JPH0414758A - Lead-acid accumulator - Google Patents

Lead-acid accumulator

Info

Publication number
JPH0414758A
JPH0414758A JP2116225A JP11622590A JPH0414758A JP H0414758 A JPH0414758 A JP H0414758A JP 2116225 A JP2116225 A JP 2116225A JP 11622590 A JP11622590 A JP 11622590A JP H0414758 A JPH0414758 A JP H0414758A
Authority
JP
Japan
Prior art keywords
tin
lead
added
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2116225A
Other languages
Japanese (ja)
Other versions
JP2949772B2 (en
Inventor
Miyuki Toyoda
豊田 美由紀
Koichi Yamasaka
山坂 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2116225A priority Critical patent/JP2949772B2/en
Publication of JPH0414758A publication Critical patent/JPH0414758A/en
Application granted granted Critical
Publication of JP2949772B2 publication Critical patent/JP2949772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve a coefficient of use of a positive electrode active material and improve energy density by using an electrode board with metallic tin or a tin compound added between positive electrode active materials. CONSTITUTION:When metallic tin or a tin compound is added between positive electrode active materials, this is oxidized during formation or charging, so that tin oxide which is high in conductivity and does not affect reaction is generated between the active materials. Thus even if lead sulfate which is low in electric conductivity is generated by discharging, the conductivity of the active material is obtained and reaction occurs up to inside an electrode board so that a coefficient of use of the active material is improved. That is, energy density of a battery can be improved. Tin sulfate, metallic tin or tin oxide is used as the tin compound. A mole number of tin elements to be added must be 0.01 to 5% with respect to a mole number of lead in the electrode active material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鉛蓄電池の正極活物質の利用率の向上に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improving the utilization rate of positive electrode active materials in lead-acid batteries.

従来の技術 鉛蓄電池は二次電池として比較的安価で安定な性能を有
し、電子機器の電源や電動車の電源に広く用いられてい
る。しかし、他の蓄電池系と比較して、エネルギー密度
(Wh/kg)が劣るという欠点がある。これは活物質
、特に正極活物質の利用率が約40%〜50%と悪いた
めであり、活物質の利用率を向上することが望まれる。
BACKGROUND OF THE INVENTION Lead-acid batteries are relatively inexpensive and have stable performance as secondary batteries, and are widely used as power sources for electronic devices and electric vehicles. However, it has a drawback of being inferior in energy density (Wh/kg) compared to other storage battery systems. This is because the utilization rate of the active material, particularly the positive electrode active material, is poor at about 40% to 50%, and it is desired to improve the utilization rate of the active material.

鉛蓄電池の正極および、負極の活物質は、原料となる鉛
粉をそれぞれの添加物と共に、希硫酸またはその他の練
液と混合し、撹拌しながらペーストを作り、このペース
トを格子中に充填し、所定の乾燥、化成の工程を経て作
製される。
The active materials for the positive and negative electrodes of lead-acid batteries are made by mixing the raw material lead powder with dilute sulfuric acid or other additives, stirring to form a paste, and filling this paste into a lattice. , and is produced through predetermined drying and chemical conversion steps.

正極活物質は二酸化鉛、負極活物質は鉛であり、放電、
充電の反応は、下記の反応式で示すように起こる。
The positive electrode active material is lead dioxide, and the negative electrode active material is lead.
The charging reaction occurs as shown in the reaction formula below.

放電 PbO2+2H20+Pb   ご PbSO4+  
21120  +  Pb5O4(正極)  (負極)
充電(正極)    (負極)放電反応が進行すると、
硫酸鉛の結晶が成長し、極板の表面を覆うようになる。
Discharge PbO2+2H20+Pb PbSO4+
21120 + Pb5O4 (positive electrode) (negative electrode)
Charging (positive electrode) (negative electrode) As the discharge reaction progresses,
Crystals of lead sulfate grow and begin to cover the surface of the electrode plates.

硫酸鉛は、鉛や二酸化鉛よりも電導度が小さいので、放
電反応の進行と共に極板の電気抵抗が増大し、電圧の降
下が起こり、放電の終了となる。このとき、極板内部に
は、未反応の活物質が残存しているため、極板全体の活
物質の利用率が低(なる。このことが鉛蓄電池のエネル
ギー密度(Wh/kg)を低下させる原因の一つである
と考えられる。
Since lead sulfate has a lower conductivity than lead or lead dioxide, as the discharge reaction progresses, the electrical resistance of the electrode plates increases, causing a voltage drop and ending the discharge. At this time, unreacted active material remains inside the electrode plate, resulting in a low utilization rate of the active material of the entire electrode plate.This reduces the energy density (Wh/kg) of the lead-acid battery. This is thought to be one of the reasons for this.

