JPH08158033A - Production of fine-structure thick film material and device therefor - Google Patents

Production of fine-structure thick film material and device therefor

Info

Publication number
JPH08158033A
JPH08158033A JP6329331A JP32933194A JPH08158033A JP H08158033 A JPH08158033 A JP H08158033A JP 6329331 A JP6329331 A JP 6329331A JP 32933194 A JP32933194 A JP 32933194A JP H08158033 A JPH08158033 A JP H08158033A
Authority
JP
Japan
Prior art keywords
plasma
furnace
raw material
nozzle
aerosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6329331A
Other languages
Japanese (ja)
Inventor
Akihiko Otsuka
昭彦 大塚
Hironori Tanizaki
裕則 谷崎
Kunihiko Iwasaki
邦彦 岩崎
Masato Araiyama
政人 新井山
Toyokichi Tanaka
豊吉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP6329331A priority Critical patent/JPH08158033A/en
Publication of JPH08158033A publication Critical patent/JPH08158033A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To form a relatively thick film having uniform fine structure simultaneously with the production of a superfine particle. CONSTITUTION: In a plasma furnace fitted with a high-frequency plasma torch 1 using a gaseous mixture of an inert gas with gaseous hydrogen so that the plasma flame 2 is radiated into the furnace, a raw material is gasified by charging the powdery raw material to the plasma generated by the plasma torch 1. The gasified components are associated with each other to form superfine particles having <=1μm particle diameter in the furnace. An aerosol in the furnace which is accompanied with the superfine particles is jetted from a nozzle 18 as a jet stream and the jet stream of the aerosol is projected to a substrate 24. As a result, a sticking layer of the superfine particles is formed on the substrate 24 and is sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,金属やセラミツクス等
の成膜分野において,特に超微粒子を用いて微細組織を
もつ厚膜を形成する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for forming a thick film having a fine structure by using ultrafine particles, particularly in the field of film formation of metals, ceramics and the like.

【0002】[0002]

【従来の技術】従来より,セラミックスもしくは金属の
成膜法としてプラズマ溶射法が良く知られている。これ
はプラズマで原料粒子の一部もしくは全部を溶かしなが
ら基材上に順次積層するものであるが,溶けた粒子が基
材上で瞬間的に固化することから積層皮膜はポーラスな
ものとなりがちである。また基材と溶射皮膜の接合は物
理的なかみ合いにのみ依存しているので両者の密着強度
はそれほど強くはない。さらに溶射ガンの構造上の制限
から原料粒子が蒸発することは殆んど無く,溶融状態の
粒子が高速で基材と衝突し,これが潰れながら積層体を
形成するのでミクロ状態の微細組織の形成は実質上困難
であった。
2. Description of the Related Art Conventionally, plasma spraying has been well known as a film forming method for ceramics or metals. This is a method in which part or all of the raw material particles are melted by plasma and sequentially laminated on the base material, but since the melted particles momentarily solidify on the base material, the laminated coating tends to be porous. is there. Further, since the joining of the base material and the thermal spray coating depends only on the physical meshing, the adhesion strength between the two is not so strong. Furthermore, the raw material particles are hardly evaporated due to the structural limitation of the spray gun, and the molten particles collide with the base material at a high speed, and the particles are crushed to form a laminated body, thus forming a microscopic microstructure. Was practically difficult.

【0003】かようなプラズマ溶射法に代わる成膜法と
して,特公平3−14512号公報には,超微粒子(粒
径が1μm以下のもの)をキヤリヤガスとともに微小径
ノズルからベース面に吹き付けることによって接着剤の
使用なしにその超微粒子をベース面に付着させて,厚さ
の連続又は不連続な膜を形成する方法が提案されてい
る。
As a film forming method replacing the plasma spraying method, Japanese Patent Publication No. 3-14512 discloses that ultrafine particles (having a particle size of 1 μm or less) are sprayed together with a carrier gas from a small diameter nozzle onto a base surface. A method has been proposed in which the ultrafine particles are attached to a base surface without using an adhesive to form a continuous or discontinuous film having a thickness.

【0004】同様に特開昭61−90735号公報に
は,2種以上の超微粒子をキヤリヤガス中で混合し,こ
の混合気流を被着面に吹き付け,そのスプレー圧でこれ
らの超微粉の集積団塊からなる圧粉体を形成し,この圧
粉体をそのまま又は密包した状態で,加熱下または非加
熱下で,加圧する圧粉体の製造法が記載されている。
Similarly, in Japanese Patent Laid-Open No. 61-90735, two or more kinds of ultrafine particles are mixed in a carrier gas, and the mixed air stream is sprayed on the adherend, and the aggregate pressure of these ultrafine powders is produced by the spray pressure. A method for producing a green compact is described, in which the green compact is formed, and the green compact is pressed as it is or in a tightly packed state with or without heating.

【0005】[0005]

【発明が解決しようとする課題】ナノ材料,分散強化型
セラミツクス,傾斜機能材料(膜厚方向に組成比が異な
る材料)などを成膜技術を用いて製造する場合,その組
織の均一性や物性向上の観点から,微細組織のもの(特
に粒子径がμmオーダ若しくはそれ以下のもの)にコン
トロール出来る成膜技術であることが要求される。プラ
ズマ溶射法では,現状ではこの要求を満足できないこと
は前述のとおりである。
When manufacturing nanomaterials, dispersion-strengthened ceramics, functionally graded materials (materials having different composition ratios in the film thickness direction) using a film-forming technique, the uniformity and physical properties of the structure are obtained. From the viewpoint of improvement, it is required to have a film forming technique capable of controlling a fine structure (particularly, a particle size on the order of μm or less). As mentioned above, the plasma spraying method cannot satisfy this requirement at present.

【0006】1μm以下の超微粒子をキヤリヤガスを用
いてスプレーすることを教示する前記の特公平3−14
512号公報および特開昭61−90735号公報の方
法によれば,原料が超微粒子であるから,基板上にも超
微粒子の堆積層が形成され,その組織も超微粒子の集合
した微細組織となる筈である。
The above-mentioned Japanese Patent Publication No. 3-14 which teaches to spray ultrafine particles of 1 μm or less with a carrier gas.
According to the methods disclosed in Japanese Patent Laid-Open No. 512 and Japanese Patent Application Laid-Open No. 61-90735, since the raw material is ultrafine particles, a deposited layer of ultrafine particles is formed on the substrate, and its structure is also a fine structure in which ultrafine particles are aggregated. It should be.

