WO2016084858A1 - Lead storage cell - Google Patents

Lead storage cell Download PDF

Info

Publication number
WO2016084858A1
WO2016084858A1 PCT/JP2015/083108 JP2015083108W WO2016084858A1 WO 2016084858 A1 WO2016084858 A1 WO 2016084858A1 JP 2015083108 W JP2015083108 W JP 2015083108W WO 2016084858 A1 WO2016084858 A1 WO 2016084858A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
lead
pbo
negative electrode
Prior art date
Application number
PCT/JP2015/083108
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 隆文
柴原 敏夫
隆之 木村
康平 島田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016561920A priority Critical patent/JP6311799B2/en
Publication of WO2016084858A1 publication Critical patent/WO2016084858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery.
  • ISS cars idling stop system cars
  • the lead storage battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge).
  • PSOC Partial State Of Charge
  • Lead acid batteries have a shorter life when used under PSOC than when used in a fully charged state.
  • Patent Document 1 discloses a technique using a positive electrode active material having a specific surface area in order to improve the charging efficiency and life performance of a battery when used under PSOC.
  • Patent Document 1 describes a technique for improving charge acceptability by adjusting the specific surface area of a positive electrode active material to 6 m 2 / g or more. However, it has been found that it is difficult to further improve the charge acceptance with the technique described in Patent Document 1.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lead-acid battery capable of obtaining excellent charge acceptability.
  • the present inventors In a lead storage battery including a positive electrode having a positive electrode material held on a current collector, the present inventors have a specific surface area of the positive electrode material of 11 m 2 / g or more, and ⁇ -PbO 2 and ⁇ - by the ratio of the peak intensity of X-ray diffraction pattern of the PbO 2 ( ⁇ -PbO 2 / ⁇ -PbO 2) is 0.3 or less, it found that it is possible to obtain a solvable lead-acid battery of the problems.
  • the lead storage battery according to the present invention is a lead storage battery including a positive electrode and a negative electrode, wherein the positive electrode includes a current collector and a positive electrode material held by the current collector, and the negative electrode is A current collector and a negative electrode material held by the current collector, wherein the positive electrode material has a specific surface area of 11 m 2 / g or more, and ⁇ -PbO 2 and ⁇ -PbO 2 in the positive electrode material
  • the peak intensity ratio ( ⁇ -PbO 2 / ⁇ -PbO 2 ) of the X-ray diffraction pattern is 0.3 or less.
  • the lead storage battery according to the present invention it is possible to obtain excellent charge acceptability. Therefore, in particular, after the charge and discharge are repeated to some extent from the initial state and the active material is sufficiently activated, it is possible to maintain the SOC that tends to be low in a micro hybrid vehicle or the like at an appropriate level. Moreover, according to the lead acid battery which concerns on this invention, the outstanding charge acceptance property and the outstanding other battery performance (a discharge characteristic, cycling characteristics, etc.) can be made compatible.
  • the porosity of the positive electrode material is preferably 50% by volume or more. In this case, the capacity tends to increase.
  • the negative electrode material may contain a resin having at least one selected from the group consisting of a sulfo group and a sulfonate group.
  • the resin may be a condensate of bisphenol, aminobenzenesulfonic acid and formaldehyde.
  • the lead storage battery according to the present invention may further include a bag-shaped separator, and one of the positive electrode and the negative electrode may be disposed in the separator.
  • the lead storage battery which concerns on this invention may be the aspect by which the said negative electrode is arrange
  • the lead storage battery according to the present invention it is possible to obtain excellent charge acceptability. Moreover, according to the lead acid battery which concerns on this invention, the outstanding charge acceptance property and the outstanding other battery performance (a discharge characteristic, cycling characteristics, etc.) can be made compatible.
  • the lead storage battery according to the present invention can be suitably used in an ISS vehicle, a micro hybrid vehicle, or the like as a liquid lead storage battery in which charging is performed intermittently and high rate discharge is performed under PSOC.
  • the present invention it is possible to provide an application of a lead storage battery to a micro hybrid vehicle. ADVANTAGE OF THE INVENTION According to this invention, the application to the ISS vehicle of a lead storage battery can be provided.
  • FIG. 2 is a diagram showing an X-ray diffraction pattern of Example 1.
  • the lead acid battery according to this embodiment includes a positive electrode and a negative electrode.
  • the positive electrode includes a positive electrode current collector and a positive electrode material (electrode material) held by the positive electrode current collector.
  • the negative electrode includes a negative electrode current collector and a negative electrode material (electrode material) held by the negative electrode current collector.
  • the specific surface area of the positive electrode material is 11 m 2 / g or more, and the ratio of the peak intensities of the X-ray diffraction patterns of ⁇ -PbO 2 and ⁇ -PbO 2 in the positive electrode material ( ⁇ -PbO 2 / ⁇ -PbO 2 ) is 0.3 or less.
  • the lead storage battery according to the present embodiment includes, for example, (A) a positive electrode and (B) a negative electrode.
  • the lead acid battery according to the present embodiment can further include a separator.
  • the positive electrode material contains a positive electrode active material, and may further contain an additive described later, if necessary.
  • the positive electrode material can be obtained by forming an unformed positive electrode material by aging and drying a positive electrode material paste containing a raw material of the positive electrode active material, and then forming an unformed positive electrode material.
  • a raw material of a positive electrode active material For example, lead powder is mentioned.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • Red lead (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material.
  • the positive electrode material after the formation preferably contains ⁇ -PbO 2 from the viewpoint of easily improving the cycle characteristics, but may not contain ⁇ -PbO 2 . Further, the positive electrode material after chemical conversion contains ⁇ -PbO 2 . More preferably, the positive electrode material after conversion contains ⁇ -PbO 2 ( ⁇ -lead dioxide) and ⁇ -PbO 2 ( ⁇ -lead dioxide), for example.
  • the ratio of the peak intensity of the X-ray diffraction pattern of ⁇ -PbO 2 and ⁇ -PbO 2 in the positive electrode material is 0.3 or less from the viewpoint of obtaining excellent charge acceptability. is there.
  • the ratio ⁇ -PbO 2 / ⁇ -PbO 2 is 0.3 or less, the overvoltage of the positive electrode can be lowered, so that it is estimated that excellent charge acceptability can be obtained.
  • the ratio ⁇ -PbO 2 / ⁇ -PbO 2 is preferably 0.2 or less, more preferably 0.1 or less, and still more preferably 0.06 or less, from the viewpoint of obtaining further excellent charge acceptance.
  • the ratio ⁇ -PbO 2 / ⁇ -PbO 2 may be 0.05 or less, 0.04 or less, or 0.03 or less.
  • the ratio ⁇ -PbO 2 / ⁇ -PbO 2 is preferably 0.005 or more, more preferably 0.01 or more, and still more preferably 0.02 or more, from the viewpoint of excellent shape retention of the positive electrode material.
  • the ratio ⁇ -PbO 2 / ⁇ -PbO 2 can be adjusted by, for example, the temperature at the time of chemical formation. For example, the ⁇ -PbO 2 ratio can be increased as the formation temperature increases.
  • ⁇ -PbO 2 , ⁇ -PbO 2 and PbSO 4 are detected as main compounds from the wide-angle X-ray diffraction of the pre-formed positive electrode material of the positive electrode.
  • main peak intensities (cps) of the waveforms specified as the respective compounds of ⁇ -PbO 2 and ⁇ -PbO 2 “ ⁇ -PbO 2 main peak intensity” / “ ⁇ -PbO 2 main peak intensity”
  • the ratio can be calculated as the ratio ⁇ -PbO 2 / ⁇ -PbO 2 .
  • the wide-angle X-ray diffractometer for example, an X-ray diffractometer SmartLab (manufactured by Rigaku) can be used.
  • Wide-angle X-ray diffraction measurement can be performed, for example, by the following method.
  • -Measuring device Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
  • ⁇ X-ray source Cu-K ⁇ / 1.541862 ⁇
  • Filter Cu-K ⁇ ⁇
  • Output 40kV, 30mA
  • Scan mode CONTINUOUS -Scan range: 20.0000 degrees to 60.000 degrees
  • Step width 0.0200 degrees-Scan axis: 2 ⁇ / ⁇ ⁇ Scanning speed: 10.0000 degrees / min ⁇
  • Sample holder Glass, depth 0.2mm
  • Sample preparation method The measurement sample can be prepared by the following procedure.
  • the formed battery is disassembled, the positive electrode (positive electrode plate or the like) is taken out, washed with water, and dried at 50 ° C. for 24 hours.
  • 3 g of the positive electrode material is collected from the center of the positive electrode and ground.
  • Calculation method Fill the positive electrode material so that the thickness of the positive electrode material is equal to the depth of the sample holder, and produce a smooth sample surface. Wide-angle X-ray diffraction is measured to obtain an X-ray diffraction pattern (X-ray diffraction chart) of diffraction angle (2 ⁇ ) and diffraction peak intensity.
  • ⁇ -PbO 2 positioned at a diffraction angle of 28.6 degrees and ⁇ -PbO 2 positioned at a diffraction angle of 25.3 degrees are detected.
  • peak intensity (cps) of the waveform specified as the respective compounds of ⁇ -PbO 2 (110 plane) and ⁇ -PbO 2 (111 plane) “peak intensity of ⁇ -PbO 2 ” / “ ⁇ -PbO 2 Is calculated as a ratio ⁇ -PbO 2 / ⁇ -PbO 2 .
  • the average particle diameter of the positive electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more, from the viewpoint of further improving charge acceptance and cycle characteristics.
  • the average particle diameter of the positive electrode active material is preferably 2.5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving the cycle characteristics.
  • As an average particle diameter of the positive electrode active material for example, after obtaining a scanning electron micrograph (1000 times) in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in width in the positive electrode material in the center of the positive electrode, all particles in the image are obtained. A numerical value obtained by arithmetically averaging the values of the lengths of the long sides of can be used.
  • the specific surface area of the positive electrode material is 11 m 2 / g or more from the viewpoint of improving charge acceptance.
  • the specific surface area of the positive electrode material is preferably 11.5 m 2 / g or more, more preferably 12 m 2 / g or more, from the viewpoint of further improving charge acceptance.
  • the upper limit of the specific surface area of the cathode material from a practical point of view, preferably not more than 20 m 2 / g, more preferably not more than 15 m 2 / g, more preferably 13m 2 / g or less.
  • the specific surface area of the positive electrode material is, for example, a method of adjusting the amount of sulfuric acid and water added when preparing a positive electrode material paste, which will be described later, a method of refining an active material in an unformed stage, a method of changing chemical conditions, etc. Can be adjusted.
  • the specific surface area of the positive electrode material can be measured by, for example, the BET method.
  • the BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area. Specifically, it is measured based on the following BET equation.
  • P / P o is satisfied be in the range of 0.05-0.35.
  • symbol is as follows.
  • P Adsorption equilibrium pressure when in an adsorption equilibrium state at a constant temperature
  • P o Saturated vapor pressure at the adsorption temperature
  • V Adsorption amount at the adsorption equilibrium pressure
  • m Monomolecular layer adsorption amount (a gas molecule is a single molecule on a solid surface) Adsorption amount when layer is formed)
  • C BET constant (parameter relating to the interaction between the solid surface and the adsorbent)
  • Equation (2) By transforming equation (1) (dividing the numerator denominator on the left side by P), the following equation (2) is obtained.
  • V adsorption amount
  • P / P o the relationship between the adsorption amount
  • V the adsorption amount
  • P / P o the relative pressure
  • Equation (2) the left side of Equation (2) and P / Po are plotted.
  • the gradient is s
  • the following formula (3) is derived from the formula (2).
  • the intercept i the intercept i and the gradient s are as shown in the following formula (4) and the following formula (5), respectively.
  • the total surface area S total (m 2 ) of the sample is obtained by the following formula (9), and the specific surface area S (m 2 / g) is obtained by the following formula (10) from the total surface area S total .
  • N denotes the Avogadro's number
  • a CS shows the adsorption cross sectional area (m 2)
  • M indicates the molecular weight.
  • w shows a sample amount (g).
  • the porosity of the positive electrode material is preferably 50% by volume or more, more preferably 55% by volume or more, from the viewpoint that the area where sulfuric acid enters the pores (holes) in the positive electrode material increases and the capacity tends to increase.
  • the porosity of the positive electrode material may be 58% by volume or more. Although there is no restriction
  • the porosity of the positive electrode material is a value (ratio based on volume) obtained from mercury porosimeter measurement. The porosity of the positive electrode material can be adjusted by the amount of dilute sulfuric acid added when preparing the positive electrode material paste.
  • the positive electrode material paste is filled in a current collector (for example, current collector grid) and then aged and dried to obtain a positive electrode having an unformed positive electrode material.
  • the non-chemically formed positive electrode material preferably contains an unchemically formed positive electrode active material containing tribasic lead sulfate as a main component.
  • the positive electrode material paste includes, for example, a raw material for the positive electrode active material, and may further include other predetermined additives.
  • Examples of the additive contained in the positive electrode material paste include carbon materials (excluding carbon fibers) and reinforcing short fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.).
  • Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
  • lead powder can be used as a raw material for the positive electrode active material.
  • lead (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material.
  • a positive electrode having an unformed positive electrode material is obtained by filling the positive electrode material paste into a current collector (for example, a current collector grid) and then aging and drying.
  • the amount of reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode material.
  • a positive electrode material having a specific surface area of 11 m 2 / g or more and a ratio ⁇ -PbO 2 / ⁇ -PbO 2 of 0.3 or less can be obtained, for example, by the following method.
  • paste B lead dioxide (PbO 2 ) and lead sulfate (PbSO 4 ), which are reaction products of red lead and dilute sulfuric acid
  • the said compounding quantity of said 1st and 2nd dilute sulfuric acid is a compounding quantity on the basis of the lead powder used when producing the above-mentioned paste A, and the total mass of the said red lead.
  • the paste B is added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water is preferably 3 to 8% by mass based on the total mass of lead powder and red lead. However, “water” here does not include water in dilute sulfuric acid.
  • the positive electrode material can be obtained by forming an unformed positive electrode material by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material, and then forming an unformed positive electrode material.
  • the positive electrode material after conversion contains, for example, ⁇ -PbO 2 and ⁇ -PbO 2 .
  • a positive electrode (a positive electrode plate or the like) having an unformed positive electrode material is obtained by filling the positive electrode material paste into a current collector (casting grid, expanded grid, etc.) and then aging and drying.
  • the blending amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass on the basis of the total mass of the lead powder (the total mass of the lead powder and the red lead when including the red lead).
  • composition of the current collector examples include lead alloys such as a lead-calcium-tin alloy and a lead-antimony-arsenic alloy. Depending on the application, selenium, silver, bismuth or the like may be added to the current collector.
  • a current collector can be obtained by forming these lead alloys in a lattice shape by a gravity casting method, an expanding method, a punching method, or the like.
  • aging conditions 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%.
  • the drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
  • the negative electrode material can be obtained by forming an unformed negative electrode material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material, and then forming an unformed negative electrode material. It is preferable that the negative electrode material after chemical conversion contains porous spongy lead.
  • a raw material of a negative electrode active material For example, lead powder is mentioned.
  • the lead powder for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ).
  • the negative electrode material before and / or after conversion is a resin (sulfo) having at least one selected from the group consisting of a sulfo group (sulfone group) and a sulfonate group (such as a group in which hydrogen of the sulfo group is substituted with an alkali metal).
  • the average particle diameter of the negative electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more, from the viewpoint of further improving charge acceptance and cycle characteristics.
  • the average particle diameter of the negative electrode active material is preferably 2.5 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less from the viewpoint of further improving cycle characteristics.
  • the average particle diameter of the negative electrode active material for example, after obtaining a scanning electron micrograph (1000 times) in the range of 10 ⁇ m in length ⁇ 10 ⁇ m in width in the negative electrode material in the central part of the negative electrode after formation, all particles in the image A numerical value obtained by arithmetically averaging the values of the lengths of the long sides of can be used.
  • the specific surface area of the negative electrode material is preferably 0.4 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 0.6 m 2 / g or more from the viewpoint of increasing the reactivity between the electrolytic solution and the negative electrode active material. Is more preferable.
  • the specific surface area of the negative electrode material, from the further suppression of the contraction of the negative electrode at the time of the cycle is preferably not more than 2m 2 / g, more preferably not more than 1.8 m 2 / g, more preferably not more than 1.5 m 2 / g.
  • the specific surface area of the negative electrode material can be adjusted by, for example, a method of refining the active material in an unformed stage.
  • the specific surface area of the negative electrode material can be measured by, for example, the BET method in the same manner as the positive electrode material.
  • a negative electrode having an unformed negative electrode material is obtained by filling a negative electrode material paste into a current collector (for example, a current collector grid) and then aging and drying.
  • a current collector for example, a current collector grid
  • the unformed negative electrode material preferably contains an unformed negative electrode active material containing tribasic lead sulfate as a main component.
  • the negative electrode material paste includes, for example, a raw material of the negative electrode active material and a resin having a sulfo group and / or a sulfonate group, and may further include other predetermined additives.
  • the negative electrode material paste may further contain a solvent and sulfuric acid.
  • a solvent include water (for example, ion exchange water) and an organic solvent.
  • Examples of the resin having a sulfo group and / or a sulfonate group include lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid and formaldehyde). At least one selected from the group consisting of condensates of
  • Examples of the additive contained in the negative electrode material paste include barium sulfate, carbon materials (excluding carbon fibers), and reinforcing short fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, and the like).
  • Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
  • the negative electrode material paste can be obtained, for example, by the following method. First, a mixture is obtained by mixing lead powder with a resin having a sulfo group and / or a sulfonate group and an additive added as necessary. Next, a negative electrode material paste is obtained by adding sulfuric acid (such as dilute sulfuric acid) and a solvent (such as water) to this mixture and kneading.
  • sulfuric acid such as dilute sulfuric acid
  • a solvent such as water
  • the compounding amount of barium sulfate is preferably 0.01 to 1% by mass based on the total mass of the raw material of the negative electrode active material.
  • the blending amount of the carbon material is preferably 0.2 to 1.4% by mass based on the total mass of the raw material of the negative electrode active material.
  • the amount of the resin having a sulfo group and / or a sulfonate group is preferably 0.01 to 2% by mass in terms of resin solid content, based on the total mass of the raw material of the negative electrode active material, and 0.05 to 1% by mass. % Is more preferable, and 0.1 to 0.5% by mass is even more preferable.
  • aging conditions 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%.
  • the drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
  • the separator may be bag-shaped.
  • One of the positive electrode and the negative electrode is preferably disposed in the separator, and more preferably the negative electrode is disposed in the separator.
  • a liquid lead acid battery and a sealed lead acid battery are mentioned, for example, and a liquid lead acid battery is preferred.
  • the manufacturing method of the lead acid battery which concerns on this embodiment is equipped with the electrode manufacturing process which obtains an electrode (a positive electrode and a negative electrode, for example, electrode plate), and the assembly process which assembles the structural member containing the said electrode and obtains a lead acid battery, for example. Yes.
  • the electrode includes, for example, an electrode material including a raw material for the electrode active material and a current collector that holds the electrode material.
  • the electrode after the formation includes, for example, an electrode material containing an electrode active material and the like, and a current collector that serves as a current conduction path from the electrode material and holds the electrode material.
  • the negative electrode and the positive electrode produced as described above are stacked via a separator, and the current collector of the same polarity electrode is welded with a strap to obtain an electrode group.
  • This electrode group is arranged in a battery case to produce an unformed battery.
  • dilute sulfuric acid is put into an unformed battery and a direct current is applied to form a battery case.
  • the lead acid battery is obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after the formation to an appropriate specific gravity of the electrolytic solution.
  • the specific gravity (20 ° C.) of sulfuric acid used for chemical conversion is preferably 1.20 to 1.25.
  • the specific gravity (20 ° C.) of the sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30.
  • the separator is preferably formed in a bag shape that encloses one of the positive and negative electrodes.
  • the material of the separator used in the liquid lead-acid battery is not particularly limited as long as it prevents electrical connection between the positive electrode and the negative electrode and allows the sulfate ions of the electrolyte to permeate. Examples include microporous polyethylene; glass fiber and synthetic resin. It is preferable that the separator is cut into a predetermined length in a step before laminating the positive electrode and the negative electrode, folded into two so as to sandwich the negative electrode, and wrapping the negative electrode by crimping both sides of the separator. .
  • the thickness of the separator used for the liquid lead-acid battery is more preferably 0.7 to 1.1 mm.
  • the chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode. Further, the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed in the electrode manufacturing process (tank chemical conversion).
  • the battery case accommodates electrodes therein, and preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of easy electrode accommodation. can do.
  • a box body whose upper surface is opened
  • a lid body that covers the upper surface of the box body from the viewpoint of easy electrode accommodation. can do.
  • an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid.
  • the shape of the battery case is not particularly limited, but since it is usually preferable that the electrode is a plate-like body, it is preferable to use a rectangular one so that the ineffective space is reduced when the electrode group is housed.
  • the material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (such as dilute sulfuric acid).
  • PP polypropylene
  • PE polyethylene
  • ABS resin etc.
  • the material of the battery case If the material is PP, it is advantageous in terms of acid resistance, workability and cost. is there. PP is advantageous in terms of workability as compared with ABS resin, which is difficult to thermally weld the battery case and the lid.
  • the box and the lid may be formed of different materials or may be formed of the same material.
  • the material of the box and the lid it is preferable to use a material having the same thermal expansion coefficient from the viewpoint of not generating excessive stress.
  • Example 1 (Preparation of positive electrode plate) First, 0.25 mass% of acrylic fibers (based on the total mass of the lead powder) were added to the lead powder as a reinforcing short fiber and dry mixed. Next, 8 mass% of water was added to the mixture containing the lead powder and kneaded to prepare paste A.
  • the mixture is kneaded, followed by 6% by mass of the second dilute sulfuric acid (specific gravity 1.5). % was added and kneaded to prepare paste B.
  • the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the mixing
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 6.9% by mass based on the total mass of lead powder and red lead.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
  • the negative electrode material paste was filled in an expandable current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Thereafter, drying was performed to prepare a negative electrode plate having an unformed negative electrode material.
  • a sample for measuring the specific surface area was prepared by the following procedure. First, the formed battery was disassembled, the electrode plates (positive electrode plate and negative electrode plate) were taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 2 g of an electrode material (a positive electrode material and a negative electrode material) was collected from the center of the electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.
  • the specific surface areas of the positive electrode material and the negative electrode material after chemical conversion were calculated according to the BET method by measuring the nitrogen gas adsorption amount at a liquid nitrogen temperature by a multipoint method while cooling the measurement sample prepared above with liquid nitrogen.
  • the measurement conditions are as follows. As a result of measurement in this way, the specific surface area of the positive electrode material was 11.5 m 2 / g. Further, the specific surface area of the negative electrode material was 0.6 m 2 / g.
  • the measurement sample was produced by the following procedure. First, the formed battery was disassembled, the positive electrode plate was taken out, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode material was collected from the center of the positive electrode plate and ground. Subsequently, the positive electrode material was filled in the sample holder so that the thickness of the positive electrode material was equal to the depth of the sample holder to produce a smooth sample surface, and then measurement was performed.
  • 1 is a diagram showing an X-ray diffraction pattern of Example 1. FIG.
  • -Measuring device Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation) ⁇ X-ray source: Cu-K ⁇ / 1.541862 ⁇ ⁇ Filter: Cu-K ⁇ ⁇ Output: 40kV, 30mA ⁇ Scan mode: CONTINUOUS -Scan range: 20.0000 degrees to 60.000 degrees-Step width: 0.0200 degrees-Scan axis: 2 ⁇ / ⁇ ⁇ Scanning speed: 10.0000 degrees / min ⁇ Sample holder: Glass, depth 0.2mm Calculation method: As a result of measuring wide-angle X-ray diffraction using 3 g of the prepared sample (positively formed positive electrode material of the positive electrode), a diffraction angle of 28 was determined from an X-ray diffraction chart of the obtained diffraction angle (2
  • ⁇ -PbO 2 located at .6 degrees and ⁇ -PbO 2 located at a diffraction angle of 25.3 degrees were detected.
  • peak intensity (cps) of the waveform specified as each compound of ⁇ -PbO 2 (110 plane) and ⁇ -PbO 2 (111 plane) “peak intensity of ⁇ -PbO 2 ” / “ ⁇ -PbO 2
  • the ratio of “peak intensity” was calculated as the ratio ⁇ -PbO 2 / ⁇ -PbO 2 .
  • the ⁇ -PbO 2 / ⁇ -PbO 2 ratio was 0.05.
  • the measurement sample was produced by the following procedure. First, the formed battery was disassembled, the positive electrode plate was taken out, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of a positive electrode material lump was collected from the center of the positive electrode plate. The mass was crushed into small pieces having a maximum diameter of about 5 mm, and a total of 3 g of the small pieces was put into a measuring cell. And based on the following conditions, the porosity of the positive electrode material after chemical conversion was measured using the mercury porosimeter.
  • Example 2 A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
  • the mixture is kneaded, followed by the second dilute sulfuric acid (specific gravity 1.5). After adding 7% by mass, the mixture was kneaded to prepare paste B.
  • the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the mixing
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 5.3% by mass based on the total mass of lead powder and red lead.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
  • Example 3 A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
  • the mixture is kneaded, and then the second dilute sulfuric acid (specific gravity 1.5).
  • paste B was prepared by kneading.
  • the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the mixing
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 4.6% by mass based on the total mass of lead powder and red lead.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
  • Example 1 A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
  • the compounding quantity of the said dilute sulfuric acid is a compounding quantity on the basis of the total mass of the lead powder and lead tan used when producing the above-mentioned paste A and paste B.
  • the paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste.
  • the total amount of water was 9.2% by mass based on the total mass of lead powder and red lead.
  • the paste B was added stepwise in order to avoid a rapid temperature rise.
  • An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
  • Example 2 A lead storage battery was produced and measured in the same manner as in Example 1 except that an unformed positive electrode material was produced as described below without using a lead lead.
  • An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
  • ISS cycle characteristics Measurement of ISS cycle characteristics was performed as follows. For the produced lead-acid battery, the ambient temperature was adjusted so that the battery temperature would be 25 ° C., and after performing constant current discharge for 45 A-59 seconds and constant current discharge for 300 A-1 seconds, the limiting current 100 A-2.33 V- A test in which the operation of performing constant current / constant voltage charging for 60 seconds was set to 1 cycle was performed 7200 cycles. This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this cycle test, the amount of charge is small relative to the amount of discharge, so if charging is not performed completely, the battery gradually becomes insufficiently charged. As a result, the voltage at the first second when discharging at 300 A for 1 second is obtained.
  • the specific surface area of the positive electrode material is 11 m 2 / g or more, and the ratio of the peak intensities of the X-ray diffraction patterns of ⁇ -PbO 2 and ⁇ -PbO 2 in the positive electrode material ( ⁇ -PbO 2 / ⁇ - In the example where PbO 2 ) is 0.3 or less, it can be confirmed that the charge acceptance is improved as compared with the comparative example. Moreover, in an Example, it can confirm that charge acceptance, 5 hour rate capacity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A lead storage cell provided with a positive electrode and a negative electrode, wherein the positive electrode has a current collector and a positive electrode material held on the current collector, the negative electrode has a current collector and a negative electrode material held on the current collector, the specific surface area of the positive electrode material is 11m2/g or greater, and the peak intensity ratio of an x-ray diffraction pattern of β-PbO2 and α-PbO2 in the positive electrode material (α-PbO2/β-PbO2) is 0.3 or less.

