JPH02183964A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPH02183964A
JPH02183964A JP1002524A JP252489A JPH02183964A JP H02183964 A JPH02183964 A JP H02183964A JP 1002524 A JP1002524 A JP 1002524A JP 252489 A JP252489 A JP 252489A JP H02183964 A JPH02183964 A JP H02183964A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
alloy
hydrogen
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1002524A
Other languages
Japanese (ja)
Other versions
JPH088100B2 (en
Inventor
Tetsuo Sakai
哲男 境
Hiroshi Ishikawa
博 石川
Nobuhiro Kuriyama
栗山 信宏
Tokuichi Hazama
狭間 徳一
Shizuo Sakamoto
坂本 静男
Hiroyuki Kawashima
弘之 川島
Keizo Sakaguchi
坂口 景三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kurimoto Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1002524A priority Critical patent/JPH088100B2/en
Publication of JPH02183964A publication Critical patent/JPH02183964A/en
Publication of JPH088100B2 publication Critical patent/JPH088100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To reduce the production cost and improve the life by performing the process integrally connecting a micro-capsule alloy with a current collector with a hot press in the hydrogen gas atmosphere and concurrently molding and activating an electrode. CONSTITUTION:The process to integrally connect a micro-capsule alloy coated with copper or nickel on the surface of hydrogen storage alloy powder to a current collector with a hot press is performed in the hydrogen gas atmosphere, and an electrode is concurrently molded and activated. The micro-capsule alloy may be used alone, or at least one kind selected from a group of copper powder, nickel powder, PTFE, PEP, polyethylene, polypropylene, and nylon may be mixed at 10wt.% or below to the electrode as a caking agent for use. The hot press temperature is 100-350 deg.C, the hydrogen gas atmosphere is 1-10atm., the hot press pressure is 1t/cm or below, and the press pressure at the time of cooling is set to 200kg/cm or below.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素吸蔵合金を負極とし、酸化ニッケル電極
を正極とするニッケルー水素二次電池に関するものであ
り、特に、合金負極の製造と活性化を同時に行うことに
より、電池の製造コストの低減を図るとともに、その後
の電気化学的な水素の吸蔵・放出に伴う電極の変形を防
止することで電池寿命を向上させる新しい水素吸蔵電極
の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a nickel-hydrogen secondary battery that uses a hydrogen storage alloy as a negative electrode and a nickel oxide electrode as a positive electrode, and particularly relates to the production and activation of an alloy negative electrode. A new method for manufacturing hydrogen storage electrodes that simultaneously reduces battery manufacturing costs and improves battery life by preventing deformation of the electrodes due to subsequent electrochemical storage and release of hydrogen. It is related to.

〔従来技術とその課題〕[Conventional technology and its issues]

ホットプレスなどで作製したマイクロカプセル化水素吸
蔵電極は、これを酸化ニッケル極、セパレータと組み合
わせて電池を構成する前に合金に水素を吸収させる活性
化処理が必要である。従来、この活性化処理は、電極を
オートクレーブ中に入れ十分真空排気後、10〜30気
圧の水素雰囲気下で150“Cまで昇温し、1時間程度
保持した後、放冷する工程によって行っていた。
Microencapsulated hydrogen storage electrodes made by hot pressing require activation treatment to allow the alloy to absorb hydrogen before combining them with nickel oxide electrodes and separators to form a battery. Conventionally, this activation treatment was performed by placing the electrode in an autoclave, thoroughly evacuating it, raising the temperature to 150"C in a hydrogen atmosphere of 10 to 30 atmospheres, holding it for about 1 hour, and then allowing it to cool. Ta.

この場合、電極面積が大きくなると活性化処理に伴う合
金の水素吸蔵によって電極が変形し、コンパクト・高容
量に電池を組み立てることを困難にし、また変形した電
極のエツジによってセパレータを破を員し、短絡が生じ
やすいといった問題点があった。本願発明は上記の課題
を解決するために変形の生じ難い水素吸蔵電極を簡素化
したプロセスで製造する方法の提供を目的とする。
In this case, if the electrode area becomes large, the electrode will be deformed due to hydrogen absorption in the alloy that accompanies the activation process, making it difficult to assemble a compact, high-capacity battery, and the deformed edges of the electrode may break the separator. There was a problem that short circuits were likely to occur. In order to solve the above-mentioned problems, the present invention aims to provide a method for manufacturing a hydrogen storage electrode that is less likely to be deformed using a simplified process.