【0007】しかし,これらの公報に提案されたもの
は,所要の噴射圧を得るには口径の非常に小さなノズル
を使用しなければならない。このため,例えば特公平3
−14512号公報では口径が0.01mm〜1mm,
好ましくは0.1mmの微小径ノズルを用いることを推
奨しており,特開昭61−90735号公報のものも口
径0.6mmのノズルの使用を開示している。
However, the proposals in these publications require the use of a nozzle having a very small diameter in order to obtain the required injection pressure. For this reason, for example,
No. 14512, the diameter is 0.01 mm to 1 mm,
It is recommended to use a small diameter nozzle of preferably 0.1 mm, and Japanese Patent Application Laid-Open No. 61-90735 also discloses the use of a nozzle having a diameter of 0.6 mm.

【0008】このような微小径ノズルを用いてスプレー
する場合には吹付け面積にも限界があり,基板側または
ノズル側を移動させて吹付けた場合に得られる線幅も非
常に小さなものとなる。例えば前者の公報ではノズル口
径とほぼ同じ0.1mmの線状膜が得られるとされてお
り,実施例では線幅80〜110μmのものが例示され
ている。このような細線の膜ではその膜厚を厚くするこ
とにも限界があり,事実その実施例でも2μm程度の厚
みのものが例示されている。
When spraying using such a small diameter nozzle, the spraying area is limited, and the line width obtained when spraying by moving the substrate side or the nozzle side is very small. Become. For example, in the former publication, it is said that a linear film having a diameter of 0.1 mm, which is almost the same as the nozzle diameter, can be obtained, and the line width of 80 to 110 μm is exemplified in the examples. There is a limit in increasing the film thickness of such a thin film, and in fact, the film having a thickness of about 2 μm is also illustrated in the examples.

【0009】加えて,これら超微粒子をキヤリヤガスで
噴射する方法では,予め製造された超微粒子を特別の装
置を用いて噴射しなければならない。すなわち,超微粒
子の製造とこれを用いた成膜とは別の技術となり,両者
を同時に行なうことはできない。このために,超微粒子
の保管や取扱過程で酸化や凝集の問題が発生したり,操
作が煩雑化するという問題がある。
In addition, in the method of injecting these ultrafine particles with the carrier gas, the ultrafine particles produced in advance must be injected using a special device. That is, the production of ultrafine particles and the film formation using the same are different technologies, and both cannot be performed at the same time. As a result, there are problems that oxidation and agglomeration occur during the storage and handling of ultrafine particles, and that the operation becomes complicated.

【0010】そして,このようなキヤリヤガスに超微粒
子を分散させる場合には,分散させる粒子の粒子径を小
さくすればするほど表面積の効果が大きくなり,表面吸
着物質や静電エネルギーなどの影響でより凝集しやすく
なるので,得られる膜においても,分散粒子の均一な組
織を得ることは非常に困難となる。
When the ultrafine particles are dispersed in such carrier gas, the smaller the particle size of the dispersed particles, the greater the effect of the surface area, and the effect of the surface adsorbed substance or electrostatic energy is greater. Since the particles easily aggregate, it is very difficult to obtain a uniform structure of dispersed particles even in the obtained film.

【0011】本発明は,このような問題の解決を目的と
したもので,均一な微細組織をもつ比較的厚い膜の形成
を超微粒子の製造と同時に行なう方法および装置を提供
しようとするものである。
The present invention is intended to solve such a problem, and an object of the present invention is to provide a method and apparatus for forming a relatively thick film having a uniform microstructure simultaneously with the production of ultrafine particles. is there.

【0012】[0012]

【課題を解決するための手段】本発明によれば,不活性
ガスと水素ガスの混合ガスを利用した高周波プラズマト
ーチをそのプラズマフレームが炉内に放射するように取
り付けたプラズマ炉において,該プラズマトーチで発生
するプラズマ中に粉状原料を投入して該原料をガス化
し,このガス化した成分を互いに会合させて粒径が1μ
m以下の超微粒子を該プラズマ炉内で生成させ,この超
微粒子を同伴した炉内のエアロゾルをノズルから噴流と
して噴射させ,このエアロゾルの噴射流を基板上に投射
することにより該基板上に超微粒子の付着層を形成し,
この付着層を焼結することからなる微細組織厚膜材料の
製造法を提供する。
According to the present invention, in a plasma furnace in which a high-frequency plasma torch utilizing a mixed gas of an inert gas and hydrogen gas is installed so that its plasma flame radiates into the furnace, A powdery raw material is introduced into the plasma generated by the torch, the raw material is gasified, and the gasified components are associated with each other so that the particle diameter is 1 μm.
Ultra fine particles of m or less are generated in the plasma furnace, aerosol in the furnace accompanied by the ultra fine particles is jetted from a nozzle as a jet flow, and the jet flow of the aerosol is projected onto the substrate to supercharge it on the substrate. Forming an adhesion layer of particles,
Provided is a method of making a microstructured thick film material comprising sintering this adhesion layer.

【0013】また,本発明によれば,前記の方法を有利
に実施する装置として,高周波プラズマトーチを,その
プラズマフレームが炉内に放射するように取付けてなる
プラズマ炉と,該プラズマトーチで発生するプラズマ中
に粉状原料を連続的に供給する粉末原料供給装置と,該
プラズマ炉に設けた排気口から排気装置に通じる排気経
路と,この排気経路のエアロゾルの流れを縮流して噴流
として排気経路内に噴射させるノズルと,該排気経路内
において該ノズル口に対向して設置される基板と,から
なる微細組織厚膜材料の製造装置を提供する。
Further, according to the present invention, as an apparatus for advantageously carrying out the above method, a high-frequency plasma torch is installed so that its plasma flame is radiated into the furnace, and the plasma torch is generated. The powder raw material supply device for continuously supplying the powdery raw material into the plasma, the exhaust path leading from the exhaust port provided in the plasma furnace to the exhaust device, and the aerosol flow in this exhaust path are contracted and exhausted as a jet flow. Provided is an apparatus for producing a fine texture thick film material, comprising a nozzle for injecting into a path and a substrate installed in the exhaust path so as to face the nozzle opening.

【0014】[0014]

【作用】プラズマトーチで発生するプラズマ中に粉状原
料を投入すると,瞬時に該原料はガス化する。このガス
化した成分はプラズマガス共にプラズマフレームの後端
部から炉内に拡散する過程で互いに会合して粒径が1μ
m以下の超微粒子を形成し,雰囲気ガス中に拡散してエ
アロゾルを形成する。
When the powdery raw material is put into the plasma generated by the plasma torch, the raw material is instantly gasified. The gasified components are associated with each other in the process of diffusing into the furnace from the rear end of the plasma flame together with the plasma gas, and the particle size is 1 μm.
Ultra fine particles of m or less are formed and diffused into the atmospheric gas to form an aerosol.