Description

鉛蓄電池Lead acid battery
 本発明は、鉛蓄電池に関するものである。 The present invention relates to a lead storage battery.
 近年、自動車においては、大気汚染防止又は地球温暖化防止のため、様々な燃費向上対策が検討されている。燃費向上対策を施した自動車としては、例えば、エンジンの動作時間を少なくするアイドリングストップシステム車(以下、「ISS車」という)、エンジンの動力によるオルタネータの発電を低減する発電制御車等のマイクロハイブリッド車が検討されている。 In recent years, various measures for improving fuel efficiency have been studied for automobiles in order to prevent air pollution or global warming. Examples of automobiles with measures to improve fuel efficiency include micro-hybrids such as idling stop system cars (hereinafter referred to as “ISS cars”) that reduce engine operating time and power generation control cars that reduce alternator power generation by engine power. Cars are being considered.
 ISS車では、エンジンの始動回数が多くなるため、鉛蓄電池の大電流放電が繰り返される。また、ISS車及び発電制御車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるため充電が不充分となる。 In ISS cars, the number of engine starts increases, so the large current discharge of the lead storage battery is repeated. Further, in the ISS car and the power generation control car, the amount of power generated by the alternator is reduced, and the lead storage battery is charged intermittently, so that the charge is insufficient.
 前記のような使われ方をする鉛蓄電池は、PSOC(Partial State Of Charge)と呼ばれる部分充電状態で使用されることになる。鉛蓄電池は、PSOC下で使用されると、満充電状態で使用される場合よりも寿命が短くなる。 The lead storage battery that is used as described above is used in a partially charged state called PSOC (Partial State Of Charge). Lead acid batteries have a shorter life when used under PSOC than when used in a fully charged state.
 また、近年、欧州では、マイクロハイブリッド車の制御に則した、充放電サイクル中における鉛蓄電池の充電性が重要視されており、このような形態のDCA(Dynamic Charge Acceptance)評価が規格化されつつある。つまり、前記のような鉛蓄電池の使われ方は、重要視されてきている。 In recent years, in Europe, the chargeability of lead-acid batteries during charge / discharge cycles in accordance with the control of micro-hybrid vehicles has been emphasized, and DCA (Dynamic Charge Acceptance) evaluation in this form is being standardized. is there. In other words, the use of the lead storage battery as described above has been regarded as important.
 これに対し、下記特許文献1には、PSOC下で使用される場合の電池の充電効率と寿命性能とを向上させるために、特定の比表面積の正極活物質を用いる技術が開示されている。 On the other hand, the following Patent Document 1 discloses a technique using a positive electrode active material having a specific surface area in order to improve the charging efficiency and life performance of a battery when used under PSOC.
国際公開第2011/108056号International Publication No. 2011/108056
 ところで、完全な充電が行われず充電が不足した状態で鉛蓄電池が使用される場合には、電池内の電極(極板等)における上部と下部との間で、電解液である希硫酸の濃淡差が生じる成層化現象が起こる。これは、完全な充電が行われないために、電解液の撹拌が不充分になるからである。この場合、電極下部の希硫酸の濃度が高くなりサルフェーションが発生する。サルフェーションは、放電生成物である硫酸鉛が充電状態に戻りにくい現象である。そのため、サルフェーションが発生すると、電極上部のみが集中的に反応するようになる。その結果、電極上部において、活物質間の結びつきが弱くなる等の劣化が進み、集電体から活物質が剥離して、電池性能低下及び早期寿命に至る。 By the way, when a lead-acid battery is used in a state where charging is not complete and charging is insufficient, the concentration of dilute sulfuric acid, which is an electrolyte, between the upper part and the lower part of the electrode (electrode plate, etc.) in the battery A stratification phenomenon occurs where a difference occurs. This is because the electrolyte solution is not sufficiently stirred because complete charging is not performed. In this case, the concentration of dilute sulfuric acid in the lower part of the electrode becomes high and sulfation occurs. Sulfation is a phenomenon in which lead sulfate, which is a discharge product, is difficult to return to a charged state. Therefore, when sulfation occurs, only the upper part of the electrode reacts intensively. As a result, deterioration such as weakening of the connection between the active materials progresses at the upper part of the electrode, and the active material peels from the current collector, leading to a decrease in battery performance and an early life.
 そのため、最近の鉛蓄電池においては、PSOC下で使用された場合の電池の寿命性能を向上させるため、充電受入性を向上させることが極めて重要な課題となっている。 Therefore, in recent lead-acid batteries, it is an extremely important issue to improve charge acceptability in order to improve battery life performance when used under PSOC.
 一方、上記特許文献1では、正極活物質の比表面積を6m/g以上に調整すること等により充電受入性を向上させる技術が記載されている。しかしながら、特許文献1に記載されている技術では、充電受入性を更に向上させることが困難であることが判明した。 On the other hand, Patent Document 1 describes a technique for improving charge acceptability by adjusting the specific surface area of a positive electrode active material to 6 m 2 / g or more. However, it has been found that it is difficult to further improve the charge acceptance with the technique described in Patent Document 1.
 本発明は、前記事情を鑑みてなされたものであり、優れた充電受入性を得ることが可能な鉛蓄電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lead-acid battery capable of obtaining excellent charge acceptability.
 本発明者らは、集電体に保持された正極材を有する正極を備える鉛蓄電池において、正極材の比表面積が11m/g以上であり、且つ、正極材におけるβ-PbO及びα-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)が0.3以下であることにより、前記課題を解決可能な鉛蓄電池を得ることができることを見出した。 In a lead storage battery including a positive electrode having a positive electrode material held on a current collector, the present inventors have a specific surface area of the positive electrode material of 11 m 2 / g or more, and β-PbO 2 and α- by the ratio of the peak intensity of X-ray diffraction pattern of the PbO 2 (α-PbO 2 / β-PbO 2) is 0.3 or less, it found that it is possible to obtain a solvable lead-acid battery of the problems.
 すなわち、本発明に係る鉛蓄電池は、正極及び負極を備える鉛蓄電池であって、前記正極が、集電体と、当該集電体に保持された正極材と、を有し、前記負極が、集電体と、当該集電体に保持された負極材と、を有し、前記正極材の比表面積が11m/g以上であり、前記正極材におけるβ-PbO及びα-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)が0.3以下である。 That is, the lead storage battery according to the present invention is a lead storage battery including a positive electrode and a negative electrode, wherein the positive electrode includes a current collector and a positive electrode material held by the current collector, and the negative electrode is A current collector and a negative electrode material held by the current collector, wherein the positive electrode material has a specific surface area of 11 m 2 / g or more, and β-PbO 2 and α-PbO 2 in the positive electrode material The peak intensity ratio (α-PbO 2 / β-PbO 2 ) of the X-ray diffraction pattern is 0.3 or less.
 本発明に係る鉛蓄電池によれば、優れた充電受入性を得ることが可能である。従って、特に、初期の状態からある程度の充放電が繰り返されて活物質が充分に活性化した後において、マイクロハイブリッド車等では低くなりがちなSOCを適正なレベルに維持することができる。また、本発明に係る鉛蓄電池によれば、優れた充電受入性と、優れた他の電池性能(放電特性及びサイクル特性等)とを両立することができる。 According to the lead storage battery according to the present invention, it is possible to obtain excellent charge acceptability. Therefore, in particular, after the charge and discharge are repeated to some extent from the initial state and the active material is sufficiently activated, it is possible to maintain the SOC that tends to be low in a micro hybrid vehicle or the like at an appropriate level. Moreover, according to the lead acid battery which concerns on this invention, the outstanding charge acceptance property and the outstanding other battery performance (a discharge characteristic, cycling characteristics, etc.) can be made compatible.
 前記正極材の多孔度は、50体積%以上であることが好ましい。この場合、容量が増加し易い。 The porosity of the positive electrode material is preferably 50% by volume or more. In this case, the capacity tends to increase.
 前記負極材は、スルホ基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を含んでいてもよい。前記樹脂は、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物であってもよい。 The negative electrode material may contain a resin having at least one selected from the group consisting of a sulfo group and a sulfonate group. The resin may be a condensate of bisphenol, aminobenzenesulfonic acid and formaldehyde.
 本発明に係る鉛蓄電池は、袋状のセパレータを更に備え、前記正極及び前記負極のうちの一方が前記セパレータ内に配置されている態様であってもよい。本発明に係る鉛蓄電池は、前記負極が前記セパレータ内に配置されている態様であってもよい。 The lead storage battery according to the present invention may further include a bag-shaped separator, and one of the positive electrode and the negative electrode may be disposed in the separator. The lead storage battery which concerns on this invention may be the aspect by which the said negative electrode is arrange | positioned in the said separator.
 本発明に係る鉛蓄電池によれば、優れた充電受入性を得ることが可能である。また、本発明に係る鉛蓄電池によれば、優れた充電受入性と、優れた他の電池性能(放電特性及びサイクル特性等)とを両立することができる。本発明に係る鉛蓄電池は、充電が間欠的に行われ、PSOC下で高率放電が行われる液式鉛蓄電池として、ISS車、マイクロハイブリッド車等において好適に用いることができる。 According to the lead storage battery according to the present invention, it is possible to obtain excellent charge acceptability. Moreover, according to the lead acid battery which concerns on this invention, the outstanding charge acceptance property and the outstanding other battery performance (a discharge characteristic, cycling characteristics, etc.) can be made compatible. The lead storage battery according to the present invention can be suitably used in an ISS vehicle, a micro hybrid vehicle, or the like as a liquid lead storage battery in which charging is performed intermittently and high rate discharge is performed under PSOC.
 本発明によれば、鉛蓄電池のマイクロハイブリッド車への応用を提供できる。本発明によれば、鉛蓄電池のISS車への応用を提供できる。 According to the present invention, it is possible to provide an application of a lead storage battery to a micro hybrid vehicle. ADVANTAGE OF THE INVENTION According to this invention, the application to the ISS vehicle of a lead storage battery can be provided.
実施例1のX線回折パターンを示す図である。2 is a diagram showing an X-ray diffraction pattern of Example 1. FIG.
 以下、本発明の実施形態について詳細に説明する。なお、比重は、温度によって変化するため、本明細書においては20℃で換算した比重と定義する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, since specific gravity changes with temperature, in this specification, it defines as specific gravity converted at 20 degreeC.
 本実施形態に係る鉛蓄電池は、正極及び負極を備える。正極は、正極集電体と、当該正極集電体に保持された正極材(電極材)と、を有する。負極は、負極集電体と、当該負極集電体に保持された負極材(電極材)と、を有する。本実施形態に係る鉛蓄電池において、正極材の比表面積は11m/g以上であり、正極材におけるβ-PbO及びα-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)は0.3以下である。 The lead acid battery according to this embodiment includes a positive electrode and a negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode material (electrode material) held by the positive electrode current collector. The negative electrode includes a negative electrode current collector and a negative electrode material (electrode material) held by the negative electrode current collector. In the lead storage battery according to this embodiment, the specific surface area of the positive electrode material is 11 m 2 / g or more, and the ratio of the peak intensities of the X-ray diffraction patterns of β-PbO 2 and α-PbO 2 in the positive electrode material (α-PbO 2 / Β-PbO 2 ) is 0.3 or less.
 鉛蓄電池の基本構成としては、従来の鉛蓄電池と同様の構成を用いることができる。本実施形態に係る鉛蓄電池は、例えば、(A)正極及び(B)負極を備えている。本実施形態に係る鉛蓄電池は、セパレータを更に備えることができる。 As the basic configuration of the lead storage battery, the same configuration as a conventional lead storage battery can be used. The lead storage battery according to the present embodiment includes, for example, (A) a positive electrode and (B) a negative electrode. The lead acid battery according to the present embodiment can further include a separator.
<(A)正極>
 正極材は、正極活物質を含有し、必要に応じて、後述する添加剤を更に含有することができる。正極材は、後述するように、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成の正極材を得た後に未化成の正極材を化成することで得ることができる。正極活物質の原料としては、特に制限はなく、例えば、鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb)を加えてもよい。
<(A) Positive electrode>
The positive electrode material contains a positive electrode active material, and may further contain an additive described later, if necessary. As described later, the positive electrode material can be obtained by forming an unformed positive electrode material by aging and drying a positive electrode material paste containing a raw material of the positive electrode active material, and then forming an unformed positive electrode material. There is no restriction | limiting in particular as a raw material of a positive electrode active material, For example, lead powder is mentioned. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). Red lead (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material.
 化成後の正極材は、サイクル特性が向上し易い観点からα-PbOを含むことが好ましいが、α-PbOを含んでいなくてもよい。また、化成後の正極材は、β-PbOを含む。化成後の正極材は、例えば、α-PbO(α-二酸化鉛)及びβ-PbO(β-二酸化鉛)を含むことがより好ましい。 The positive electrode material after the formation preferably contains α-PbO 2 from the viewpoint of easily improving the cycle characteristics, but may not contain α-PbO 2 . Further, the positive electrode material after chemical conversion contains β-PbO 2 . More preferably, the positive electrode material after conversion contains α-PbO 2 (α-lead dioxide) and β-PbO 2 (β-lead dioxide), for example.
 正極材におけるβ-PbO及びα-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)は、優れた充電受入性を得る観点から、0.3以下である。比率α-PbO/β-PbOが0.3以下であることにより、正極の過電圧を低くできることから、優れた充電受入性が得られると推測される。比率α-PbO/β-PbOは、更に優れた充電受入性を得る観点から、0.2以下が好ましく、0.1以下がより好ましく、0.06以下が更に好ましい。比率α-PbO/β-PbOは、0.05以下であってもよく、0.04以下であってもよく、0.03以下であってもよい。比率α-PbO/β-PbOは、正極材の形状保持性に優れる観点から、0.005以上が好ましく、0.01以上がより好ましく、0.02以上が更に好ましい。比率α-PbO/β-PbOは、例えば、化成時の温度等により調整することができる。例えば、化成温度が高くなるほどα-PbO比率を高くすることができる。 The ratio of the peak intensity of the X-ray diffraction pattern of β-PbO 2 and α-PbO 2 in the positive electrode material (α-PbO 2 / β-PbO 2 ) is 0.3 or less from the viewpoint of obtaining excellent charge acceptability. is there. When the ratio α-PbO 2 / β-PbO 2 is 0.3 or less, the overvoltage of the positive electrode can be lowered, so that it is estimated that excellent charge acceptability can be obtained. The ratio α-PbO 2 / β-PbO 2 is preferably 0.2 or less, more preferably 0.1 or less, and still more preferably 0.06 or less, from the viewpoint of obtaining further excellent charge acceptance. The ratio α-PbO 2 / β-PbO 2 may be 0.05 or less, 0.04 or less, or 0.03 or less. The ratio α-PbO 2 / β-PbO 2 is preferably 0.005 or more, more preferably 0.01 or more, and still more preferably 0.02 or more, from the viewpoint of excellent shape retention of the positive electrode material. The ratio α-PbO 2 / β-PbO 2 can be adjusted by, for example, the temperature at the time of chemical formation. For example, the α-PbO 2 ratio can be increased as the formation temperature increases.
 正極の既化成正極材の広角X線回折からは、例えば、主な化合物としてα-PbO、β-PbO及びPbSOが検出される。α-PbO及びβ-PbOそれぞれの化合物として特定される波形のメインピーク強度(cps)を用いて、「α-PbOのメインピーク強度」/「β-PbOのメインピーク強度」の比率を比率α-PbO/β-PbOとして算出することができる。広角X線回折装置としては、例えば、X線回折装置SmartLab(リガク製)を用いることができる。
 