〔課題を解決する為の手段) 本発明に係る水素吸蔵電極の製造方法は、水素吸蔵合金
粉末の表面を銅又はニッケルで被覆したマイクロカプセ
ル化合金をホットプレスにより集電体と一体に結合する
工程を、水素ガス雰囲気下で実施し、電極の成型と活性
化を同時に行うことにより前記の課題を解決した。さら
に詳しくは、このマイクロカプセル化合金を単独で用い
る他、これに粘結剤として銅粉末、ニッケル粉末、PT
FE、FEP、ポリエチレン、ポリプロピレン、ナイロ
ンよりなる群から選んだ少なくとも1種を、その量が電
極に対して、10重量パーセント以下になるよう混合し
て用いることも提示する。また、ホットプレス温度は1
00’C以上350℃以下の範囲で、水素ガス雰囲気は
1気圧以上10気圧以下、ホットプレス圧はit/cm
”以下、また、冷却時のプレス圧は200kg/c++
”以下、好ましくは5〜50kg/cm”の範囲で行う
ことが最適の実施態様として推賞できる。
[Means for Solving the Problems] A method for manufacturing a hydrogen storage electrode according to the present invention includes integrally bonding a microencapsulated alloy in which the surface of hydrogen storage alloy powder is coated with copper or nickel to a current collector by hot pressing. The above problem was solved by carrying out the process in a hydrogen gas atmosphere and simultaneously forming and activating the electrode. More specifically, in addition to using this microencapsulated alloy alone, it is also used as a binder such as copper powder, nickel powder, or PT.
It is also proposed that at least one member selected from the group consisting of FE, FEP, polyethylene, polypropylene, and nylon is mixed and used in an amount of 10% by weight or less based on the electrode. In addition, the hot press temperature is 1
In the range of 00'C or more and 350C or less, hydrogen gas atmosphere is 1 atm or more and 10 atm or less, hot press pressure is it/cm
"Below, the press pressure during cooling is 200kg/c++
It can be recommended as an optimal embodiment that the weight is carried out within the range of "below, preferably 5 to 50 kg/cm".

〔作用〕[Effect]

本願方法で製造された電極は水素吸蔵状態で平滑な形状
となっているため、水素放出時でもその形状が維持され
る。そこで、ニッケル正極、セパレークを組み合わせて
電池を構成する際に、電池ケース内にコンパクト・高密
度に充填することができ、また、電気化学的な水素の吸
蔵・放出サイクルの長期繰り返しにおいても、電極の変
形に伴う電極間の短絡や合金粉末の脱落が防止でき、電
池寿命を大幅に改善することができる。
Since the electrode manufactured by the method of the present application has a smooth shape in the hydrogen storage state, the shape is maintained even when hydrogen is released. Therefore, when composing a battery by combining a nickel positive electrode and a separate electrode, it is possible to pack the battery case compactly and densely, and even during long-term repeated electrochemical hydrogen storage and desorption cycles, the electrode It is possible to prevent short circuits between the electrodes and drop-off of the alloy powder due to deformation of the battery, and to significantly improve battery life.