【0015】排気装置によってプラズマ炉内を排気して
いると,このエアロゾルは排気としてプラズマ炉から排
気装置に向かって流出するが,この排気路の途中にノズ
ルを設け,このノズルによって排気路を通過するエアロ
ゾルの流れを収束させてノズル口から噴射させると,エ
アロゾルの噴流が得られる。
When the inside of the plasma furnace is exhausted by the exhaust device, this aerosol flows out from the plasma furnace toward the exhaust device as exhaust gas, but a nozzle is provided in the middle of this exhaust passage to pass through the exhaust passage by this nozzle. When the flowing aerosol flow is converged and ejected from the nozzle port, an aerosol jet flow is obtained.

【0016】このエアロゾルの噴流を基板に衝突させる
ことにより,エアロゾル中の超微粒子が該基板に付着し
てこの超微粒子からなる膜が基板上に形成される。
By colliding the jet of the aerosol with the substrate, the ultrafine particles in the aerosol adhere to the substrate and a film made of the ultrafine particles is formed on the substrate.

【0017】この場合,エアロゾルの噴流を生成させる
ノズルとしては比較的口径の大きなノズルを用いてもエ
アロゾル中の超微粒子を基板上に付着させることができ
る。このため付着層の膜厚を大きくすることができる。
経験的には30mm程度までの口径のノズルの使用が可
能である。
In this case, even if a nozzle having a relatively large diameter is used as the nozzle for generating the jet of aerosol, the ultrafine particles in the aerosol can be attached onto the substrate. Therefore, the film thickness of the adhesion layer can be increased.
Empirically, it is possible to use a nozzle having a diameter of up to about 30 mm.

【0018】また,ノズルまたは基板を移動させながら
噴流を基板上に投射することにより付着面積を自在に拡
大させることができる。
Further, the adhering area can be freely expanded by projecting the jet stream onto the substrate while moving the nozzle or the substrate.

【0019】プラズマトーチに供給する原料粉体として
は,目的とする厚膜材料の成分組成に応じて金属,合
金,無機物質,セラミツクス等の粉体を使用する。その
さい,二成分以上の混合粉体をプラズマトーチに供給す
ると,多成分系の厚膜材料が得られる。そして,かよう
な混合粉体の成分比(組成)を経時的に変化させながら
プラズマトーチに供給すると,生成するエアロゾル中の
超微粒子の成分組成も経時的に変化するので,付着層で
は厚み方向に成分比が異なる傾斜組成膜が得られる。
As the raw material powder supplied to the plasma torch, powders of metals, alloys, inorganic substances, ceramics or the like are used depending on the composition of the intended thick film material. At that time, if a powder mixture of two or more components is supplied to the plasma torch, a multi-component thick film material is obtained. When the composition ratio of such a mixed powder is supplied to the plasma torch while changing with time, the composition of the ultrafine particles in the generated aerosol also changes with time. Gradient composition films having different component ratios can be obtained.

【0020】このようにして生成した厚膜は次にその成
分に応じた焼結温度で焼結することによって,非常に信
頼性の高く強度の大きな膜を得ることができ,多成分系
の場合には各超微粒子が均一に分散した微細組織厚膜が
得られる。
The thick film thus produced can then be sintered at a sintering temperature according to its composition to obtain a very reliable and strong film. In the case of a multi-component system, A fine texture thick film in which each ultrafine particle is uniformly dispersed is obtained.

【0021】[0021]

【実施例】図1に本発明方法を実施するのに用いた装置
を示した。
EXAMPLE FIG. 1 shows the apparatus used to carry out the method of the present invention.

【0022】この装置は,高周波プラズマトーチ1を,
そのプラズマフレーム2が炉内に放射するように取付け
たプラズマ炉3を用いて1μm以下の超微粒子を連続的
に生成させる超微粒子製造部を有する。高周波プラズマ
トーチ1はRFコイルを外周に有し,その頂部には冷却
手段を介して,プラズマガス供給口5と粉体供給口6が
設けられている。プラズマガスとしては,Arガスと水
素ガスの混合ガスを使用し,本例では熱源として50k
Wの高周波を使用している。電極材料の汚染が許容され
る材料の製造であれば直流(DC)プラズマジェットを
用いても構わない。
This apparatus comprises a high frequency plasma torch 1,
It has an ultrafine particle production unit for continuously producing ultrafine particles of 1 μm or less by using a plasma furnace 3 attached so that the plasma flame 2 radiates into the furnace. The high frequency plasma torch 1 has an RF coil on the outer circumference, and a plasma gas supply port 5 and a powder supply port 6 are provided on the top of the RF coil via cooling means. As the plasma gas, a mixed gas of Ar gas and hydrogen gas is used, and in this example, 50 k is used as a heat source.
High frequency of W is used. A direct current (DC) plasma jet may be used as long as it is a material that allows contamination of the electrode material.

【0023】プラズマトーチ1の粉体供給口6には,粉
体供給装置7からキヤリヤガスで原料粉体が連続的に供
給される。この粉体供給装置7は,密閉されたホッパー
8内に回転容器9とキヤリヤガス噴射ノズル10を備え
たデイスパージョンフイーダ式のものである。ホッパー
内の回転容器9は電子天秤11を介してモータ12の回
転軸に連結しており,その回転数が自由に変えられる。
この回転容器9内に収容された原料粉体は容器の回転に
よって回転運動を付与されながら,ガス噴射ノズル10
から噴射されるキヤリヤガス(Ar)によってさらに流
動化される。
A raw material powder is continuously supplied from a powder supply device 7 to the powder supply port 6 of the plasma torch 1 by a carrier gas. The powder supply device 7 is of a dispersion feeder type having a rotary hopper 9 and a carrier gas injection nozzle 10 in a closed hopper 8. The rotating container 9 in the hopper is connected to a rotating shaft of a motor 12 via an electronic balance 11, and the number of rotations thereof can be freely changed.
The raw material powder contained in the rotary container 9 is imparted with a rotary motion by the rotation of the container while the gas injection nozzle 10
It is further fluidized by the carrier gas (Ar) injected from.

【0024】この流動化状態にある粉末原料中に粉末取
出管13が挿入されており,容器9の回転数を変化させ
ると,その回転数の増減に応じて,粉末取出管13の開
口端に衝突する粒子の数が増減する。その結果,粉末の
供給量を自由に調節することができる。
The powder take-out pipe 13 is inserted in the powdered raw material in the fluidized state, and when the number of revolutions of the container 9 is changed, the open end of the powder take-out pipe 13 is changed according to the increase or decrease in the number of revolutions. The number of colliding particles increases or decreases. As a result, the powder supply amount can be adjusted freely.