For example, α-PbO 2 , β-PbO 2 and PbSO 4 are detected as main compounds from the wide-angle X-ray diffraction of the pre-formed positive electrode material of the positive electrode. Using the main peak intensities (cps) of the waveforms specified as the respective compounds of α-PbO 2 and β-PbO 2 , “α-PbO 2 main peak intensity” / “β-PbO 2 main peak intensity” The ratio can be calculated as the ratio α-PbO 2 / β-PbO 2 . As the wide-angle X-ray diffractometer, for example, an X-ray diffractometer SmartLab (manufactured by Rigaku) can be used.
 広角X線回折測定は、例えば、以下のような方法で行うことができる。
[広角X線回折測定方法]
 ・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
 ・X線源:Cu-Kα / 1.541862Å
 ・フィルター:Cu-Kβ
 ・出力:40kV、30mA
 ・スキャンモード:CONTINUOUS
 ・スキャン範囲:20.0000度~60.0000度
 ・ステップ幅:0.0200度
 ・スキャン軸:2θ/θ
 ・スキャンスピード:10.0000度/分
 ・試料ホルダー:ガラス製、深さ0.2mm
 ・試料作製方法:測定試料は、下記の手順により作製できる。まず、化成した電池を解体して正極(正極板等)を取り出し水洗をした後、50℃で24時間乾燥する。次に、前記正極の中央部から正極材を3g採取してすり潰す。
 ・算出方法:正極材の厚みが試料ホルダーの深さと同等になるように正極材を充填し、平滑な試料面を作製する。広角X線回折を測定し、回折角(2θ)と回折ピーク強度とのX線回折パターン(X線回折チャート)を得る。X線回折パターンにおいては、例えば、回折角度28.6度に位置するα-PbO、及び、回折角度25.3度に位置するβ-PbOが検出される。α-PbO(110面)及びβ-PbO(111面)それぞれの化合物として特定される波形のピーク強度(cps)を用いて、「α-PbOのピーク強度」/「β-PbOのピーク強度」の比率を比率α-PbO/β-PbOとして算出する。
Wide-angle X-ray diffraction measurement can be performed, for example, by the following method.
[Wide-angle X-ray diffraction measurement method]
-Measuring device: Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
・ X-ray source: Cu-Kα / 1.541862Å
・ Filter: Cu-Kβ
・ Output: 40kV, 30mA
・ Scan mode: CONTINUOUS
-Scan range: 20.0000 degrees to 60.000 degrees-Step width: 0.0200 degrees-Scan axis: 2θ / θ
・ Scanning speed: 10.0000 degrees / min ・ Sample holder: Glass, depth 0.2mm
Sample preparation method: The measurement sample can be prepared by the following procedure. First, the formed battery is disassembled, the positive electrode (positive electrode plate or the like) is taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode material is collected from the center of the positive electrode and ground.
Calculation method: Fill the positive electrode material so that the thickness of the positive electrode material is equal to the depth of the sample holder, and produce a smooth sample surface. Wide-angle X-ray diffraction is measured to obtain an X-ray diffraction pattern (X-ray diffraction chart) of diffraction angle (2θ) and diffraction peak intensity. In the X-ray diffraction pattern, for example, α-PbO 2 positioned at a diffraction angle of 28.6 degrees and β-PbO 2 positioned at a diffraction angle of 25.3 degrees are detected. Using the peak intensity (cps) of the waveform specified as the respective compounds of α-PbO 2 (110 plane) and β-PbO 2 (111 plane), “peak intensity of α-PbO 2 ” / “β-PbO 2 Is calculated as a ratio α-PbO 2 / β-PbO 2 .
 正極活物質の平均粒径は、充電受入性及びサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。正極活物質の平均粒径は、サイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。正極活物質の平均粒径としては、例えば、化成後の正極中央部の正極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)を取得した後、画像内における全ての粒子の長辺の長さの値を算術平均化した数値を用いることができる。 The average particle diameter of the positive electrode active material is preferably 0.3 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more, from the viewpoint of further improving charge acceptance and cycle characteristics. The average particle diameter of the positive electrode active material is preferably 2.5 μm or less, more preferably 2 μm or less, and even more preferably 1.5 μm or less from the viewpoint of further improving the cycle characteristics. As an average particle diameter of the positive electrode active material, for example, after obtaining a scanning electron micrograph (1000 times) in the range of 10 μm in length × 10 μm in width in the positive electrode material in the center of the positive electrode, all particles in the image are obtained. A numerical value obtained by arithmetically averaging the values of the lengths of the long sides of can be used.
 正極材の比表面積は、充電受入性が向上する観点から、11m/g以上である。正極材の比表面積は、充電受入性が更に向上する観点から、11.5m/g以上が好ましく、12m/g以上がより好ましい。正極材の比表面積の上限に制限はないが、実用的な観点から、20m/g以下が好ましく、15m/g以下がより好ましく、13m/g以下が更に好ましい。正極材の比表面積は、例えば、後述する正極材ペーストを作製する際の硫酸及び水の添加量を調整する方法、未化成の段階で活物質を微細化させる方法、化成条件を変化させる方法等により調整することができる。 The specific surface area of the positive electrode material is 11 m 2 / g or more from the viewpoint of improving charge acceptance. The specific surface area of the positive electrode material is preferably 11.5 m 2 / g or more, more preferably 12 m 2 / g or more, from the viewpoint of further improving charge acceptance. Although there is no limit to the upper limit of the specific surface area of the cathode material, from a practical point of view, preferably not more than 20 m 2 / g, more preferably not more than 15 m 2 / g, more preferably 13m 2 / g or less. The specific surface area of the positive electrode material is, for example, a method of adjusting the amount of sulfuric acid and water added when preparing a positive electrode material paste, which will be described later, a method of refining an active material in an unformed stage, a method of changing chemical conditions, etc. Can be adjusted.
 正極材の比表面積は、例えば、BET法で測定することができる。BET法は、一つの分子の大きさが既知の不活性ガス(例えば窒素ガス)を測定試料の表面に吸着させ、その吸着量と不活性ガスの占有面積とから表面積を求める方法であり、比表面積の一般的な測定手法である。具体的には、以下のBET式に基づいて測定する。 The specific surface area of the positive electrode material can be measured by, for example, the BET method. The BET method is a method in which an inert gas (for example, nitrogen gas) having a known molecular size is adsorbed on the surface of a measurement sample, and the surface area is obtained from the adsorption amount and the area occupied by the inert gas. This is a general method for measuring the surface area. Specifically, it is measured based on the following BET equation.
 下記式(1)の関係式は、P/Pが0.05~0.35の範囲でよく成立する。なお、式(1)中、各符号の詳細は下記のとおりである。
 P:一定温度で吸着平衡状態であるときの吸着平衡圧
 P:吸着温度における飽和蒸気圧
 V:吸着平衡圧Pにおける吸着量
 V:単分子層吸着量(気体分子が固体表面で単分子層を形成したときの吸着量)
 C:BET定数(固体表面と吸着物質との間の相互作用に関するパラメータ)
Relationship of the following formula (1), P / P o is satisfied be in the range of 0.05-0.35. In addition, in Formula (1), the detail of each code | symbol is as follows.
P: Adsorption equilibrium pressure when in an adsorption equilibrium state at a constant temperature P o : Saturated vapor pressure at the adsorption temperature V: Adsorption amount at the adsorption equilibrium pressure P V m : Monomolecular layer adsorption amount (a gas molecule is a single molecule on a solid surface) Adsorption amount when layer is formed)
C: BET constant (parameter relating to the interaction between the solid surface and the adsorbent)
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)を変形する(左辺の分子分母をPで割る)ことにより下記式(2)が得られる。測定に用いる比表面積計では、吸着占有面積が既知のガス分子を試料に吸着させ、その吸着量(V)と相対圧力(P/P)との関係を測定する。測定したVとP/Pより、式(2)の左辺とP/Pをプロットする。ここで、勾配がsであるとすると、式(2)より下記式(3)が導かれる。切片がiであるとすると、切片i及び勾配sは、それぞれ下記式(4)及び下記式(5)のとおりとなる。 By transforming equation (1) (dividing the numerator denominator on the left side by P), the following equation (2) is obtained. In the specific surface area meter used for the measurement, gas molecules having a known adsorption occupation area are adsorbed on the sample, and the relationship between the adsorption amount (V) and the relative pressure (P / P o ) is measured. From the measured V and P / Po , the left side of Equation (2) and P / Po are plotted. Here, assuming that the gradient is s, the following formula (3) is derived from the formula (2). Assuming that the intercept is i, the intercept i and the gradient s are as shown in the following formula (4) and the following formula (5), respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(4)及び式(5)を変形すると、それぞれ下記式(6)及び式(7)が得られ、単分子層吸着量Vを求める下記式(8)が得られる。すなわち、ある相対圧力P/Pにおける吸着量Vを数点測定し、プロットの勾配及び切片を求めると、単分子層吸着量Vが求まる。 When Expression (4) and Expression (5) are modified, the following Expression (6) and Expression (7) are obtained, respectively, and the following Expression (8) for obtaining the monomolecular layer adsorption amount V m is obtained. That is, when the adsorption amount V at a certain relative pressure P / Po is measured at several points and the slope and intercept of the plot are obtained, the monomolecular layer adsorption amount V m is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 試料の全表面積Stotal(m)は、下記式(9)で求められ、比表面積S(m/g)は、全表面積Stotalより下記式(10)で求められる。なお、式(9)中、Nは、アボガドロ数を示し、ACSは、吸着断面積(m)を示し、Mは、分子量を示す。また、式(10)中、wは、サンプル量(g)を示す。 The total surface area S total (m 2 ) of the sample is obtained by the following formula (9), and the specific surface area S (m 2 / g) is obtained by the following formula (10) from the total surface area S total . In the formula (9), N denotes the Avogadro's number, A CS shows the adsorption cross sectional area (m 2), M indicates the molecular weight. Moreover, in Formula (10), w shows a sample amount (g).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 正極材の多孔度は、正極材中の空孔部(孔)に硫酸が入り込む領域が多くなり容量が増加し易い観点から、50体積%以上が好ましく、55体積%以上がより好ましい。正極材の多孔度は、58体積%以上であってもよい。正極材の多孔度の上限に特に制限はないが、70体積%以下が好ましい。多孔度が70体積%以下であれば、正極材中の空孔部への硫酸含浸量が適度あり、活物質同士の結合力を良好に維持できる。実用的な観点からは、多孔度の上限は、60体積%以下がより好ましい。なお、正極材の多孔度は、水銀ポロシメーター測定から得られる値(体積基準の割合)である。正極材の多孔度は、正極材ペーストを作製する際に加える希硫酸量によって調整することができる。 The porosity of the positive electrode material is preferably 50% by volume or more, more preferably 55% by volume or more, from the viewpoint that the area where sulfuric acid enters the pores (holes) in the positive electrode material increases and the capacity tends to increase. The porosity of the positive electrode material may be 58% by volume or more. Although there is no restriction | limiting in particular in the upper limit of the porosity of a positive electrode material, 70 volume% or less is preferable. If the porosity is 70% by volume or less, the amount of sulfuric acid impregnated in the pores in the positive electrode material is appropriate, and the bonding strength between the active materials can be maintained well. From a practical viewpoint, the upper limit of the porosity is more preferably 60% by volume or less. The porosity of the positive electrode material is a value (ratio based on volume) obtained from mercury porosimeter measurement. The porosity of the positive electrode material can be adjusted by the amount of dilute sulfuric acid added when preparing the positive electrode material paste.
 正極の製造工程では、例えば、正極材ペーストを集電体(例えば集電体格子)に充填した後に熟成及び乾燥を行うことにより、未化成の正極材を有する正極を得る。未化成の正極材は、主成分として三塩基性硫酸鉛を含む未化成の正極活物質を含むことが好ましい。前記正極材ペーストは、例えば、正極活物質の原料を含んでおり、その他の所定の添加剤等を更に含んでいてもよい。 In the manufacturing process of the positive electrode, for example, the positive electrode material paste is filled in a current collector (for example, current collector grid) and then aged and dried to obtain a positive electrode having an unformed positive electrode material. The non-chemically formed positive electrode material preferably contains an unchemically formed positive electrode active material containing tribasic lead sulfate as a main component. The positive electrode material paste includes, for example, a raw material for the positive electrode active material, and may further include other predetermined additives.
 正極材ペーストが含む添加剤としては、例えば、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive contained in the positive electrode material paste include carbon materials (excluding carbon fibers) and reinforcing short fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, etc.). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
 正極材ペーストを作製するに際しては、正極活物質の原料として、鉛粉を用いることができる。また、化成時間を短縮できる観点から、正極活物質の原料として鉛丹(Pb)を加えてもよい。この正極材ペーストを集電体(例えば集電体格子)に充填した後に熟成及び乾燥を行うことにより、未化成の正極材を有する正極が得られる。正極材ペーストにおいて、補強用短繊維の配合量は、正極材の原料の全質量を基準として0.005~0.3質量%が好ましい。 In producing the positive electrode material paste, lead powder can be used as a raw material for the positive electrode active material. From the viewpoint of shortening the chemical conversion time, lead (Pb 3 O 4 ) may be added as a raw material for the positive electrode active material. A positive electrode having an unformed positive electrode material is obtained by filling the positive electrode material paste into a current collector (for example, a current collector grid) and then aging and drying. In the positive electrode material paste, the amount of reinforcing short fibers is preferably 0.005 to 0.3% by mass based on the total mass of the positive electrode material.
 比表面積が11m/g以上であり、且つ、比率α-PbO/β-PbOが0.3以下である正極材は、例えば、下記の方法により得ることができる。 A positive electrode material having a specific surface area of 11 m 2 / g or more and a ratio α-PbO 2 / β-PbO 2 of 0.3 or less can be obtained, for example, by the following method.
(1)正極活物質の原料として鉛粉を用いる方法
 鉛粉に対して、補強用短繊維等の添加剤を加えて乾式混合する。次に、前記鉛粉を含む混合物に対して、水4~10質量%及び希硫酸(比重1.28)5~10質量%を加えて混練して正極材ペーストを作製する。希硫酸(比重1.28)は、発熱を低減するために、数回に分けて徐々に添加することが好ましい。正極材ペーストの作製において、急激な発熱は疎な構造の正極材を形成し、寿命での活物質同士の結合力が低下するため、なるべく発熱を抑えることが望ましい。
(1) Method of using lead powder as a raw material for the positive electrode active material Additive additives such as reinforcing short fibers are added to the lead powder and dry mixed. Next, 4-10% by mass of water and 5-10% by mass of dilute sulfuric acid (specific gravity 1.28) are added to the mixture containing the lead powder and kneaded to prepare a positive electrode material paste. The dilute sulfuric acid (specific gravity 1.28) is preferably added gradually in several steps in order to reduce heat generation. In the production of the positive electrode material paste, rapid heat generation forms a sparse positive electrode material, and the bonding force between the active materials in the lifetime decreases. Therefore, it is desirable to suppress heat generation as much as possible.