〔実施例〕〔Example〕

ホットプレス温度は、マイクロカプセル化合金を単独で
用いる場合や、粘結剤として銅粉末、ニッケル粉末、P
TFE、FEPなどを用いる場合には、250〜350
’Cが好ましく、粘結剤としてポリエチレンやポリプロ
ピレン、ナイロンなどを用いる場合には80〜140℃
が好ましい、一方、合金電極を水素化活性化するために
は100℃以上の温度が必要である。したがって、ホン
トブレス温度は100℃以上300℃以下の範囲がよい
、また、水素圧については常温で1気圧以上あればよい
が、10気圧を越えると耐圧容器の基準が厳しくなるの
で、!気圧以上10気圧以下の範囲が好ましい、プレス
圧については、粘結剤を使用する場合には、100〜4
00kg/cm2で十分であするが、マイクロカプセル
化合金を単独で用いる場合には300kg/cm”以上
の圧力が好ましい。しかし、It/cm”以上の圧力で
プレスすると電極が圧密化しすぎて、これに水素を吸蔵
させる活性化処理が円滑に進行しなくなるため、100
kg/cm”以上l t/cm2以下の範囲が好適であ
る。また、電極を冷却する際にはそのプレス圧を合金の
水素吸蔵状態の膨張圧力以下にすることが必要である。
The hot press temperature is different when using the microencapsulated alloy alone or when using copper powder, nickel powder, P as a binder.
When using TFE, FEP, etc., 250 to 350
'C is preferable, and when using polyethylene, polypropylene, nylon, etc. as a binder, the temperature is 80 to 140℃.
On the other hand, a temperature of 100° C. or higher is required to hydrogenate the alloy electrode. Therefore, the true breath temperature should be in the range of 100°C to 300°C, and the hydrogen pressure should be 1 atm or more at room temperature, but if it exceeds 10 atm, the standards for pressure containers become stricter! The press pressure is preferably in the range of at least 10 atm, and in the case of using a binder, the pressure is 100 to 4
00 kg/cm2 is sufficient, but if the microencapsulated alloy is used alone, a pressure of 300 kg/cm" or higher is preferable. However, if pressed at a pressure of 300 kg/cm" or higher, the electrode becomes too compacted. 100% because the activation process to absorb hydrogen will not proceed smoothly.
The preferable range is 1 kg/cm" or more and 1 t/cm2 or less. Furthermore, when cooling the electrode, the pressing pressure must be lower than the expansion pressure of the alloy in the hydrogen storage state.

すなわち、プレス圧を200kg/cm”以下、好まし
くは5 kg/c+w”〜50kg/cI11”の範囲
で行うと電極にその変形を防ぎながら水素を完全に吸蔵
せさることができる。この活性化処理によって水素吸蔵
状態の電極を、ニッケル正極、セパレータと組み合わせ
て正極規制の半密閉型電池を構成すると、1回の充放電
サイクルで電池の公称容量を得ることができる。活性化
処理を施さない電極については、充電効率が悪いためガ
ス発生が多く、電池セルを開放状態にして10〜30回
充放電サイクルを繰り返す電気化学的活性化処理が必要
であり表置的、時間的なロスが大きい。銅又はニッケル
によるマイクロカプセル化合金の場合は、被覆金属が水
素化物と酸素との直接接触を防ぐため水素吸蔵状態で大
気中に取り出しても酸化による合金の劣化はほとんど進
行しない。一方、裸の合金を用いた場合は、水素化物表
面で大気中の酸素との反応による酸化が進行するため、
大気中に取り出す前に再度150’C程度まで昇温し、
水素を放出させる脱気処理が必要となり、工程が煩雑と
なる。そこで、本発明の方法は、特にカプセル化合金を
用いる電極製造法及び活性化処理法として実用的価値が
大きい。
That is, by applying a pressing pressure of 200 kg/cm" or less, preferably in the range of 5 kg/c+w" to 50 kg/cI11", it is possible to completely absorb hydrogen while preventing deformation of the electrode. This activation treatment By combining the hydrogen-absorbing electrode with a nickel positive electrode and a separator to form a positive-electrode regulated semi-sealed battery, the nominal capacity of the battery can be obtained in one charge/discharge cycle. However, due to poor charging efficiency, a large amount of gas is generated, and an electrochemical activation process is required in which the battery cell is left open and charge/discharge cycles are repeated 10 to 30 times, resulting in a large superficial and time loss. In the case of micro-encapsulated alloys made of copper or nickel, the coating metal prevents direct contact between the hydride and oxygen, so even if the metal is taken out into the atmosphere in a hydrogen-absorbing state, the alloy hardly deteriorates due to oxidation. When using an alloy, oxidation progresses on the hydride surface due to reaction with oxygen in the atmosphere.
Before taking it out into the atmosphere, the temperature is raised to about 150'C again.
Degassing treatment to release hydrogen is required, making the process complicated. Therefore, the method of the present invention has great practical value, especially as an electrode manufacturing method and activation treatment method using an encapsulated alloy.