【0025】図示の例では,この粉体供給装置7を二台
並置し,各粉末取出管13の途中に混合器14を取付け
ることにより,各粉末取出管13に送り込まれる二種類
の粉体流を合流させてプラズマトーチの粉体供給口6に
供給する例を示している。これら二台の粉体供給装置7
において,回転容器9の回転数をそれぞれ制御すれば二
種類の粉体の混合比を自在に調整することができる。し
たがって,プラズマトーチ1のプラズマフレーム2に投
入される粉末原料の成分比を経時的に変化させることが
できる。
In the illustrated example, two powder supply devices 7 are arranged side by side, and a mixer 14 is attached in the middle of each powder extraction pipe 13 so that two types of powder flow fed into each powder extraction pipe 13 are provided. In this example, the powders are merged and supplied to the powder supply port 6 of the plasma torch. These two powder supply devices 7
In the above, if the number of rotations of the rotary container 9 is controlled respectively, the mixing ratio of the two kinds of powders can be adjusted freely. Therefore, the component ratio of the powder raw material charged into the plasma flame 2 of the plasma torch 1 can be changed with time.

【0026】プラズマ炉8は排気口16をもつ気密炉で
あり,プラズマトーチ1の稼動により超微粒子を生成し
ている間,この排気口16を通じて炉内の流体(雰囲気
ガス中に超微粒子が同伴したエアロゾル)が連続的に排
出される。このエアロゾルの排出は排気装置17に通ず
る排気経路を経て行われるが,この排気経路の途中にエ
アロゾルの噴流を形成するためのノズル18が設けられ
ている。
The plasma furnace 8 is an airtight furnace having an exhaust port 16, and while the plasma torch 1 is operating to generate ultrafine particles, a fluid in the furnace (atmosphere gas is accompanied by ultrafine particles through the exhaust port 16). Aerosol) is continuously discharged. The discharge of the aerosol is performed through an exhaust path communicating with the exhaust device 17, and a nozzle 18 for forming a jet of aerosol is provided in the middle of the exhaust path.

【0027】図示の例では,プラズマ炉の排気口19か
ら排気装置17に至る排気経路に,冷却器19と積層チ
ャンバー20が設けられている。冷却器19は水冷ジャ
ケット(図示しない)をもつ容器であり,この中にエア
ロゾルが通過することによって冷却される。またこの冷
却器19には表面処理剤供給器15が取付けられてお
り,必要に応じて,エアロゾル中に表面処理剤を投入で
きるようになっている。
In the illustrated example, a cooler 19 and a laminating chamber 20 are provided in the exhaust path from the exhaust port 19 of the plasma furnace to the exhaust device 17. The cooler 19 is a container having a water cooling jacket (not shown), and the aerosol is cooled by the passage of the aerosol therein. Further, a surface treatment agent supply device 15 is attached to the cooler 19 so that the surface treatment agent can be introduced into the aerosol as required.

【0028】積層チャンバー20は,エアロゾル搬入管
21と排気管22が接続された密閉容器からなり,エア
ロゾル搬入管21のチャンバー内先端にノズル18が取
付けられ,このノズル18の対向面に基板設置台23が
設けられている。図示の例ではノズル18はチャンバー
20内においてそのノズル口が垂直下方に向けられ,こ
のノズル口より下方のチャンバー20内において基板2
4が水平方向にセットできるように基板設置台23が設
置されている。この設置台23は水平方向と上下方向に
移動可能である。またチャンバー20内において,排気
管22の排気取入口にカセット式フイルター25が装着
されている。なお,プラズマ炉の排気口19からノズル
18に至るエアロゾル搬送路は,水冷した2重管で構成
されている。
The stacking chamber 20 comprises a closed container to which an aerosol carrying-in pipe 21 and an exhaust pipe 22 are connected. A nozzle 18 is attached to the inner end of the chamber of the aerosol carrying-in pipe 21. 23 are provided. In the illustrated example, the nozzle 18 has its nozzle port oriented vertically downward in the chamber 20, and the substrate 2 in the chamber 20 below this nozzle port.
A substrate installation table 23 is installed so that the 4 can be set horizontally. The installation table 23 can be moved horizontally and vertically. Further, in the chamber 20, a cassette type filter 25 is attached to the exhaust inlet of the exhaust pipe 22. The aerosol transfer path from the exhaust port 19 of the plasma furnace to the nozzle 18 is composed of a water-cooled double tube.

【0029】以上の構成になる本発明の装置によれば,
プラズマ炉3内に発生した超微粒子は,その発生したま
まの状態で雰囲気ガス中に同伴してエアロゾル流とな
り,このエアロゾル流がノズル18から基板24に向け
て噴流として連続的に噴射される。その結果,基板24
上には,該超微粒子が堆積して厚膜が形成される。
According to the apparatus of the present invention having the above configuration,
The ultra-fine particles generated in the plasma furnace 3 are entrained in the atmosphere gas as they are generated to form an aerosol flow, and this aerosol flow is continuously jetted as a jet flow from the nozzle 18 toward the substrate 24. As a result, the substrate 24
The ultrafine particles are deposited on the upper surface to form a thick film.

【0030】この場合,超微粒子エアロゾルを厚膜(例
えば500〜3000μm)に積層するためには,エア
ロゾル中の超微粒子がある程度高速で,かつ,エアロゾ
ル流は層流で流れる必要がある。すなわち,エアロゾル
中に懸濁した超微粒子は,ノズル部で加速され厚膜積層
に必要な運動エネルギーが付与され,更に開放系にて拡
散し基材に衝突することにより運動エネルギーを失い沈
着堆積するが,大面積に積層するためにノズル径はある
程度大きいことが必須である。
In this case, in order to stack the ultrafine particle aerosol in a thick film (for example, 500 to 3000 μm), it is necessary that the ultrafine particles in the aerosol flow at a high speed to some extent and the aerosol flow is laminar. That is, the ultrafine particles suspended in the aerosol are accelerated in the nozzle part and given the kinetic energy necessary for thick film lamination, and further diffuse in the open system and collide with the substrate to lose the kinetic energy and deposit and deposit. However, it is essential that the nozzle diameter be large to some extent in order to stack in a large area.

【0031】以下の実験例でも示すように,10mmφ
のノズルを使用し,約30m/分の流速にて約10mm
φの面積に積層できた。ノズル径が3mmよりも小さい
場合は,エアロゾルの流速が大きくなりすぎ,エアロゾ
ルが基材に衝突した際に既に積層している超微粒子層を
吹き飛ばす恐れがある。また,ノズル径が30mmより
も大きい場合は,超微粒子が緻密に積層するための運動
エネルギーを与えることができない。したがって,本発
明装置ではノズル径は3〜30mm,好ましくは5〜3
0mmとすることが望ましく,この口径に相当する面積
の厚膜が形成できる。これよりも大面積に積層する場合
は,基材側もしくはノズル側を適宜移動することによる
対応可能である。
As shown in the following experimental example, 10 mmφ
10 mm at a flow rate of about 30 m / min using the nozzle
It was possible to stack in the area of φ. When the nozzle diameter is smaller than 3 mm, the flow velocity of the aerosol becomes too high, and when the aerosol collides with the base material, there is a possibility that the superfine particle layer already laminated is blown off. Further, when the nozzle diameter is larger than 30 mm, it is impossible to give kinetic energy for superfine particles to be densely stacked. Therefore, in the device of the present invention, the nozzle diameter is 3 to 30 mm, preferably 5 to 3 mm.
The thickness is preferably 0 mm, and a thick film having an area corresponding to this diameter can be formed. When laminating in a larger area than this, it can be dealt with by appropriately moving the substrate side or the nozzle side.