(2)正極活物質の原料として鉛粉及び鉛丹(Pb)を用いる方法
 まず、鉛粉に対して、補強用短繊維等の添加剤を加えて乾式混合する。次に、前記鉛粉を含む混合物に対して、水4~10質量%を加えて混練してペーストAを作製する。水の前記配合量は、鉛粉及び添加剤の合計質量を基準とした配合量である。
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.3~1.4)15~25質量%とを混合した後に混練し、続いて第二の希硫酸(比重1.45~1.6)5~20質量%を加えた後に混練してペーストBを作製する(鉛丹と希硫酸の反応生成物である二酸化鉛(PbO)と硫酸鉛(PbSO)が生成)。前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いる鉛粉、及び、前記鉛丹の合計質量を基準とした配合量である。
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製する。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合は、質量比で鉛粉/鉛丹=90/10~80/20になるように調整することが好ましい。また、水の全量は、鉛粉及び鉛丹の合計質量を基準として3~8質量%とすることが好ましい。但し、ここでいう「水」には、希硫酸中の水は含まないものとする。
(2) Method of using lead powder and red lead (Pb 3 O 4 ) as a raw material for the positive electrode active material First, additives such as reinforcing short fibers are added to the lead powder and dry mixed. Next, 4-10% by mass of water is added to the mixture containing the lead powder and kneaded to prepare paste A. The said compounding quantity of water is a compounding quantity on the basis of the total mass of lead powder and an additive.
Next, red lead (Pb 3 O 4 ) and the first dilute sulfuric acid (specific gravity 1.3 to 1.4) 15 to 25% by mass are mixed and kneaded, followed by the second dilute sulfuric acid (specific gravity). 1.45 to 1.6) Add 5 to 20% by mass and then knead to prepare paste B (lead dioxide (PbO 2 ) and lead sulfate (PbSO 4 ), which are reaction products of red lead and dilute sulfuric acid) Generated). The said compounding quantity of said 1st and 2nd dilute sulfuric acid is a compounding quantity on the basis of the lead powder used when producing the above-mentioned paste A, and the total mass of the said red lead.
Then, the paste B is added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio of the lead powder contained in the paste A and the lead powder contained in the paste B is adjusted so that the mass ratio is lead powder / lead powder = 90/10 to 80/20. It is preferable to do. The total amount of water is preferably 3 to 8% by mass based on the total mass of lead powder and red lead. However, “water” here does not include water in dilute sulfuric acid.
 正極材は、正極活物質の原料を含む正極材ペーストを熟成及び乾燥することにより未化成の正極材を得た後に未化成の正極材を化成することで得ることができる。化成後の正極材は、例えばα-PbO及びβ-PbOを含む。 The positive electrode material can be obtained by forming an unformed positive electrode material by aging and drying a positive electrode material paste containing a raw material for the positive electrode active material, and then forming an unformed positive electrode material. The positive electrode material after conversion contains, for example, α-PbO 2 and β-PbO 2 .
 前記正極材ペーストを集電体(鋳造格子体、エキスパンド格子体等)に充填した後に熟成及び乾燥を行うことにより、未化成の正極材を有する正極(正極板等)を得る。正極材ペーストにおいて、補強用短繊維の配合量は、鉛粉の全質量(鉛丹を含む場合は鉛粉及び鉛丹の合計質量)を基準として0.05~0.3質量%が好ましい。 A positive electrode (a positive electrode plate or the like) having an unformed positive electrode material is obtained by filling the positive electrode material paste into a current collector (casting grid, expanded grid, etc.) and then aging and drying. In the positive electrode material paste, the blending amount of the reinforcing short fibers is preferably 0.05 to 0.3% by mass on the basis of the total mass of the lead powder (the total mass of the lead powder and the red lead when including the red lead).
 集電体の組成としては、例えば、鉛-カルシウム-錫系合金、鉛-アンチモン-ヒ素系合金等の鉛合金が挙げられる。用途に応じて適宜セレン、銀、ビスマス等を集電体に添加してもよい。これらの鉛合金を重力鋳造法、エキスパンド法、打ち抜き法等で格子状に形成することにより集電体を得ることができる。 Examples of the composition of the current collector include lead alloys such as a lead-calcium-tin alloy and a lead-antimony-arsenic alloy. Depending on the application, selenium, silver, bismuth or the like may be added to the current collector. A current collector can be obtained by forming these lead alloys in a lattice shape by a gravity casting method, an expanding method, a punching method, or the like.
 熟成条件としては、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間が好ましい。乾燥条件は、温度45~80℃で15~30時間が好ましい。 As aging conditions, 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. The drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
<(B)負極>
 負極材は、後述するように、負極活物質の原料を含む負極材ペーストを熟成及び乾燥することにより未化成の負極材を得た後に未化成の負極材を化成することで得ることができる。化成後の負極材は、多孔質の海綿状鉛(Spongy Lead)を含むことが好ましい。負極活物質の原料としては、特に制限はなく、例えば、鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。化成前及び/又は化成後の負極材は、スルホ基(スルホン基)及びスルホン酸塩基(スルホ基の水素がアルカリ金属で置換された基等)からなる群より選ばれる少なくとも一種を有する樹脂(スルホ基及び/又はスルホン酸塩基を有する樹脂)を含んでいてもよい。
<(B) Negative electrode>
As described later, the negative electrode material can be obtained by forming an unformed negative electrode material by aging and drying a negative electrode material paste containing a raw material of the negative electrode active material, and then forming an unformed negative electrode material. It is preferable that the negative electrode material after chemical conversion contains porous spongy lead. There is no restriction | limiting in particular as a raw material of a negative electrode active material, For example, lead powder is mentioned. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). The negative electrode material before and / or after conversion is a resin (sulfo) having at least one selected from the group consisting of a sulfo group (sulfone group) and a sulfonate group (such as a group in which hydrogen of the sulfo group is substituted with an alkali metal). A resin having a group and / or a sulfonate group).
 負極活物質の平均粒径は、充電受入性及びサイクル特性が更に向上する観点から、0.3μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましい。負極活物質の平均粒径は、サイクル特性が更に向上する観点から、2.5μm以下が好ましく、2μm以下がより好ましく、1.5μm以下が更に好ましい。負極活物質の平均粒径としては、例えば、化成後の負極中央部の負極材における縦10μm×横10μmの範囲の走査型電子顕微鏡写真(1000倍)を取得した後、画像内における全ての粒子の長辺の長さの値を算術平均化した数値を用いることができる。 The average particle diameter of the negative electrode active material is preferably 0.3 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more, from the viewpoint of further improving charge acceptance and cycle characteristics. The average particle diameter of the negative electrode active material is preferably 2.5 μm or less, more preferably 2 μm or less, and even more preferably 1.5 μm or less from the viewpoint of further improving cycle characteristics. As the average particle diameter of the negative electrode active material, for example, after obtaining a scanning electron micrograph (1000 times) in the range of 10 μm in length × 10 μm in width in the negative electrode material in the central part of the negative electrode after formation, all particles in the image A numerical value obtained by arithmetically averaging the values of the lengths of the long sides of can be used.
 負極材の比表面積は、電解液と負極活物質との反応性を高める観点から、0.4m/g以上が好ましく、0.5m/g以上がより好ましく、0.6m/g以上が更に好ましい。負極材の比表面積は、サイクル時の負極の収縮を更に抑制する観点から、2m/g以下が好ましく、1.8m/g以下がより好ましく、1.5m/g以下が更に好ましい。負極材の比表面積は、例えば、未化成の段階で活物質を微細化させる方法により調整することができる。負極材の比表面積は、正極材と同様に例えばBET法で測定することができる。 The specific surface area of the negative electrode material is preferably 0.4 m 2 / g or more, more preferably 0.5 m 2 / g or more, and 0.6 m 2 / g or more from the viewpoint of increasing the reactivity between the electrolytic solution and the negative electrode active material. Is more preferable. The specific surface area of the negative electrode material, from the further suppression of the contraction of the negative electrode at the time of the cycle is preferably not more than 2m 2 / g, more preferably not more than 1.8 m 2 / g, more preferably not more than 1.5 m 2 / g. The specific surface area of the negative electrode material can be adjusted by, for example, a method of refining the active material in an unformed stage. The specific surface area of the negative electrode material can be measured by, for example, the BET method in the same manner as the positive electrode material.
 負極の製造工程では、例えば、負極材ペーストを集電体(例えば集電体格子)に充填した後に熟成及び乾燥を行うことにより、未化成の負極材を有する負極を得る。負極の集電体としては、正極と同様の集電体を用いることができる。未化成の負極材は、主成分として三塩基性硫酸鉛を含む未化成の負極活物質を含むことが好ましい。前記負極材ペーストは、例えば、負極活物質の原料、及び、スルホ基及び/又はスルホン酸塩基を有する樹脂を含んでおり、その他の所定の添加剤等を更に含んでいてもよい。 In the negative electrode manufacturing process, for example, a negative electrode having an unformed negative electrode material is obtained by filling a negative electrode material paste into a current collector (for example, a current collector grid) and then aging and drying. As the current collector for the negative electrode, the same current collector as that for the positive electrode can be used. The unformed negative electrode material preferably contains an unformed negative electrode active material containing tribasic lead sulfate as a main component. The negative electrode material paste includes, for example, a raw material of the negative electrode active material and a resin having a sulfo group and / or a sulfonate group, and may further include other predetermined additives.
 負極材ペーストは、溶媒及び硫酸を更に含んでいてもよい。溶媒としては、例えば、水(例えばイオン交換水)及び有機溶媒が挙げられる。 The negative electrode material paste may further contain a solvent and sulfuric acid. Examples of the solvent include water (for example, ion exchange water) and an organic solvent.
 スルホ基及び/又はスルホン酸塩基を有する樹脂としては、リグニンスルホン酸、リグニンスルホン酸塩、及び、フェノール類とアミノアリールスルホン酸とホルムアルデヒドとの縮合物(例えば、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物)からなる群より選ばれる少なくとも一種が好ましい。 Examples of the resin having a sulfo group and / or a sulfonate group include lignin sulfonic acid, lignin sulfonate, and a condensate of phenols, aminoaryl sulfonic acid and formaldehyde (for example, bisphenol, aminobenzene sulfonic acid and formaldehyde). At least one selected from the group consisting of condensates of
 負極材ペーストが含む添加剤としては、例えば、硫酸バリウム、炭素材料(炭素繊維を除く)及び補強用短繊維(アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等)が挙げられる。炭素材料としては、例えば、カーボンブラック及び黒鉛が挙げられる。カーボンブラックとしては、例えば、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック及びケッチェンブラックが挙げられる。 Examples of the additive contained in the negative electrode material paste include barium sulfate, carbon materials (excluding carbon fibers), and reinforcing short fibers (acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, carbon fibers, and the like). Examples of the carbon material include carbon black and graphite. Examples of carbon black include furnace black, channel black, acetylene black, thermal black, and ketjen black.
 負極材ペーストは、例えば、以下の方法により得ることができる。まず、鉛粉に、スルホ基及び/又はスルホン酸塩基を有する樹脂と、必要に応じて添加される添加剤とを混合することにより混合物を得る。次に、この混合物に、硫酸(希硫酸等)及び溶媒(水等)を加えて混練することにより負極材ペーストが得られる。 The negative electrode material paste can be obtained, for example, by the following method. First, a mixture is obtained by mixing lead powder with a resin having a sulfo group and / or a sulfonate group and an additive added as necessary. Next, a negative electrode material paste is obtained by adding sulfuric acid (such as dilute sulfuric acid) and a solvent (such as water) to this mixture and kneading.
 負極材ペーストにおいて、硫酸バリウムを用いる場合、硫酸バリウムの配合量は、負極活物質の原料の全質量を基準として0.01~1質量%が好ましい。また、炭素材料を用いる場合、炭素材料の配合量は、負極活物質の原料の全質量を基準として0.2~1.4質量%が好ましい。スルホ基及び/又はスルホン酸塩基を有する樹脂の配合量は、負極活物質の原料の全質量を基準として、樹脂固形分換算で、0.01~2質量%が好ましく、0.05~1質量%がより好ましく、0.1~0.5質量%が更に好ましい。 When barium sulfate is used in the negative electrode material paste, the compounding amount of barium sulfate is preferably 0.01 to 1% by mass based on the total mass of the raw material of the negative electrode active material. When using a carbon material, the blending amount of the carbon material is preferably 0.2 to 1.4% by mass based on the total mass of the raw material of the negative electrode active material. The amount of the resin having a sulfo group and / or a sulfonate group is preferably 0.01 to 2% by mass in terms of resin solid content, based on the total mass of the raw material of the negative electrode active material, and 0.05 to 1% by mass. % Is more preferable, and 0.1 to 0.5% by mass is even more preferable.
 熟成条件としては、温度35~85℃、湿度50~98RH%の雰囲気で15~60時間が好ましい。乾燥条件は、温度45~80℃で15~30時間が好ましい。 As aging conditions, 15 to 60 hours are preferable in an atmosphere of a temperature of 35 to 85 ° C. and a humidity of 50 to 98 RH%. The drying conditions are preferably 45 to 80 ° C. and 15 to 30 hours.
<セパレータ>
 セパレータは、袋状であってもよい。正極及び負極のうちの一方がセパレータ内に配置されていることが好ましく、負極がセパレータ内に配置されていることがより好ましい。
<Separator>
The separator may be bag-shaped. One of the positive electrode and the negative electrode is preferably disposed in the separator, and more preferably the negative electrode is disposed in the separator.
<鉛蓄電池の製造方法>
 本実施形態に係る鉛蓄電池としては、例えば、液式鉛蓄電池及び密閉式鉛蓄電池が挙げられ、液式鉛蓄電池が好ましい。本実施形態に係る鉛蓄電池の製造方法は、例えば、電極(正極及び負極。例えば電極板)を得る電極製造工程と、前記電極を含む構成部材を組み立てて鉛蓄電池を得る組み立て工程とを備えている。電極が未化成である場合、電極は、例えば、電極活物質の原料等を含む電極材と、当該電極材を保持する集電体とを有している。化成後の電極は、例えば、電極活物質等を含む電極材と、当該電極材からの電流の導電路となり且つ電極材を保持する集電体とを有している。
<Method for producing lead-acid battery>