電極用材料としてはLaN1z、5Co□、4^1゜、
、水素吸蔵合金粉末(粒径:150μm以下)に無電解
銅メ・ンキ(銅メツキI: 20wt%相当)を施した
ものを使用し、第1表の実施例ならびに比較例にも示す
ようにそれぞれ活性化方法等を変えて電極を作製した。
As electrode materials, LaN1z, 5Co□, 4^1°,
, hydrogen storage alloy powder (particle size: 150 μm or less) coated with electroless copper plating (copper plating I: equivalent to 20 wt%) was used, and as shown in the examples and comparative examples in Table 1. Electrodes were fabricated using different activation methods.

この合金の初期放電容量は265mAh/g程度である
。なお、また、電極支持体として用いた発泡ニッケル金
属は、−辺56鋼−1厚さ1.6IIII、多孔率95
%、空孔径350〜500 u−のものであり、面内四
カ所にそれぞれ一辺20mm四方の切り抜き部を設けた
格子状のものである。
The initial discharge capacity of this alloy is about 265 mAh/g. In addition, the foamed nickel metal used as the electrode support had a side of 56 steel, a thickness of 1.6III, and a porosity of 95.
% and a pore diameter of 350 to 500 u-, and has a lattice-like shape with cutouts of 20 mm on each side provided at four locations within the surface.

第1表は本願実施例及び対照のための比較例である。Table 1 shows examples of the present application and comparative examples for comparison.

第1表 表における実施例の電極は、本発明の製造方法によると
ころのもので、この発泡ニッケル電極支持体の切り抜き
部に合金粉末を充填してこの表面を集電体である銅製金
網でおおい、これをホントプレス装置中100℃で十分
真空排気して、これに水素ガスを3気圧で導入して温度
300℃1プレス圧400kg/c+m”で1時間保持
することでホットプレスを行った後、プレス圧を10k
g/cm”まで下げて室温まで冷却することで作製した
ものである。
The electrodes of the Examples shown in Table 1 are produced by the manufacturing method of the present invention, in which the cutout of the foamed nickel electrode support is filled with alloy powder and the surface is covered with a copper wire mesh serving as a current collector. , This was sufficiently evacuated at 100°C in the Honto press equipment, hydrogen gas was introduced at 3 atm, and hot pressing was carried out by holding it at a temperature of 300°C and a press pressure of 400 kg/c+m for 1 hour. , press pressure 10k
g/cm" and cooled to room temperature.

また、表における比較例の電極は、温度300℃、プレ
ス圧400kg/cm”で真空下でホットプレス成形し
た後、これをオートクレーブ中に入れ、温度150℃2
水素圧10気圧で1時間保持し、合金中に強制的に水素
を吸蔵させることにより活性化処理を行ったものである
In addition, the electrodes of the comparative examples in the table were hot press-molded under vacuum at a temperature of 300°C and a press pressure of 400kg/cm'', then placed in an autoclave, and then placed in an autoclave at a temperature of 150°C.
Activation treatment was carried out by holding the hydrogen pressure at 10 atm for 1 hour to forcibly absorb hydrogen into the alloy.

前記いずれの電極においても、銅メツキ重量を除いた合
金自体の重量を約2.5g(約66抛^hの容1)とな
るようにした、これらの水素吸蔵電極を負極とし、正極
に焼結型の酸化ニッケル電極を、セパレーターとしてナ
イロン不織布を用い、5N水酸化カリウムとIN水酸化
リチウム混合溶液を電解液とし、公称容量をおよそ45
抛Ahとする正極規制の開放型電池を組み立てた。これ
らの試験用電池を温度20゛Cの恒温室内に置いて、充
電電流250+a^で2.5時間充電し、0.5時間休
止した後、放電電流225nAで電圧が0.8Vに低下
するまで放電するといったサイクルで長期間充放電繰り
返し試験を行った。この試験の結果を、電極活性化処理
時の変形量とともに表に示す。
In each of the above electrodes, the weight of the alloy itself excluding the weight of the copper plating was approximately 2.5 g (volume 1 of approximately 66 cm).These hydrogen storage electrodes were used as negative electrodes, and the positive electrodes were sintered. A crystalline nickel oxide electrode was used, a nylon nonwoven fabric was used as a separator, and a mixed solution of 5N potassium hydroxide and IN lithium hydroxide was used as an electrolyte, and the nominal capacity was approximately 45%.
An open-type battery with positive electrode regulation was assembled. These test batteries were placed in a thermostatic chamber at a temperature of 20°C, charged at a charging current of 250+a^ for 2.5 hours, rested for 0.5 hours, and then charged at a discharge current of 225 nA until the voltage decreased to 0.8 V. A long-term charge/discharge cycle was conducted using a cycle of discharging. The results of this test are shown in the table along with the amount of deformation during the electrode activation process.