【0032】以下に,この装置を用いて製造した代表的
な試験例を挙げ,このエアロゾルによる超微粒子成膜の
挙動を説明する。
The behavior of the formation of ultrafine particles by this aerosol will be described below with reference to a typical test example manufactured using this apparatus.

【0033】〔操作条件〕 プラズマ:50kWのRFプラズマトーチ プラズマガス:(Ar95%+水素5%)の混合ガス
(100リットル/分) 原料粉体を搬送するキヤリヤガス:Arガス(2リット
ル/分) ノズル18の口径:10mmφ ノズル18から噴射するエアロゾル流速:約30m/分 ここで,プラズマガスに水素ガスを5%添加しているの
は,水素ガスの添加によるピンチ効果を利用しプラズマ
密度を増大させるためである。
[Operating Conditions] Plasma: RF plasma torch of 50 kW Plasma gas: Mixed gas of (Ar 95% + hydrogen 5%) (100 liters / minute) Carrier gas for carrying the raw material powder: Ar gas (2 liters / minute) Nozzle 18 diameter: 10 mmφ Aerosol flow velocity ejected from nozzle 18: Approximately 30 m / min Here, 5% hydrogen gas is added to the plasma gas because the pinch effect due to the addition of hydrogen gas is used to increase the plasma density. This is to allow it.

【0034】〔試験例1〕[Test Example 1]

【0035】・微細ジルコニア均一分散アルミナの成膜
試験 比較的安価なアルミナセラミックスの信頼性を上げるた
めに,高靱性ジルコニアを添加する研究が行われてい
る。本発明によって微細組織を達成した例としてこの微
細ジルコニア均一分散アルミナを試作した例を以下に示
す。
Film Forming Test of Finely Dispersed Zirconia Alumina In order to improve the reliability of relatively inexpensive alumina ceramics, studies have been conducted to add high toughness zirconia. As an example of achieving a fine structure according to the present invention, an example in which this fine zirconia uniformly dispersed alumina is experimentally manufactured is shown below.

【0036】プラズマ中に導入するアルミナ原料粉末は
昭和電工(株)製の高純度アルミナ(AL160SG
1)を用いた。また分散させるジルコニア粒子として
は,東ソー(株)製のイットリア部分安定化ジルコニア
(TZ3Y)を用いた。これらアルミナおよびジルコニ
アの原料粉末を80:20(重量比)で秤取り,V型ミ
キサーを用いて予備混合した後,前述の原料粉末供給装
置により,混合粉末の供給速度を1g/minとしてプ
ラズマ中へ導入した。これによって,アルミナとジルコ
ニアが超微粒子レベル(1μm以下)で微細に分散した
混合超微粒子エアロゾルを生成させた。
The alumina raw material powder introduced into the plasma is high-purity alumina (AL160SG) manufactured by Showa Denko KK
1) was used. As the zirconia particles to be dispersed, Yttria partially stabilized zirconia (TZ3Y) manufactured by Tosoh Corporation was used. These raw material powders of alumina and zirconia were weighed at 80:20 (weight ratio), pre-mixed using a V-type mixer, and then fed into the plasma at a feed rate of the mixed powder of 1 g / min by the above-mentioned raw material powder feeder. Introduced to. As a result, a mixed ultrafine particle aerosol in which alumina and zirconia were finely dispersed at an ultrafine particle level (1 μm or less) was generated.

【0037】前記の混合粉末の供給速度のもとでは,高
温のプラズマ中で溶けた原料粉末粒子同士が付着して大
きな粒子とならないような濃度に維持された。そして,
この条件で導入された原料粉末は,高温のプラズマ中で
瞬時に粉末表面から溶融した後に粉末表面からの蒸発が
起こり,更にその蒸気が急冷により再結晶することによ
り超微粒子化するに到る。本プロセスの特徴の一つは,
プラズマ中で瞬時に蒸発し再結晶する段階を経るため,
得られる超微粒子の組成は導入した原料粉末のそれとと
同一で,かつ均一に混合した超微粒子を得ることができ
る点にある。
Under the above-mentioned mixed powder supply rate, the concentration was maintained such that the raw material powder particles melted in the high temperature plasma did not adhere to each other to form large particles. And
The raw material powder introduced under these conditions instantly melts from the powder surface in high-temperature plasma, then evaporates from the powder surface, and the vapor is recrystallized by rapid cooling, resulting in ultrafine particles. One of the features of this process is
Since it undergoes a step of instantly evaporating and recrystallizing in plasma,
The composition of the obtained ultrafine particles is the same as that of the raw material powder introduced, and it is possible to obtain uniformly mixed ultrafine particles.

【0038】なお,融液の粘性の関係で,例えばアルミ
ナなどの場合は,発生した超微粒子同士が表面で接合
し,ファイバー状の形態をとることがあり,またプラズ
マガスの電位や搬送中のガスとの摩擦などの原因から,
得られる超微粒子が帯電して凝集しやすくなるときもあ
る。このため,本例ではエタノール中にアルゴンガスを
バブリングすることにより,極くわずかなエタノール蒸
気を含有させたアルゴンガスをエアロゾル中に混入し,
超微粒子の表面改質を行うことにより凝集を防止した。
これによって均一分散化が非常に良好となった。
Due to the viscosity of the melt, for example, in the case of alumina or the like, the generated ultrafine particles may be bonded to each other on the surface and may have a fibrous form. Due to causes such as friction with gas,
In some cases, the obtained ultrafine particles are easily charged and aggregate. Therefore, in this example, by bubbling argon gas into ethanol, argon gas containing a very small amount of ethanol vapor was mixed into the aerosol,
Aggregation was prevented by modifying the surface of the ultrafine particles.
As a result, uniform dispersion became very good.

【0039】プラズマ炉で発生したアルミナージルコニ
ア混合超微粒子エアロゾルを,該装置のノズル18から
アルミナ基板上に噴出させ,約10mmφ×3mm厚み
の成形体を作製した。次いで,これを装置から取出し,
大気中にて1600℃で3時間焼結を行った。
Alumina-zirconia mixed ultrafine particle aerosol generated in the plasma furnace was jetted from the nozzle 18 of the apparatus onto the alumina substrate to prepare a compact having a thickness of about 10 mmφ × 3 mm. Then remove it from the device,
Sintering was performed at 1600 ° C. for 3 hours in the air.