As a lead acid battery concerning this embodiment, a liquid lead acid battery and a sealed lead acid battery are mentioned, for example, and a liquid lead acid battery is preferred. The manufacturing method of the lead acid battery which concerns on this embodiment is equipped with the electrode manufacturing process which obtains an electrode (a positive electrode and a negative electrode, for example, electrode plate), and the assembly process which assembles the structural member containing the said electrode and obtains a lead acid battery, for example. Yes. When the electrode is not formed, the electrode includes, for example, an electrode material including a raw material for the electrode active material and a current collector that holds the electrode material. The electrode after the formation includes, for example, an electrode material containing an electrode active material and the like, and a current collector that serves as a current conduction path from the electrode material and holds the electrode material.
 鉛蓄電池の製造方法は、例えば、上記のように作製した負極及び正極を、セパレータを介して積層し、同極性の電極の集電部をストラップで溶接させて電極群を得る。この電極群を電槽内に配置して未化成の電池を作製する。次に、未化成の電池に希硫酸を入れて直流電流を通電して電槽化成する。化成後の硫酸の比重(20℃)を適切な電解液の比重に調整して鉛蓄電池が得られる。化成に用いる硫酸の比重(20℃)は1.20~1.25が好ましい。化成後の硫酸の比重(20℃)は、1.25~1.33が好ましく、1.26~1.30がより好ましい。 For example, in the method for producing a lead-acid battery, the negative electrode and the positive electrode produced as described above are stacked via a separator, and the current collector of the same polarity electrode is welded with a strap to obtain an electrode group. This electrode group is arranged in a battery case to produce an unformed battery. Next, dilute sulfuric acid is put into an unformed battery and a direct current is applied to form a battery case. The lead acid battery is obtained by adjusting the specific gravity (20 ° C.) of the sulfuric acid after the formation to an appropriate specific gravity of the electrolytic solution. The specific gravity (20 ° C.) of sulfuric acid used for chemical conversion is preferably 1.20 to 1.25. The specific gravity (20 ° C.) of the sulfuric acid after chemical conversion is preferably 1.25 to 1.33, more preferably 1.26 to 1.30.
 前記セパレータは、正負一方の電極を包むような袋状とすることが好ましい。液式鉛蓄電池に用いるセパレータの材質としては、正極と負極との電気的な接続を阻止し、電解液の硫酸イオンを透過させるものであれば特に限定されるものではなく、具体的には、微多孔性ポリエチレン;ガラス繊維と合成樹脂からなるもの等が挙げられる。セパレータは、正極及び負極を積層する前の工程で、所定長さに切断され、負極を挟み込むように2つに折られ、セパレータの両サイドを圧着することで負極を包み込む形とすることが好ましい。液式鉛蓄電池に用いるセパレータの厚みは0.7~1.1mmがより好ましい。 The separator is preferably formed in a bag shape that encloses one of the positive and negative electrodes. The material of the separator used in the liquid lead-acid battery is not particularly limited as long as it prevents electrical connection between the positive electrode and the negative electrode and allows the sulfate ions of the electrolyte to permeate. Examples include microporous polyethylene; glass fiber and synthetic resin. It is preferable that the separator is cut into a predetermined length in a step before laminating the positive electrode and the negative electrode, folded into two so as to sandwich the negative electrode, and wrapping the negative electrode by crimping both sides of the separator. . The thickness of the separator used for the liquid lead-acid battery is more preferably 0.7 to 1.1 mm.
 なお、化成条件、及び、硫酸の比重は、電極のサイズに応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程において実施されてもよい(タンク化成)。 The chemical conversion conditions and the specific gravity of sulfuric acid can be adjusted according to the size of the electrode. Further, the chemical conversion treatment is not limited to being performed after the assembly process, and may be performed in the electrode manufacturing process (tank chemical conversion).
 前記電槽は、その内部に電極を収納するものであり、電極の収納し易さから、上面が開放された箱体と、この箱体の上面を覆う蓋体とを有するものを好適に使用することができる。なお、箱体と蓋体との接着は、接着剤、熱溶着、レーザ溶着、超音波溶着等を適宜用いることができる。 The battery case accommodates electrodes therein, and preferably has a box body whose upper surface is opened and a lid body that covers the upper surface of the box body from the viewpoint of easy electrode accommodation. can do. Note that an adhesive, heat welding, laser welding, ultrasonic welding, or the like can be appropriately used for bonding the box and the lid.
 電槽の形状は、特に限定されるものではないが、通常電極が板状体であることが好ましいことから、電極群収納時に無効空間が少なくなるように、方形のものを用いることが好ましい。 The shape of the battery case is not particularly limited, but since it is usually preferable that the electrode is a plate-like body, it is preferable to use a rectangular one so that the ineffective space is reduced when the electrode group is housed.
 電槽の材質は、特に制限されるものではないが、電解液(希硫酸等)に対し耐性を有するものである必要がある。電槽の材質としては、具体的には、PP(ポリプロピレン)、PE(ポリエチレン)、ABS樹脂等を用いることができ、材質がPPであると、耐酸性、加工性及びコストの面で有利である。PPは、電槽と蓋の熱溶着が困難であるABS樹脂と比較して加工性の面で有利である。 The material of the battery case is not particularly limited, but it needs to be resistant to an electrolytic solution (such as dilute sulfuric acid). Specifically, PP (polypropylene), PE (polyethylene), ABS resin, etc. can be used as the material of the battery case. If the material is PP, it is advantageous in terms of acid resistance, workability and cost. is there. PP is advantageous in terms of workability as compared with ABS resin, which is difficult to thermally weld the battery case and the lid.
 なお、前述した箱体及び蓋体により電槽が形成される場合、箱体と蓋体とを、別々の材質により形成してもよく、同一材質により形成してもよい。箱体及び蓋体の材料としては、無理な応力が発生しない観点から、熱膨張係数の等しい材質を使用することが好ましい。 In addition, when a battery case is formed of the box and the lid described above, the box and the lid may be formed of different materials or may be formed of the same material. As the material of the box and the lid, it is preferable to use a material having the same thermal expansion coefficient from the viewpoint of not generating excessive stress.
 以下、実施例により本発明を具体的に説明する。但し、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to the following examples.
<実施例1>
(正極板の作製)
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.25質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、前記鉛粉を含む混合物に対して、水を8質量%加えて混練してペーストAを作製した。
<Example 1>
(Preparation of positive electrode plate)
First, 0.25 mass% of acrylic fibers (based on the total mass of the lead powder) were added to the lead powder as a reinforcing short fiber and dry mixed. Next, 8 mass% of water was added to the mixture containing the lead powder and kneaded to prepare paste A.
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.35)17質量%とを混合した後に混練し、続いて第二の希硫酸(比重1.5)6質量%を加えた後に混練してペーストBを作製した。なお、前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いる鉛粉、及び、ペーストBを作製する際に用いる鉛丹の合計質量を基準とした配合量である。 Next, after mixing red lead (Pb 3 O 4 ) and 17% by mass of the first dilute sulfuric acid (specific gravity 1.35), the mixture is kneaded, followed by 6% by mass of the second dilute sulfuric acid (specific gravity 1.5). % Was added and kneaded to prepare paste B. In addition, the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the mixing | blending on the basis of the total mass of the lead powder used when producing the above-mentioned paste A, and the red lead used when producing the paste B Amount.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合は、質量比で鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉及び鉛丹の合計質量を基準として6.9質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted to be lead powder / lead powder = 85/15 by mass ratio. The total amount of water was 6.9% by mass based on the total mass of lead powder and red lead. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極材を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
(負極板の作製)
 負極活物質の原料として鉛粉を用いた。ビスパーズP215(ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物、商品名、日本製紙株式会社製)0.2質量%(樹脂固形分)、補強用短繊維(アクリル繊維)0.1質量%、硫酸バリウム1.0質量%、及び、炭素質導電材(ファーネスブラック)0.2質量%の混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水を加えた後に混練した。続いて、比重1.280の希硫酸を少量ずつ添加しながら混練して、負極材ペーストを作製した。鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体にこの負極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後乾燥して、未化成の負極材を有する負極板を作製した。
(Preparation of negative electrode plate)
Lead powder was used as a raw material for the negative electrode active material. Bispazu P215 (condensation product of bisphenol, aminobenzenesulfonic acid and formaldehyde, trade name, manufactured by Nippon Paper Industries Co., Ltd.) 0.2% by mass (resin solid content), reinforcing short fiber (acrylic fiber) 0.1% by mass, A mixture of 1.0% by mass of barium sulfate and 0.2% by mass of carbonaceous conductive material (furnace black) was added to the lead powder and then dry-mixed (the compounding amount is the total mass of the raw material of the negative electrode active material) The blending amount is based on Next, the mixture was kneaded after adding water. Then, it knead | mixing, adding the dilute sulfuric acid of specific gravity 1.280 little by little, and produced the negative electrode material paste. The negative electrode material paste was filled in an expandable current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Thereafter, drying was performed to prepare a negative electrode plate having an unformed negative electrode material.
(電池の組み立て)
 袋状に加工したポリエチレン製のセパレータに未化成の負極板を挿入した。次に、未化成の正極板5枚と、前記袋状セパレータに挿入された未化成の負極板6枚とを交互に積層した。続いて、キャストオンストラップ(COS)方式で、同極性の電極板の耳部同士を溶接して電極群を作製した。前記電極群を電槽に挿入して2V単セル電池(JIS D 5301規定のK42サイズの単セルに相当)を組み立てた。その後、比重1.230の硫酸溶液を注入し、10.4Aにて20時間の定電流で化成を行った。なお、化成後の電解液(硫酸溶液)の比重を1.28(20℃)に調整した。
(Battery assembly)
An unformed negative electrode plate was inserted into a polyethylene separator processed into a bag shape. Next, five unchemically formed positive electrode plates and six unchemically formed negative electrode plates inserted in the bag-like separator were alternately laminated. Then, the ear | edge part of the electrode plate of the same polarity was welded by the cast on strap (COS) system, and the electrode group was produced. The electrode group was inserted into a battery case to assemble a 2V single cell battery (corresponding to a K42 size single cell defined in JIS D 5301). Thereafter, a sulfuric acid solution having a specific gravity of 1.230 was injected, and chemical conversion was performed at a constant current of 10.4 A for 20 hours. In addition, the specific gravity of the electrolyte solution (sulfuric acid solution) after chemical conversion was adjusted to 1.28 (20 ° C.).
(比表面積の測定)
 比表面積の測定試料は、下記の手順により作製した。まず、上記化成した電池を解体して電極板(正極板及び負極板)を取り出して水洗をした後、50℃で24時間乾燥した。次に、前記電極板の中央部から電極材(正極材及び負極材)を2g採取して、130℃で30分乾燥して測定試料を作製した。
(Measurement of specific surface area)
A sample for measuring the specific surface area was prepared by the following procedure. First, the formed battery was disassembled, the electrode plates (positive electrode plate and negative electrode plate) were taken out, washed with water, and dried at 50 ° C. for 24 hours. Next, 2 g of an electrode material (a positive electrode material and a negative electrode material) was collected from the center of the electrode plate and dried at 130 ° C. for 30 minutes to prepare a measurement sample.
 化成後の正極材及び負極材の比表面積は、前記で作製した測定試料を液体窒素で冷却しながら液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って算出した。測定条件を下記する。このようにして測定した結果、正極材の比表面積は、11.5m/gであった。また、負極材の比表面積は、0.6m/gであった。 The specific surface areas of the positive electrode material and the negative electrode material after chemical conversion were calculated according to the BET method by measuring the nitrogen gas adsorption amount at a liquid nitrogen temperature by a multipoint method while cooling the measurement sample prepared above with liquid nitrogen. The measurement conditions are as follows. As a result of measurement in this way, the specific surface area of the positive electrode material was 11.5 m 2 / g. Further, the specific surface area of the negative electrode material was 0.6 m 2 / g.
[比表面積の測定条件]
 ・装置:Macsorb1201(株式会社マウンテック製)
 ・脱気時間:130℃で10分
 ・冷却:液体窒素で5分間
 ・吸着ガス流量:25mL/分
[Specific surface area measurement conditions]
・ Apparatus: Macsorb1201 (Mounttech Co., Ltd.)
Degassing time: 10 minutes at 130 ° C. Cooling: 5 minutes with liquid nitrogen Adsorbed gas flow rate: 25 mL / min
(X線回折パターンのピーク強度に基づくα-PbO/β-PbO比率の測定)
 測定試料は、下記の手順により作製した。まず、上記化成した電池を解体して正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、前記正極板の中央部から正極材を3g採取してすり潰した。続いて、正極材の厚みが試料ホルダーの深さと同等になるように正極材を試料ホルダーに充填して平滑な試料面を作製した後、測定を行った。図1は、実施例1のX線回折パターンを示す図である。α-PbO/β-PbO比率の測定装置、測定条件、算出方法等を下記する。
 ・測定装置:全自動多目的水平型X線回折装置 SmartLab(株式会社リガク製)
 ・X線源:Cu-Kα / 1.541862Å
 ・フィルター:Cu-Kβ
 ・出力:40kV、30mA
 ・スキャンモード:CONTINUOUS
 ・スキャン範囲:20.0000度~60.0000度
 ・ステップ幅:0.0200度
 ・スキャン軸:2θ/θ
 ・スキャンスピード:10.0000度/分
 ・試料ホルダー:ガラス製、深さ0.2mm
 ・算出方法:作製した試料(正極の既化成正極材)3gを用いて広角X線回折を測定した結果、得られた回折角(2θ)と回折ピーク強度のX線回折チャートから、回折角度28.6度に位置するα-PbO、及び、回折角度25.3度に位置するβ-PbOが検出された。α-PbO(110面)及びβ-PbO(111面)それぞれの化合物として特定される波形のピーク強度(cps)を用いて、「α-PbOのピーク強度」/「β-PbOのピーク強度」の比率を比率α-PbO/β-PbOとして算出した。このようにして測定した結果、α-PbO/β-PbO比率は0.05であった。
(Measurement of α-PbO 2 / β-PbO 2 ratio based on peak intensity of X-ray diffraction pattern)
The measurement sample was produced by the following procedure. First, the formed battery was disassembled, the positive electrode plate was taken out, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of the positive electrode material was collected from the center of the positive electrode plate and ground. Subsequently, the positive electrode material was filled in the sample holder so that the thickness of the positive electrode material was equal to the depth of the sample holder to produce a smooth sample surface, and then measurement was performed. 1 is a diagram showing an X-ray diffraction pattern of Example 1. FIG. An apparatus for measuring the α-PbO 2 / β-PbO 2 ratio, measurement conditions, calculation method, and the like are described below.
-Measuring device: Fully automatic multipurpose horizontal X-ray diffractometer SmartLab (manufactured by Rigaku Corporation)