画電極とともに活性化処理が終了しているため、lサイ
クル目から450sAhの放電容量を得ることができた
。実施例の電池については500サイクル以上の寿命が
得られたが、比較例の電池については300サイクル付
近で電池の短絡が起こった。この原因は変形した合金負
極を、正極であるニッケル極とセパレータをはさんで強
制的に圧着させたため、変形した合金電極のエツジ部分
がセパレータにくい込み、正極と短絡を引き起こしたも
のと分かった。
Since the activation process was completed together with the picture electrode, a discharge capacity of 450 sAh could be obtained from the 1st cycle. The battery of the example had a life of 500 cycles or more, but the battery of the comparative example experienced a short circuit around 300 cycles. It was discovered that the cause of this was that the deformed alloy negative electrode was forcibly pressed together with the positive nickel electrode through a separator, and the edges of the deformed alloy electrode were wedged into the separator, causing a short circuit with the positive electrode.

電極の変形に関しては、実施例の電極が成形後あるいは
電池の充放電過程においても全(平滑な形状を維持して
いるのに対して、比較例の電極は活性化処理段階で既に
お碗状に変形しており、この変形量を電極の4つのコー
ナーで形成される面とお碗の頂点との間の距離で表すと
2〜3+amであった。
Regarding the deformation of the electrode, the electrode of the example maintains a completely smooth shape even after molding or during the charging and discharging process of the battery, whereas the electrode of the comparative example has a bowl-like shape already at the activation stage. The amount of deformation, expressed as the distance between the surface formed by the four corners of the electrode and the top of the bowl, was 2 to 3+ am.

以上に示してきたように、新たに開発した製造方法で作
製された水素吸蔵電極は、水素の吸蔵状態で平滑な形状
となっているため、平板型電池を高密度に組み立てるの
が容易であり、またその後の長期にわたる水素吸蔵・放
出サイクルを経ても変形することはないため電極間の短
絡も起こりにくく、電池の寿命を顕著に改善することが
できた。
As shown above, the hydrogen storage electrode manufactured using the newly developed manufacturing method has a smooth shape in the hydrogen storage state, making it easy to assemble flat plate batteries at high density. Moreover, since it does not deform even after a long period of hydrogen storage and desorption cycles, short circuits between electrodes are less likely to occur, and the life of the battery can be significantly improved.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 1)水素吸蔵合金粉末の表面を銅又はニッケルで被覆し
たマイクロカプセル化合金をホットプレスにより集電体
と一体に結合する工程を、水素ガス雰囲気下で実施し、
電極の成型と活性化を同時に行うことを特徴とする水素
吸蔵電極の製造方法。 2)前記マイクロカプセル化合金粉末を単独で用いるか
、あるいはこれに粘結剤として、銅粉末、ニッケル粉末
、四フッ化エチレン(PTFE)、四フッ化エチレン・
フッ化プロピレン共重合体(FEP)、ポリエチレン、
ポリプロピレン、ナイロンよりなる群から選んだ少なく
とも1種を、その量が電極に対して10%重量以下にな
るよう混合して用いる特許請求の範囲第1項記載の水素
吸蔵電極の製造方法 3)前記ホットプレス温度が100℃以上350℃以下
である特許請求の範囲第一項記載の水素吸蔵電極の製造
方法 4)前記水素ガス雰囲気が1気圧以上10気圧以下であ
る特許請求の範囲第一項記載の水素吸蔵電極の製造方法 5)前記ホットプレス圧が1t/cm^2以下であり、
冷却時のプレス圧が200kg/cm^2以下、好まし
くは5〜50kg/cm^2の範囲である特許請求の範
囲第一項記載の水素吸蔵電極の製造方法
[Claims] 1) A step of integrally bonding a micro-encapsulated alloy in which the surface of a hydrogen storage alloy powder is coated with copper or nickel to a current collector by hot pressing is carried out in a hydrogen gas atmosphere,
A method for manufacturing a hydrogen storage electrode, characterized by performing electrode molding and activation at the same time. 2) Either the microencapsulated alloy powder is used alone, or it is combined with copper powder, nickel powder, tetrafluoroethylene (PTFE), tetrafluoroethylene, etc. as a binder.
Fluorinated propylene copolymer (FEP), polyethylene,
3) Method for manufacturing a hydrogen storage electrode according to claim 1, in which at least one selected from the group consisting of polypropylene and nylon is mixed in an amount of 10% or less by weight of the electrode. 4) A method for producing a hydrogen storage electrode according to claim 1, wherein the hot pressing temperature is 100° C. or more and 350° C. or less. 4) A method according to claim 1, wherein the hydrogen gas atmosphere is 1 atm or more and 10 atm or less. 5) The hot press pressure is 1 t/cm^2 or less,
The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the pressing pressure during cooling is 200 kg/cm^2 or less, preferably in the range of 5 to 50 kg/cm^2.
JP1002524A 1989-01-09 1989-01-09 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH088100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002524A JPH088100B2 (en) 1989-01-09 1989-01-09 Method for manufacturing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002524A JPH088100B2 (en) 1989-01-09 1989-01-09 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH02183964A true JPH02183964A (en) 1990-07-18
JPH088100B2 JPH088100B2 (en) 1996-01-29