【0040】得られた厚膜試料のEMPA像を図2に示
した。図中,白く小さな点で観察されるのが,EMPA
によるジルコニウムの特性X線が検出された部分であ
る。図2から,ジルコニア超微粒子がアルミナ中に均一
に分散している様子が観察される。
An EMPA image of the obtained thick film sample is shown in FIG. In the figure, EMPA is observed in white small dots.
Is a portion where the characteristic X-ray of zirconium according to is detected. From FIG. 2, it is observed that the ultrafine zirconia particles are uniformly dispersed in the alumina.

【0041】また,図3には,図2のEMPA像を基に
してジルコニウム元素マッピングを画像処理し,粒子解
析を行なった結果を示した。図3の粒度分布解析の結果
から焼結後の分散粒子の大きさは約1.0μmを中心と
して2μmまでのものが殆んどであり,同じ大きさの粒
子が均一に分布していることがわかる。
Further, FIG. 3 shows the results of particle analysis by image-processing zirconium element mapping based on the EMPA image of FIG. From the results of particle size distribution analysis in Fig. 3, the size of dispersed particles after sintering is mostly around 1.0 μm and up to 2 μm, and particles of the same size are evenly distributed. I understand.

【0042】〔比較例〕比較のために,加圧成形法によ
って,試験例1と同じ組成の成形体を作り,試験例1と
同じ条件で焼結した試料を作製した。
Comparative Example For comparison, a molded body having the same composition as in Test Example 1 was prepared by a pressure molding method, and a sample sintered under the same conditions as in Test Example 1 was prepared.

【0043】すなわち,試験例1と同一のアルミナとジ
ルコニア原料粉末を同じ組成にてV型ミキサーを用いて
予備混合した後,純水中に分散し超音波分散器を用いて
充分に分散混合を行ったうえ,PVA系バインダーを固
形分として2%添加してスラリーとした後,スプレード
ライにて約50μmに造粒した。このようなプロセスに
て造粒したアルミナージルコニア原料粉末を金型プレス
により約300MPaの成形圧力にて20mmφ×3m
mtに成形後,大気中にて1600℃で3時間焼結を行
った。焼結後の試料には大きなクラックが発生してい
た。
That is, the same alumina and zirconia raw material powder as in Test Example 1 were premixed in the same composition by using a V-type mixer, dispersed in pure water and sufficiently dispersed and mixed by using an ultrasonic disperser. After that, 2% of PVA-based binder was added as a solid content to form a slurry, and the mixture was granulated by spray drying to a particle size of about 50 μm. Alumina-zirconia raw material powder granulated by such a process is 20 mmφ × 3 m at a molding pressure of about 300 MPa by a die press.
After molding to mt, sintering was performed in the air at 1600 ° C. for 3 hours. Large cracks were generated in the sample after sintering.

【0044】試料のEPMAによる同様の分析結果を図
4および図5に示した。図4のジルコニウム元素のマッ
ピングに示されるようにジルコニアの大きな凝集組織が
白い点のかたまりとして観察された。なおクラックの発
生原因としては,アルミナとジルコニア両者の熱膨張係
数の差などが考えられる。例えば図4の右下部に観察さ
れるようにジルコニア分散粒子が凝集して存在している
場合には,焼結中に部分的な応力集中が発生しクラック
などの欠陥が発生するものと考えられる。図5の粒子解
析結果を前述の本発明による図3のものと比較すると,
粒子経は比較的大きめの方向へシフトしており,この結
果からもジルコニア原料粉末の分散が良くないことを証
明するものである。
Similar analysis results by EPMA of the sample are shown in FIGS. 4 and 5. As shown in the mapping of elemental zirconium in FIG. 4, a large aggregate structure of zirconia was observed as a cluster of white dots. The cause of cracks is considered to be the difference in thermal expansion coefficient between alumina and zirconia. For example, when zirconia dispersed particles are present in agglomerated state as observed in the lower right part of FIG. 4, it is considered that partial stress concentration occurs during sintering and defects such as cracks occur. . Comparing the particle analysis result of FIG. 5 with that of FIG. 3 according to the present invention,
The particle diameter is shifted to a relatively large direction, and this result also proves that the dispersion of the zirconia raw material powder is not good.

【0045】〔試験例2〕 チタン−アルミナ傾斜機能材料 本例では,超微細組織厚膜材として金属とセラミックス
の超微粒子の組み合せで,それぞれの超微粒子の組成比
を徐々に変えることにより傾斜機能材料を試作した例を
示す。
Test Example 2 Titanium-Alumina Functionally Gradient Material In this example, a combination of ultrafine particles of metal and ceramics is used as an ultrafine-structure thick film material, and the functional gradient of each ultrafine particle is gradually changed to obtain a functional gradient. An example of trial production of the material is shown.

【0046】プラズマ中に導入するアルミナ原料粉末は
昭和電工(株)製の高純度アルミナ(AL160SG
1)を用いた。さらに,マトリックスの金属としては
(株)高純度化学社製のチタン粉末(中心粒径23μ
m)を用いた。これらの原料粉末を本文記載の原料粉末
供給装置によって,チタン−アルミナ(80:20)か
らチタン−アルミナ(0:100)まで,ほぼ同一時間
間隔で,20%おきに5段階に変化させてプラズマ中に
導入し,チタンとアルミナが超微粒子レベル(1μm以
下)で微細に分散した混合超微粒子エアロゾルを生成さ
せた。また本例でも,試験例と同様にプラズマ中への原
料粉末の供給速度を1g/minとした。
Alumina raw material powder introduced into the plasma is high-purity alumina (AL160SG) manufactured by Showa Denko KK
1) was used. Furthermore, as the metal of the matrix, titanium powder manufactured by Kojundo Chemical Co., Ltd.
m) was used. These raw material powders were changed from titanium-alumina (80:20) to titanium-alumina (0: 100) in 5 steps at 20% intervals by 5 steps by a raw material powder supply device described in this specification. Introduced into it, a mixed ultrafine particle aerosol in which titanium and alumina were finely dispersed at an ultrafine particle level (1 μm or less) was generated. Also in this example, as in the test example, the feed rate of the raw material powder into the plasma was set to 1 g / min.

【0047】プラズマ炉で発生したエアロゾル流は,そ
のままノズル18から連続的に噴射させて20×3mm
tのチタン基板上に積層し,厚みが約500μmの傾斜
組成圧粉体を得た。なお,本例においては帯電した超微
粒子の電荷を取り除き積層体の緻密化を図るためチタン
基板にはアースをとった。
The aerosol flow generated in the plasma furnace is continuously ejected from the nozzle 18 as it is to obtain 20 × 3 mm.
It was laminated on a titanium substrate of t to obtain a gradient composition green compact having a thickness of about 500 μm. In this example, the titanium substrate was grounded in order to remove the charge of the charged ultrafine particles and to densify the laminate.

