 三洋電機株式会社 Alkaline storage battery
JP2011096619A (en) 2009-02-12 2011-05-12 Sanyo Electric Co Ltd Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
TWI371888B (en) * 2009-04-16 2012-09-01 Ind Tech Res Inst Hydrogen supply device
JP5875095B2 (en) * 2013-07-27 2016-03-02 エクセルギー・パワー・システムズ株式会社 Battery negative electrode material, battery negative electrode and battery
JP6089188B2 (en) * 2015-04-24 2017-03-08 エクセルギー・パワー・システムズ株式会社 Hydrogen production apparatus and hydrogen production method provided with third electrode

Also Published As

Publication number Publication date
JPH04284354A (en) 1992-10-08

Similar Documents

Publication Publication Date Title
JP4992128B2 (en) Negative electrode active material particles for lithium secondary battery and method for producing negative electrode
WO2007004703A1 (en) Nickel-hydrogen battery
WO2007055007A1 (en) Particle of negative electrode active material for lithium secondary battery, negative electrode making use of the same and process for producing them
JP3008519B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JP4789032B2 (en) Negative electrode active material particles for lithium secondary battery and method for producing negative electrode
JP3104230B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
EP0417697B1 (en) Hydrogen storage electrode and process for producing the same
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3438538B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0475256A (en) Non-sintered type hydrogen storage electrode and nickel-hydrogen storage battery using the same
JPH0815077B2 (en) Sealed alkaline storage battery
JP3475033B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP3572593B2 (en) Hydrogen storage electrode
JPH07111885B2 (en) Metal oxide-hydrogen storage battery and manufacturing method thereof
JPH05109406A (en) Hydrogen battery electrode and its manufacture
JP2002008645A (en) Hydrogen-storing alloy negative electrode and production method thereof
JPH11111280A (en) Hydride secondary battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPH0992271A (en) Hydrogen storage alloy electrode
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12