・ X-ray source: Cu-Kα / 1.541862Å
・ Filter: Cu-Kβ
・ Output: 40kV, 30mA
・ Scan mode: CONTINUOUS
-Scan range: 20.0000 degrees to 60.000 degrees-Step width: 0.0200 degrees-Scan axis: 2θ / θ
・ Scanning speed: 10.0000 degrees / min ・ Sample holder: Glass, depth 0.2mm
Calculation method: As a result of measuring wide-angle X-ray diffraction using 3 g of the prepared sample (positively formed positive electrode material of the positive electrode), a diffraction angle of 28 was determined from an X-ray diffraction chart of the obtained diffraction angle (2θ) and diffraction peak intensity. Α-PbO 2 located at .6 degrees and β-PbO 2 located at a diffraction angle of 25.3 degrees were detected. Using the peak intensity (cps) of the waveform specified as each compound of α-PbO 2 (110 plane) and β-PbO 2 (111 plane), “peak intensity of α-PbO 2 ” / “β-PbO 2 The ratio of “peak intensity” was calculated as the ratio α-PbO 2 / β-PbO 2 . As a result of the measurement, the α-PbO 2 / β-PbO 2 ratio was 0.05.
(多孔度の測定)
 測定試料は、下記の手順により作製した。まず、上記化成した電池を解体して正極板を取り出して水洗をした後、50℃で24時間乾燥した。次に、前記正極板の中央部から正極材の塊を3g採取した。前記塊を、最大径が5mm程度の小片に砕き、この小片の合計3gを測定セルに入れた。そして、下記の条件に基づき、水銀ポロシメーターを用いて化成後の正極材の多孔度を測定した。
 ・装置:オートポアIV9520(株式会社島津製作所製)
 ・水銀圧入圧:0~354kPa(低圧)、大気圧~414MPa(高圧)
 ・各測定圧力での圧力保持時間:900秒(低圧)、1200秒(高圧)
 ・試料と水銀との接触角:130°
 ・水銀の表面張力:480~490mN/m
 ・水銀の密度:13.5335g/mL
(Porosity measurement)
The measurement sample was produced by the following procedure. First, the formed battery was disassembled, the positive electrode plate was taken out, washed with water, and then dried at 50 ° C. for 24 hours. Next, 3 g of a positive electrode material lump was collected from the center of the positive electrode plate. The mass was crushed into small pieces having a maximum diameter of about 5 mm, and a total of 3 g of the small pieces was put into a measuring cell. And based on the following conditions, the porosity of the positive electrode material after chemical conversion was measured using the mercury porosimeter.
・ Device: Autopore IV9520 (manufactured by Shimadzu Corporation)
・ Mercury injection pressure: 0 to 354 kPa (low pressure), atmospheric pressure to 414 MPa (high pressure)
・ Pressure holding time at each measurement pressure: 900 seconds (low pressure), 1200 seconds (high pressure)
・ Contact angle between sample and mercury: 130 °
・ Surface tension of mercury: 480 to 490 mN / m
・ Mercury density: 13.5335 g / mL
<実施例2>
 下記のように未化成の正極材を作製したことを除き、実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
<Example 2>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.07質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、前記鉛粉を含む混合物に対して、水を6.2質量%加えて混練してペーストAを作製した。 First, 0.07% by mass of acrylic fiber (based on the total mass of lead powder) was added to the lead powder as a reinforcing short fiber and dry mixed. Next, 6.2 mass% of water was added to the mixture containing the lead powder and kneaded to prepare paste A.
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.35)19質量%とを混合した後に混練し、続いて第二の希硫酸(比重1.5)9.7質量%を加えた後に混練してペーストBを作製した。なお、前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いる鉛粉、及び、ペーストBを作製する際に用いる鉛丹の合計質量を基準とした配合量である。 Next, after mixing red lead (Pb 3 O 4 ) and 19% by mass of the first dilute sulfuric acid (specific gravity 1.35), the mixture is kneaded, followed by the second dilute sulfuric acid (specific gravity 1.5). After adding 7% by mass, the mixture was kneaded to prepare paste B. In addition, the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the mixing | blending on the basis of the total mass of the lead powder used when producing the above-mentioned paste A, and the red lead used when producing the paste B Amount.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合は、質量比で鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉及び鉛丹の合計質量を基準として5.3質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted to be lead powder / lead powder = 85/15 by mass ratio. The total amount of water was 5.3% by mass based on the total mass of lead powder and red lead. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極材を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
<実施例3>
 下記のように未化成の正極材を作製したことを除き、実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
<Example 3>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.07質量%(鉛粉の全質量基準)を加えて乾式混合した。次に、前記鉛粉を含む混合物に対して、水を5.4質量%加えて混練してペーストAを作製した。 First, 0.07% by mass of acrylic fiber (based on the total mass of lead powder) was added to the lead powder as a reinforcing short fiber and dry mixed. Next, 5.4 mass% of water was added to the mixture containing the lead powder and kneaded to prepare paste A.
 次に、鉛丹(Pb)と、第一の希硫酸(比重1.35)21.5質量%とを混合した後に混練し、続いて第二の希硫酸(比重1.5)15質量%を加えた後に混練してペーストBを作製した。なお、前記第一及び第二の希硫酸の前記配合量は、前述のペーストAを作製する際に用いる鉛粉、及び、ペーストBを作製する際に用いる鉛丹の合計質量を基準とした配合量である。 Next, after mixing red lead (Pb 3 O 4 ) and 21.5 mass% of the first dilute sulfuric acid (specific gravity 1.35), the mixture is kneaded, and then the second dilute sulfuric acid (specific gravity 1.5). After adding 15% by mass, paste B was prepared by kneading. In addition, the said compounding quantity of said 1st and 2nd dilute sulfuric acid is the mixing | blending on the basis of the total mass of the lead powder used when producing the above-mentioned paste A, and the red lead used when producing the paste B Amount.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合は、質量比で鉛粉/鉛丹=85/15になるように調整した。また、水の全量は、鉛粉及び鉛丹の合計質量を基準として4.6質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted to be lead powder / lead powder = 85/15 by mass ratio. The total amount of water was 4.6% by mass based on the total mass of lead powder and red lead. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極材を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
<比較例1>
 下記のように未化成の正極材を作製したことを除き、実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
<Comparative Example 1>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unchemically formed positive electrode material was produced as described below.
 まず、鉛粉90質量部と、鉛丹(Pb)3.9質量部と、補強用短繊維としてアクリル繊維0.07質量部と、ペーストのpHを上げ三塩基性硫酸鉛の結晶成長を促進する硫酸ナトリウム0.02質量部とを配合した。次に、水を加えて混練してペーストAを作製した。前記水の配合量は、前記鉛粉、前記鉛丹、及び、後述のペーストBを作製する際に用いる鉛丹の合計質量を基準として9.7質量%とした。 First, 90 parts by mass of lead powder, 3.9 parts by mass of lead (Pb 3 O 4 ), 0.07 parts by mass of acrylic fiber as a reinforcing short fiber, and a crystal of tribasic lead sulfate by raising the pH of the paste 0.02 part by mass of sodium sulfate for promoting growth was blended. Next, paste was prepared by adding water and kneading. The amount of the water was 9.7% by mass based on the total mass of the lead powder, the red lead, and the red lead used when preparing the paste B described later.
 次に、鉛丹(Pb)6.1質量部に、希硫酸(比重1.35)14.6質量%を加えて混練し、ペーストBを作製した。なお、前記希硫酸の配合量は、前述のペーストA及びペーストBを作製する際に用いる鉛粉及び鉛丹の合計質量を基準とした配合量である。 Next, 14.6 parts by mass of dilute sulfuric acid (specific gravity 1.35) was added to 6.1 parts by mass of red lead (Pb 3 O 4 ), and kneaded to prepare paste B. In addition, the compounding quantity of the said dilute sulfuric acid is a compounding quantity on the basis of the total mass of the lead powder and lead tan used when producing the above-mentioned paste A and paste B.
 そして、前記ペーストAに前記ペーストBを添加して1時間の混練を行い、正極材ペーストを作製した。この正極材ペーストにおいて、ペーストA中に含まれる鉛粉と、ペーストB中に含まれる鉛丹との割合は、質量比で鉛粉/鉛丹=90/10になるように調整した。また、水の全量は、鉛粉及び鉛丹の合計質量を基準として9.2質量%とした。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、前記ペーストBの添加は段階的に行った。 The paste B was added to the paste A and kneaded for 1 hour to prepare a positive electrode material paste. In this positive electrode material paste, the ratio of the lead powder contained in the paste A and the lead powder contained in the paste B was adjusted such that the lead ratio / lead powder = 90/10 by mass ratio. The total amount of water was 9.2% by mass based on the total mass of lead powder and red lead. In producing the positive electrode material paste, the paste B was added stepwise in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極材を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
<比較例2>
 鉛丹を用いることなく下記のように未化成の正極材を作製したことを除き、実施例1と同様にして鉛蓄電池を作製すると共に測定を行った。
<Comparative example 2>
A lead storage battery was produced and measured in the same manner as in Example 1 except that an unformed positive electrode material was produced as described below without using a lead lead.
 まず、鉛粉に対して、補強用短繊維としてアクリル繊維0.07質量%と、硫酸ナトリウム0.01質量%とを加えて乾式混合した。アクリル繊維及び硫酸ナトリウムのそれぞれの配合量は、鉛粉の全質量を基準とした配合量である。次に、前記鉛粉を含む混合物に対して、水10質量%と、希硫酸(比重1.28)9質量%とを加えて混練して正極材ペーストを作製した。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸の添加は段階的に行った。 First, 0.07% by mass of acrylic fiber and 0.01% by mass of sodium sulfate were added to the lead powder as a reinforcing short fiber and dry mixed. Each compounding quantity of an acrylic fiber and sodium sulfate is a compounding quantity on the basis of the total mass of lead powder. Next, 10% by mass of water and 9% by mass of dilute sulfuric acid (specific gravity 1.28) were added to the mixture containing the lead powder and kneaded to prepare a positive electrode material paste. In preparing the positive electrode material paste, dilute sulfuric acid was added step by step in order to avoid a rapid temperature rise.
 鉛合金からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド式集電体に、前記正極材ペーストを充填した後、温度50℃、湿度98%の雰囲気で24時間熟成した。その後、温度50℃で16時間乾燥して、未化成の正極材を有する正極板を作製した。 An expanded current collector produced by subjecting a rolled sheet made of a lead alloy to an expanding process was filled with the positive electrode material paste, and then aged for 24 hours in an atmosphere at a temperature of 50 ° C. and a humidity of 98%. Then, it dried at the temperature of 50 degreeC for 16 hours, and produced the positive electrode plate which has a non-chemically formed positive electrode material.
<特性評価>
(充電受入性)
 作製した鉛蓄電池について、化成後、約12時間放置した後、25℃で5.6Aの電流値で30分間定電流放電を行い、さらに、6時間放置した後、2.33Vで100Aの制限電流として60秒間の定電圧充電を行い、その開始から5秒目までの電流値を測定した。比較例1の測定結果を100とした相対比率を評価した。結果を表1に示す。
<Characteristic evaluation>
(Charge acceptance)
About the produced lead acid battery, after chemical conversion, it was left for about 12 hours, then was discharged at a constant current of 5.6 A at 25 ° C. for 30 minutes, further left for 6 hours, and then limited to 100 A at 2.33 V. As described above, constant voltage charging was performed for 60 seconds, and the current value from the start to the 5th second was measured. The relative ratio with the measurement result of Comparative Example 1 as 100 was evaluated. The results are shown in Table 1.
(5時間率容量)
 作製した鉛蓄電池について、25℃で5.6Aの電流値で放電し、1.75Vを下回った時点での持続時間から5時間率容量を算出した。比較例1の測定結果を100とした相対比率を評価した。結果を表1に示す。
(5 hour rate capacity)
About the produced lead acid battery, it discharged with the electric current value of 5.6 A at 25 degreeC, and computed the 5-hour rate capacity | capacitance from the duration when it fell below 1.75V. The relative ratio with the measurement result of Comparative Example 1 as 100 was evaluated. The results are shown in Table 1.
(ISSサイクル特性)
 ISSサイクル特性の測定を次のように行った。作製した鉛蓄電池について、電池温度が25℃になるように雰囲気温度を調整し、45A-59秒間の定電流放電及び300A-1秒間の定電流放電を行った後に制限電流100A-2.33V-60秒間の定電流・定電圧充電を行う操作を1サイクルとする試験を7200サイクル行った。この試験は、ISS車での鉛蓄電池の使われ方を模擬したサイクル試験である。このサイクル試験では、放電量に対して充電量が少ないため、充電が完全に行われないと徐々に充電不足になり、その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。このサイクル試験では、7200サイクル後の300A放電時の1秒目電圧が1.2V以上のときを「A」と判定し、1.2Vを下回ったときを「B」として判定した。結果を表1に示す。
(ISS cycle characteristics)
Measurement of ISS cycle characteristics was performed as follows. For the produced lead-acid battery, the ambient temperature was adjusted so that the battery temperature would be 25 ° C., and after performing constant current discharge for 45 A-59 seconds and constant current discharge for 300 A-1 seconds, the limiting current 100 A-2.33 V- A test in which the operation of performing constant current / constant voltage charging for 60 seconds was set to 1 cycle was performed 7200 cycles. This test is a cycle test that simulates the use of lead-acid batteries in ISS cars. In this cycle test, the amount of charge is small relative to the amount of discharge, so if charging is not performed completely, the battery gradually becomes insufficiently charged. As a result, the voltage at the first second when discharging at 300 A for 1 second is obtained. Decrease gradually. That is, if the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging. In this cycle test, “A” was determined when the first-second voltage at 300 A discharge after 7200 cycles was 1.2 V or more, and “B” was determined when the voltage was below 1.2 V. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1の結果から、正極材の比表面積が11m/g以上であり、正極材におけるβ-PbO及びα-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)が0.3以下である実施例では、比較例と比べて充電受入性が向上していることが確認できる。また、実施例では、充電受入性、5時間率容量及ISSサイクル特性が両立されていることが確認できる。 From the results in Table 1, the specific surface area of the positive electrode material is 11 m 2 / g or more, and the ratio of the peak intensities of the X-ray diffraction patterns of β-PbO 2 and α-PbO 2 in the positive electrode material (α-PbO 2 / β- In the example where PbO 2 ) is 0.3 or less, it can be confirmed that the charge acceptance is improved as compared with the comparative example. Moreover, in an Example, it can confirm that charge acceptance, 5 hour rate capacity | capacitance, and ISS cycle characteristics are compatible.