【0048】得られた傾斜組成圧粉体を装置から取出
し,1200℃,10-3Paの減圧下で3時間焼結を行
った。図6と図7に,得られた傾斜組成厚膜のEMPA
分析結果を示した。図6はアルミニウム元素,図7はチ
タン元素のマッピングと線分析結果を示している。これ
らの図より,チタンとアルミニウムは,それぞれ逆の傾
きで組成傾斜していることが分かる。すなわち,試料の
表面側はアルミナ,基板側はチタンであり,その界面の
組成はアルミナとチタンの傾斜組成が構成されているこ
とが分かる。また,それぞれの元素の検出特性X線を示
す白い点の大きさから,試料を構成している結晶粒子の
大きさはおよそ1μm以下の結晶粒子であることが分か
る。
The obtained gradient composition green compact was taken out of the apparatus and sintered at 1200 ° C. under a reduced pressure of 10 −3 Pa for 3 hours. 6 and 7 show the EMPA of the obtained gradient composition thick film.
The analysis results are shown. FIG. 6 shows the mapping results and line analysis results for the aluminum element and FIG. 7 for the titanium element. From these figures, it is clear that titanium and aluminum have compositional gradients with opposite gradients. That is, it can be seen that the surface side of the sample is alumina and the substrate side is titanium, and the composition of the interface is a gradient composition of alumina and titanium. Further, from the size of the white dots showing the detection characteristic X-rays of each element, it can be seen that the size of the crystal particles forming the sample is about 1 μm or less.

【0049】[0049]

【発明の効果】以上説明したように,本発明によると,
従来の方法であ不可能であった超微細組織を有する厚膜
材料が製造でき,またこの微細組織を傾斜組織とするこ
ともできることから,高品質のナノ材料,分散強化型セ
ラミツクス,傾斜機能材料等を提供できる。
As described above, according to the present invention,
High-quality nanomaterials, dispersion-strengthened ceramics, functionally graded materials can be produced because thick film materials with ultrafine structures, which could not be obtained by conventional methods, can be produced Etc. can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施するのに使用した装置の機器配
置系統図である。
FIG. 1 is an equipment arrangement system diagram of an apparatus used for carrying out the method of the present invention.

【図2】本発明によって得られたジルコニア均一分散ア
ルミナ(20:80)の微細組織を示すEPMA像写真
である。
FIG. 2 is an EPMA image photograph showing a microstructure of zirconia uniformly dispersed alumina (20:80) obtained according to the present invention.

【図3】図2の試料のジルコニア均一分散アルミナ(2
0:80)の粒度分布解析図である。
FIG. 3 shows the zirconia uniformly dispersed alumina (2
It is a particle size distribution analysis figure of 0:80).

【図4】比較例で得られたジルコニア−アルミナ複合材
料のEPMA像写真である。
FIG. 4 is an EPMA image photograph of a zirconia-alumina composite material obtained in a comparative example.

【図5】図4の試料の粒度分布解析図である。5 is a particle size distribution analysis diagram of the sample of FIG.

【図6】本発明によって得られたチタン−アルミナ超微
細組織分散傾斜機能厚膜の中のアルミニウム分布を示す
EPMA像写真とアルミニウム元素分布図である。
FIG. 6 is an EPMA image photograph and aluminum element distribution diagram showing aluminum distribution in a titanium-alumina ultrafine structure dispersion functionally graded thick film obtained by the present invention.

【図7】本発明によって得られたチタン−アルミナ超微
細組織分散傾斜機能厚膜の中のチタン分布を示すEPM
A像写真とチタン元素分布図である。
FIG. 7 is an EPM showing titanium distribution in a titanium-alumina ultrafine structure dispersed functionally graded thick film obtained by the present invention.
It is an A image photograph and a titanium element distribution chart.

【符号の説明】[Explanation of symbols]

1 プラズマトーチ 2 プラズマフレーム 3 プラズマ炉 7 原料粉末供給装置 16 プラズマ炉の排気口 17 排気装置 18 エアロゾル噴射ノズル 19 冷却器 20 積層チャンバー 23 基板設置台 24 基板 1 Plasma Torch 2 Plasma Flame 3 Plasma Furnace 7 Raw Material Powder Supply Device 16 Exhaust Port of Plasma Furnace 17 Exhaust Device 18 Aerosol Injection Nozzle 19 Cooler 20 Stacking Chamber 23 Substrate Installation Table 24 Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井山 政人 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社新材料研究所内 (72)発明者 田中 豊吉 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社新材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masato Araiyama, No. 1, Takatani Shinmachi, Ichikawa City, Chiba Prefecture, Nisshin Steel Co., Ltd. New Material Research Center (72) Inventor, Toyokichi Tanaka 7 Takatanimachi, Ichikawa City, Chiba Prefecture Address No. 1 Nisshin Steel Co., Ltd. New Materials Research Center