発明が解決しようとする課題 上記のように鉛蓄電池では、放電反応生成物の硫酸鉛が
、正、負極板を覆い、内部に放電反応に関与できない活
物質が存在するという理由から、エネルギー密度(Wh
/kg)が低いという欠点を生じていた。
Problems to be Solved by the Invention As mentioned above, in lead-acid batteries, the discharge reaction product lead sulfate covers the positive and negative electrode plates, and the energy density ( Wh
/kg).

本発明は上記の課題を解決するもので、正極活物質の利
用率を向上させ、エネルギー密度(Wh/kg)を向上
させた鉛蓄電池を提供することを目的とするものである
The present invention solves the above-mentioned problems, and aims to provide a lead-acid battery with improved utilization of a positive electrode active material and improved energy density (Wh/kg).

課題を解決するための手段 上記の課題を解決するため本発明の鉛蓄電池は、金属錫
、もしくは錫化合物を正極活物質間に添加した極板を用
いたものである。
Means for Solving the Problems In order to solve the above problems, the lead-acid battery of the present invention uses an electrode plate in which metallic tin or a tin compound is added between positive electrode active materials.

作用 上記の構成のように、正極活物質間に金属錫、もしくは
錫化合物を添加すると、化成中あるいは充電中にこれが
酸化され、導電性が高(、反応に関与しない酸化錫が活
物質問に生成する。このため放電により電導度が小さい
硫酸鉛が生成されても活物質の電導性が保たれ、極板内
部まで反応が起こり、活物質の利用率が高められる。す
なわち、電池のエネルギー密度(Wh/kg)が向上す
ることになる。
Effect When metal tin or a tin compound is added between the cathode active materials as in the above configuration, it will be oxidized during formation or charging, and the conductivity will be high. Therefore, even if lead sulfate, which has low conductivity, is generated due to discharge, the conductivity of the active material is maintained, reactions occur inside the electrode plates, and the utilization rate of the active material is increased.In other words, the energy density of the battery is increased. (Wh/kg) will be improved.

実施例 本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described with reference to the drawings.

実施例1 鉛粉1000gに、鉛粉中の鉛のモル数に対して錫のモ
ル数が1%となるように硫酸錫を添加し撹拌した。これ
に、200gの水を加えて練った。さらに、60gの5
0%硫酸を徐々に滴下しつつ加えて練合した。これによ
って得られたペーストをペーストAとする。ペーストA
を鉛−カルシウム系合金の鋳造格子に充填し、乾燥、化
成の工程を経て本発明による正極板Aを得た。
Example 1 Tin sulfate was added to 1000 g of lead powder so that the number of moles of tin was 1% with respect to the number of moles of lead in the lead powder, and the mixture was stirred. To this, 200 g of water was added and kneaded. In addition, 60g of 5
0% sulfuric acid was gradually added dropwise and kneaded. The paste obtained in this way is referred to as paste A. Paste A
A positive electrode plate A according to the present invention was obtained by filling a cast grid of a lead-calcium alloy and undergoing drying and chemical conversion steps.

同様に従来のペーストとして、鉛粉1000gに、20
0gの水を加えて練った。これに、60gの50%硫酸
を徐々に滴下しつつ加えて練合した。これによって得ら
れたペーストをペーストHとする。ペーストHを鉛−カ
ルシウム系合金の鋳造格子に充填し、乾燥、化成の工程
を経て従来の正極板Hを得た。この正極板Hと負極板を
2枚73枚で配設し、その間にガラス繊維からなるマッ
ト状セパレータを介在させて組合せ、電解液として希硫
酸を含浸させ2Ah (10時間率)の従来の密閉型鉛
蓄電池Hを得た。
Similarly, as a conventional paste, 20 g of lead powder is added to 1000 g of lead powder.
0 g of water was added and kneaded. To this, 60 g of 50% sulfuric acid was gradually added dropwise and kneaded. The paste thus obtained is referred to as paste H. A conventional positive electrode plate H was obtained by filling paste H into a cast grid made of a lead-calcium alloy and performing drying and chemical conversion steps. The positive electrode plate H and the negative electrode plate are arranged in two pieces (73 pieces), combined with a mat-like separator made of glass fiber interposed between them, impregnated with dilute sulfuric acid as an electrolytic solution, and sealed at 2Ah (10 hour rate). A type lead acid battery H was obtained.