Claims (6)

  1.  正極及び負極を備える鉛蓄電池であって、
     前記正極が、集電体と、当該集電体に保持された正極材と、を有し、
     前記負極が、集電体と、当該集電体に保持された負極材と、を有し、
     前記正極材の比表面積が11m/g以上であり、
     前記正極材におけるβ-PbO及びα-PbOのX線回折パターンのピーク強度の比率(α-PbO/β-PbO)が0.3以下である、鉛蓄電池。
    A lead-acid battery comprising a positive electrode and a negative electrode,
    The positive electrode has a current collector and a positive electrode material held by the current collector;
    The negative electrode has a current collector and a negative electrode material held by the current collector;
    The positive electrode material has a specific surface area of 11 m 2 / g or more,
    A lead-acid battery, wherein a ratio of peak intensities (α-PbO 2 / β-PbO 2 ) in the X-ray diffraction pattern of β-PbO 2 and α-PbO 2 in the positive electrode material is 0.3 or less.
  2.  前記正極材の多孔度が50体積%以上である、請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the positive electrode material has a porosity of 50% by volume or more.
  3.  前記負極材が、スルホ基及びスルホン酸塩基からなる群より選ばれる少なくとも一種を有する樹脂を含む、請求項1又は2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the negative electrode material includes a resin having at least one selected from the group consisting of a sulfo group and a sulfonate group.
  4.  前記樹脂が、ビスフェノールとアミノベンゼンスルホン酸とホルムアルデヒドとの縮合物である、請求項3に記載の鉛蓄電池。 The lead acid battery according to claim 3, wherein the resin is a condensate of bisphenol, aminobenzenesulfonic acid and formaldehyde.
  5.  袋状のセパレータを更に備え、
     前記正極及び前記負極のうちの一方が前記セパレータ内に配置されている、請求項1~4のいずれか一項に記載の鉛蓄電池。
    A bag-like separator;
    The lead acid battery according to any one of claims 1 to 4, wherein one of the positive electrode and the negative electrode is disposed in the separator.
  6.  前記負極が前記セパレータ内に配置されている、請求項5に記載の鉛蓄電池。 The lead acid battery according to claim 5, wherein the negative electrode is disposed in the separator.
PCT/JP2015/083108 2014-11-27 2015-11-25 Lead storage cell WO2016084858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561920A JP6311799B2 (en) 2014-11-27 2015-11-25 Lead acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-240032 2014-11-27
JP2014240032 2014-11-27