Family

ID=11531767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002524A Expired - Lifetime JPH088100B2 (en) 1989-01-09 1989-01-09 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH088100B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398261A (en) * 1989-09-11 1991-04-23 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
JPH0644966A (en) * 1992-07-21 1994-02-18 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
JP2012142228A (en) * 2011-01-05 2012-07-26 Toyota Motor Corp Method for manufacturing electrode body, and method for manufacturing battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413938A (en) * 1977-07-04 1979-02-01 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
JPS61138459A (en) * 1984-12-11 1986-06-25 Asahi Glass Co Ltd Electrode for cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413938A (en) * 1977-07-04 1979-02-01 Matsushita Electric Ind Co Ltd Method of making hydrogen occlusion electrode
JPS61138459A (en) * 1984-12-11 1986-06-25 Asahi Glass Co Ltd Electrode for cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398261A (en) * 1989-09-11 1991-04-23 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
JPH0824040B2 (en) * 1989-09-11 1996-03-06 工業技術院長 Method for manufacturing hydrogen storage electrode
JPH0644966A (en) * 1992-07-21 1994-02-18 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
JP2012142228A (en) * 2011-01-05 2012-07-26 Toyota Motor Corp Method for manufacturing electrode body, and method for manufacturing battery

Also Published As

Publication number Publication date
JPH088100B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
JPH11162505A (en) Nickel-hydrogen battery
US5360687A (en) Hydrogen-occulusion electrode
CN109830676A (en) Rechargeable uses for nickel-hydrogen battery high capacity and long-life La-Mg-Ni type cathode hydrogen storage material and preparation method thereof
JPH02183964A (en) Manufacture of hydrogen storage electrode
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JPH04162355A (en) Hydrogen storage alloy electrode for battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPS63266767A (en) Manufacture of hydrogen storage electrode
JPH01267966A (en) Manufacture of sealed nickel-hydrogen battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS6215769A (en) Nickel-hydrogen alkaline battery
JPH0212765A (en) Manufacture of hydrogen storage electrode
JPH06302319A (en) Manufacture of hydrogen storage electrode and metal oxide-hydrogen storage battery having electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2875822B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
EP0567132B1 (en) Sealed type nickel/hydrogen alkaline storage battery
JP4660869B2 (en) Nickel metal hydride battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3374995B2 (en) Manufacturing method of nickel electrode
JPH11111280A (en) Hydride secondary battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term