正極板Aも負極板と2枚73枚で配設し、その間にガラ
ス繊維からなるマット状セパレータを介在させて組合せ
、電解液として希硫酸を含浸させ、従来の密閉型鉛蓄電
池Hと同体積、同重量である本発明の密閉型鉛蓄電池A
を得た。これらの電池AおよびHについて充電200 
m A 、放電600mAの定電流充放電でサイクル試
験を行った。なお放電の終止電圧は1.75Vに設定し
、充電電気量は放電電気量の120%とした。
The positive electrode plate A and the negative electrode plate are arranged in two pieces (73 pieces), and are combined with a mat-like separator made of glass fiber interposed between them, and are impregnated with dilute sulfuric acid as an electrolyte, so that the volume is the same as that of a conventional sealed lead-acid battery H. , the sealed lead-acid battery A of the present invention having the same weight as
I got it. Charge 200 for these batteries A and H
A cycle test was conducted with constant current charging and discharging at mA and discharge of 600 mA. Note that the final voltage of discharge was set to 1.75 V, and the amount of charged electricity was 120% of the amount of discharged electricity.

第1図に放電容量の比較図を示す。従来電池Hの容量が
1850mAhであるのに対して、本発明電池Aは20
00mAhであり、8.1%の増加となった。放電終了
後、これらの電池AおよびHの極板を取り出して、イオ
ウSの分布をX線マイクロアナライザーを用いて面分析
を行い確認した。この結果、電池Aでは電池Hの場合と
比べて極板の内部までイオウSが広く分布していた。こ
のことから正極活物質間に添加した硫酸錫は化成あるい
は充電中に、導電性が高(、放電反応に関与しない酸化
錫に酸化される。そのため、放電時に導電性の低い硫酸
鉛が極板中に生成されても、高抵抗化による電圧降下が
抑制されるので、極板の内部まで放電に関与でき、活物
質の利用率が向上したことが確認された。
Figure 1 shows a comparison diagram of discharge capacity. While the conventional battery H has a capacity of 1850mAh, the battery A of the present invention has a capacity of 20mAh.
00mAh, an increase of 8.1%. After the discharge was completed, the electrode plates of Batteries A and H were taken out, and the distribution of sulfur S was confirmed by surface analysis using an X-ray microanalyzer. As a result, in Battery A, sulfur S was more widely distributed inside the electrode plate than in Battery H. Therefore, during formation or charging, tin sulfate added between the positive electrode active materials has high conductivity (and is oxidized to tin oxide, which does not participate in the discharge reaction. Therefore, during discharge, the lead sulfate with low conductivity is It was confirmed that even if the active material is generated inside the electrode, the voltage drop due to the increase in resistance is suppressed, allowing the inside of the electrode plate to participate in the discharge and improving the utilization rate of the active material.

第2図にサイクル試験の寿命カーブを示した。Figure 2 shows the life curve of the cycle test.

容量が100100Oを切ったところをサイクル寿命と
した。活物質の利用率が大きくなったにも係わらず、本
発明による電池Aも従来電池Hも350サイクルとほと
んど同じサイクル数であった。
The cycle life was defined as the point where the capacity was less than 100,100O. Although the utilization rate of the active material was increased, both the battery A according to the present invention and the conventional battery H had almost the same number of cycles, 350 cycles.

実施例2 硫酸錫の添加量を変えてその特性の比較を行った。Example 2 The properties were compared by changing the amount of tin sulfate added.

錫粉1000gに、鉛粉中の鉛のモル数に対して錫のモ
ル数が第1表に前記のAとともに示す各各の割合となる
ように硫酸錫を添加し撹拌した。
Tin sulfate was added to 1000 g of tin powder and stirred so that the number of moles of tin was in the ratio shown in Table 1 along with A above with respect to the number of moles of lead in the lead powder.

これに、200gの水を加え練った。さらに、60gの
50%硫酸を徐々に滴下しつつ加え練合した。
To this, 200 g of water was added and kneaded. Furthermore, 60 g of 50% sulfuric acid was gradually added dropwise and kneaded.