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガスと水素ガスの混合ガスを利用
した高周波プラズマトーチをそのプラズマフレームが炉
内に放射するように取り付けたプラズマ炉において,該
プラズマトーチで発生するプラズマ中に粉状原料を投入
して該原料をガス化し,このガス化した成分を互いに会
合させて粒径が1μm以下の超微粒子を該プラズマ炉内
で生成させ,この超微粒子を同伴した炉内のエアロゾル
をノズルから噴流として噴射させ,このエアロゾルの噴
射流を基板上に投射することにより該基板上に超微粒子
の付着層を形成し,この付着層を焼結することからなる
微細組織厚膜材料の製造法。
1. A plasma furnace in which a high-frequency plasma torch using a mixed gas of an inert gas and hydrogen gas is installed so that its plasma flame radiates into the furnace, and powdered raw material is contained in the plasma generated by the plasma torch. Is charged to gasify the raw material, the gasified components are associated with each other to generate ultrafine particles having a particle size of 1 μm or less in the plasma furnace, and the aerosol in the furnace accompanied by the ultrafine particles is discharged from the nozzle. A method for producing a microstructure thick film material, which comprises jetting as a jet flow, projecting the jet flow of the aerosol onto a substrate to form an adhesion layer of ultrafine particles on the substrate, and sintering the adhesion layer.
【請求項2】 プラズマ中に投入する粉状原料は2種以
上の成分からなり,各成分の組成比を経時的に変化させ
る請求項1に記載の微細組織膜厚材料の製造法。
2. The method for producing a microstructured film thickness material according to claim 1, wherein the powdery raw material introduced into the plasma is composed of two or more kinds of components, and the composition ratio of each component is changed with time.
【請求項3】 エアロゾルは口径が5mm以上のノズル
から噴射される請求項1または2に記載の微細組織膜厚
材料の製造法。
3. The method for producing a microstructured film thickness material according to claim 1, wherein the aerosol is sprayed from a nozzle having a diameter of 5 mm or more.
【請求項4】 高周波プラズマトーチを,そのプラズマ
フレームが炉内に放射するように取付けてなるプラズマ
炉と,該プラズマトーチで発生するプラズマ中に粉状原
料を連続的に供給する粉末原料供給装置と,該プラズマ
炉に設けた排気口から排気装置に通じる排気経路と,こ
の排気経路のエアロゾルの流れを縮流して噴流として排
気経路内に噴射させるノズルと,該排気経路内において
該ノズル口に対向して設置される基板と,からなる微細
組織厚膜材料の製造装置。
4. A plasma furnace in which a high-frequency plasma torch is mounted so that its plasma flame radiates into the furnace, and a powder raw material supply device for continuously supplying a powdery raw material into the plasma generated by the plasma torch. An exhaust path communicating with an exhaust device from an exhaust port provided in the plasma furnace; a nozzle for contracting the aerosol flow in the exhaust path to inject it into the exhaust path as a jet; and a nozzle opening in the exhaust path. An apparatus for producing a microstructured thick film material, which comprises substrates placed opposite to each other.
【請求項5】 該ノズルの口径は5〜30mmである請
求項4に記載の微細組織厚膜材料の製造装置。
5. The apparatus for producing a microstructured thick film material according to claim 4, wherein the nozzle has a diameter of 5 to 30 mm.
【請求項6】 原料供給装置は,2基以上の粉末容器
と,各粉末容器からプラズマトーチの原料供給口に通ず
る管路と,この管路の途中に設けた混合器と,各粉末容
器に接続されるキヤリヤガス源と,各粉末容器から該管
路に送り出す粉末量を調節する装置と,からなる請求項
4または5に記載の微細組織厚膜材料の製造装置。
6. The raw material supply device comprises two or more powder containers, a pipe leading from each powder container to a raw material supply port of a plasma torch, a mixer provided in the middle of the pipe, and a powder container for each powder container. 6. The apparatus for producing a microstructured thick film material according to claim 4 or 5, comprising a carrier gas source connected thereto, and a device for adjusting the amount of powder sent from each powder container to the pipeline.
【請求項7】 ノズルよりも上流側の排気経路には,超
微粒子を表面処理剤と接触する帯域が設けられている請
求項4,5または6に記載の微細組織厚膜材料の製造装
置。
7. The apparatus for producing a fine texture thick film material according to claim 4, wherein a zone for contacting the ultrafine particles with the surface treatment agent is provided in the exhaust path upstream of the nozzle.
JP6329331A 1994-12-02 1994-12-02 Production of fine-structure thick film material and device therefor Pending JPH08158033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6329331A JPH08158033A (en) 1994-12-02 1994-12-02 Production of fine-structure thick film material and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6329331A JPH08158033A (en) 1994-12-02 1994-12-02 Production of fine-structure thick film material and device therefor

Publications (1)

Publication Number Publication Date
JPH08158033A true JPH08158033A (en) 1996-06-18

Family

ID=18220264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6329331A Pending JPH08158033A (en) 1994-12-02 1994-12-02 Production of fine-structure thick film material and device therefor

Country Status (1)

Country Link
JP (1) JPH08158033A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066096A1 (en) * 1998-06-15 1999-12-23 Siemens Aktiengesellschaft Method and device for producing a powder aerosol and use thereof
US6331689B1 (en) 1999-06-15 2001-12-18 Siemens Aktiengesellschaft Method and device for producing a powder aerosol and use thereof
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
JP2008031529A (en) * 2006-07-28 2008-02-14 Fujitsu Ltd Nanoparticle deposition method and nanoparticle deposition apparatus
JP2008517159A (en) * 2004-10-21 2008-05-22 コミツサリア タ レネルジー アトミーク Nanostructure coating and coating method
JP2013227612A (en) * 2012-04-25 2013-11-07 Canon Inc Film forming apparatus and film forming method
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP2020131163A (en) * 2019-02-25 2020-08-31 有限会社 渕田ナノ技研 Aerosol generating device, and film deposition apparatus comprising the same

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066096A1 (en) * 1998-06-15 1999-12-23 Siemens Aktiengesellschaft Method and device for producing a powder aerosol and use thereof
US6331689B1 (en) 1999-06-15 2001-12-18 Siemens Aktiengesellschaft Method and device for producing a powder aerosol and use thereof
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
JP2008517159A (en) * 2004-10-21 2008-05-22 コミツサリア タ レネルジー アトミーク Nanostructure coating and coating method
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
JP2008031529A (en) * 2006-07-28 2008-02-14 Fujitsu Ltd Nanoparticle deposition method and nanoparticle deposition apparatus
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
JP2013227612A (en) * 2012-04-25 2013-11-07 Canon Inc Film forming apparatus and film forming method
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP2020131163A (en) * 2019-02-25 2020-08-31 有限会社 渕田ナノ技研 Aerosol generating device, and film deposition apparatus comprising the same

Similar Documents

Publication Publication Date Title
JPH08158033A (en) Production of fine-structure thick film material and device therefor
US6024915A (en) Coated metal particles, a metal-base sinter and a process for producing same
EP1942209B1 (en) Cold sprayed metal matrix composites
CN107557737B (en) Method for preparing tubular target material
JP2824189B2 (en) Powder supply composition for refractory oxide coating formation, method of use and product
JP3533459B2 (en) Manufacturing method of coated metal quasi-fine particles
US20230211417A1 (en) Caster assembly
KR20060063639A (en) Vacuum cold spray process
EP1797212A1 (en) Deposition system, method and materials for composite coatings
WO2007043520A1 (en) Composite structure
CN113245544B (en) Device and method for preparing metal-ceramic coated powder
KR20080065480A (en) Method for coating with copper-tungsten composite material by using cold spraying process
JPH0142742B2 (en)
JP2006200013A (en) Film deposition method and film deposition system
US6024909A (en) Coated ceramic particles, a ceramic-base sinter and a process for producing the same
JPH08199372A (en) Production of functionally gradient material and device therefor
KR20100052628A (en) Deposition apparatus of solid powder with thermal shock control units &amp; temperature control method for eliminating thermal shock in solid powder spray deposition
WO2010011114A2 (en) Apparatus for forming ceramic coating film
JP7393166B2 (en) Method for producing thermal spray powder, thermal spray slurry, and thermal barrier coating
JPH0657417A (en) Vapor-deposition material and its production
JP3825455B2 (en) Aerosol generator, composite structure manufacturing apparatus, and composite structure manufacturing method
CN114990541A (en) High-hardness material coating structure and preparation method thereof
RU2181788C1 (en) Method of producing composite materials and coats made from powders and device for realization of this method
JPH0753272A (en) Coated ceramic semifine particles, ceramic-based sintered compact and its production
JP2008196012A (en) Aerosol-producing apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020625