Publications (1)

Publication Number Publication Date
WO2016084858A1 true WO2016084858A1 (en) 2016-06-02

Family

ID=56074410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083108 WO2016084858A1 (en) 2014-11-27 2015-11-25 Lead storage cell

Country Status (2)

Country Link
JP (1) JP6311799B2 (en)
WO (1) WO2016084858A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170422A1 (en) * 2016-03-30 2017-10-05 日立化成株式会社 Lead storage battery, micro-hybrid vehicle and start-stop system vehicle
CN107611354A (en) * 2017-10-10 2018-01-19 吉林省凯禹电化学储能技术发展有限公司 A kind of preparation method of lead carbon battery anode plate
WO2018229875A1 (en) * 2017-06-13 2018-12-20 日立化成株式会社 Liquid-type lead storage battery
JP2019091598A (en) * 2017-11-14 2019-06-13 日立化成株式会社 Positive electrode plate and lead storage battery
CN112753114A (en) * 2018-09-25 2021-05-04 株式会社杰士汤浅国际 Negative electrode for lead-acid battery and lead-acid battery
JP2021140966A (en) * 2020-03-06 2021-09-16 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid battery, manufacturing method of lead-acid battery, lead-acid battery
US11670757B2 (en) 2018-04-12 2023-06-06 Gs Yuasa International Ltd. Negative electrode plate containing organic expander in negative electrode material and lead-acid battery comprising the negative electrode plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH0793135B2 (en) * 1988-05-30 1995-10-09 新神戸電機株式会社 Lead acid battery and manufacturing method thereof
JPH11339843A (en) * 1998-05-26 1999-12-10 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2001313020A (en) * 2000-04-27 2001-11-09 Shin Kobe Electric Mach Co Ltd Sealed lead battery
JP2003338312A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
JP2005044759A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Lead-acid storage battery and manufacturing method of the same
WO2011108056A1 (en) * 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
JP5587523B1 (en) * 2012-12-21 2014-09-10 パナソニック株式会社 Lead acid battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005336806B2 (en) * 2005-09-27 2010-09-09 The Furukawa Battery Co., Ltd. Lead storage battery and process for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793135B2 (en) * 1988-05-30 1995-10-09 新神戸電機株式会社 Lead acid battery and manufacturing method thereof
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JPH11339843A (en) * 1998-05-26 1999-12-10 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2001313020A (en) * 2000-04-27 2001-11-09 Shin Kobe Electric Mach Co Ltd Sealed lead battery
JP2003338312A (en) * 2002-05-21 2003-11-28 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
JP2005044759A (en) * 2003-07-25 2005-02-17 Furukawa Battery Co Ltd:The Lead-acid storage battery and manufacturing method of the same
WO2011108056A1 (en) * 2010-03-01 2011-09-09 新神戸電機株式会社 Lead storage battery
JP5587523B1 (en) * 2012-12-21 2014-09-10 パナソニック株式会社 Lead acid battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017170422A1 (en) * 2016-03-30 2018-08-02 日立化成株式会社 Lead acid battery, micro hybrid vehicle and idling stop system vehicle
WO2017170422A1 (en) * 2016-03-30 2017-10-05 日立化成株式会社 Lead storage battery, micro-hybrid vehicle and start-stop system vehicle
EP3565036A4 (en) * 2017-06-13 2020-03-04 Hitachi Chemical Company, Ltd. Liquid-type lead storage battery
WO2018229875A1 (en) * 2017-06-13 2018-12-20 日立化成株式会社 Liquid-type lead storage battery
JPWO2018229875A1 (en) * 2017-06-13 2020-04-09 日立化成株式会社 Liquid lead storage battery
CN107611354B (en) * 2017-10-10 2019-11-08 吉林省凯禹电化学储能技术发展有限公司 A kind of preparation method of lead carbon battery anode plate
CN107611354A (en) * 2017-10-10 2018-01-19 吉林省凯禹电化学储能技术发展有限公司 A kind of preparation method of lead carbon battery anode plate
JP2019091598A (en) * 2017-11-14 2019-06-13 日立化成株式会社 Positive electrode plate and lead storage battery
JP7010556B2 (en) 2017-11-14 2022-02-10 昭和電工マテリアルズ株式会社 Positive electrode plate and lead acid battery
US11670757B2 (en) 2018-04-12 2023-06-06 Gs Yuasa International Ltd. Negative electrode plate containing organic expander in negative electrode material and lead-acid battery comprising the negative electrode plate
CN112753114A (en) * 2018-09-25 2021-05-04 株式会社杰士汤浅国际 Negative electrode for lead-acid battery and lead-acid battery
CN112753114B (en) * 2018-09-25 2023-09-19 株式会社杰士汤浅国际 Negative electrode for lead storage battery and lead storage battery
JP2021140966A (en) * 2020-03-06 2021-09-16 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid battery, manufacturing method of lead-acid battery, lead-acid battery
JP7026715B2 (en) 2020-03-06 2022-02-28 古河電池株式会社 Kneaded material for positive electrode mixture of lead-acid batteries, manufacturing method of lead-acid batteries, lead-acid batteries

Also Published As

Publication number Publication date
JPWO2016084858A1 (en) 2017-06-08
JP6311799B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6311799B2 (en) Lead acid battery
JP5783170B2 (en) Lead acid battery
JP6597842B2 (en) Lead acid battery
JP5500315B2 (en) Lead acid battery
JP5621841B2 (en) Lead acid battery
JP5598532B2 (en) Lead acid battery
JP6614273B2 (en) Lead acid battery
JP6977770B2 (en) Liquid lead-acid battery
JP2013065443A (en) Lead storage battery
KR101232263B1 (en) Carbon-based cathode for lithium-air battery and preparation method thereof
JP7010556B2 (en) Positive electrode plate and lead acid battery
JP6582636B2 (en) Lead acid battery
JP2017183160A (en) Lead storage battery
JP6866896B2 (en) Lead-acid battery and its manufacturing method
WO2018100635A1 (en) Lead storage battery and production method therefor
JP6781365B2 (en) Lead-acid battery
JP2021096900A (en) Lead acid battery
JP2018116842A (en) Evaluation method of lead storage battery
JP2017228489A (en) Lead storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864127

Country of ref document: EP

Kind code of ref document: A1