これによって得られたペーストをペーストB〜Gとする
。ペーストB〜Gを鉛−カルシウム系合金の鋳造格子に
充填し、乾燥、化成の工程を経て本発明による正極板B
−Gを得た。これらの正極板B〜Gを負極板と2枚/3
枚で配殺し、その間にガラス繊維からなるマット状セパ
レータを介在させて組合せ、電解液として希硫酸を含浸
させて従来の密閉型鉛蓄電池Hと同体積、同重量である
本発明の密閉型鉛蓄電池B−Gを得た。これらの電池B
−Gについて充電200 m A 、放電600mAの
定電流充放電でサイクル試験を行った。なお放電の終止
電圧は1.75Vi:1m設定し、充電電気量は放電容
量の120%とした。
The pastes obtained in this way are referred to as pastes B to G. The pastes B to G are filled into a cast grid made of lead-calcium alloy, and the positive electrode plate B according to the present invention is produced through a drying and chemical formation process.
-G was obtained. These positive electrode plates B to G are 2/3 with the negative electrode plate.
The sealed lead-acid battery of the present invention has the same volume and weight as the conventional sealed lead-acid battery H, which is assembled by interposing a mat-like separator made of glass fiber between them, and impregnated with dilute sulfuric acid as an electrolyte. Storage batteries BG were obtained. These batteries B
-G was subjected to a cycle test with constant current charging and discharging at 200 mA for charging and 600 mA for discharging. Note that the final discharge voltage was set to 1.75 Vi: 1 m, and the amount of charging electricity was 120% of the discharge capacity.

第1表 硫酸錫の添加量に対する放電容量を第3図に示した。硫
酸錫の添加量が増加するに従い、放電容量も増加する。
Table 1 shows the discharge capacity versus the amount of tin sulfate added. As the amount of tin sulfate added increases, the discharge capacity also increases.

しかし添加量0.001%では従来電池Hの容量と差は
なかった。
However, when the amount added was 0.001%, there was no difference in capacity from the conventional battery H.

第4図に硫酸錫の添加量とサイクル寿命の関係を示した
。添加量5%まで従来の電池Hとの差は見られないが、
添加量が7%になるとサイクル寿命は330サイクルと
なり、従来電池Hよりも寿命が短くなった。
Figure 4 shows the relationship between the amount of tin sulfate added and the cycle life. Although there is no difference from conventional Battery H up to an additive amount of 5%,
When the amount added was 7%, the cycle life was 330 cycles, which was shorter than the conventional battery H.

これらの結果より硫酸錫の添加量が多くなるに従って容
量は増加する傾向を示すが、添加する硫酸錫の量が5%
を越えると寿命が短くなってしまう。このため、容量と
サイクル寿命の両面から見ると、添加する錫の量は0.
01%〜5%の範囲にせねばならない。
These results show that the capacity tends to increase as the amount of tin sulfate added increases, but when the amount of tin sulfate added is 5%
Exceeding this will shorten the lifespan. Therefore, from the standpoint of both capacity and cycle life, the amount of tin added is 0.
It must be in the range of 0.01% to 5%.

なお、上記2つの実施例においては、添加物として硫酸
錫を用いたが、金属錫、酸化錫でも同様の効果が見られ
た。ただし、添加量した銅元素のモル数が正極活物質中
の鉛のモル数に対して0.01%〜5%でなくてはなら
ない。
In the above two examples, tin sulfate was used as the additive, but similar effects were observed with metallic tin and tin oxide. However, the number of moles of the copper element added must be 0.01% to 5% with respect to the number of moles of lead in the positive electrode active material.

発明の効果 以上のように本発明の正極活物質間に金属錫、もしくは
錫化合物を添加すると、導電性の良い酸化錫が活物質問
に生成されるため、放電により電導度が小さい硫酸鉛が
生成しても、活物質相互の導電性が保たれて極板内部ま
で反応が起こり、活物質の利用率が高められ、電池のエ
ネルギー密度(Wh/kg)を向上させるという効果が
得られた。
Effects of the Invention As described above, when metallic tin or a tin compound is added between the positive electrode active materials of the present invention, tin oxide with good conductivity is generated in the active material, so lead sulfate with low conductivity is removed by discharge. Even when the active materials are formed, the mutual conductivity between the active materials is maintained and reactions occur inside the electrode plates, increasing the utilization rate of the active materials and improving the energy density (Wh/kg) of the battery. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の密閉型鉛蓄電池および従来品の放電容
量の比較を示す図、第2図はサイクル試験の寿命の比較
を示す図、第3図は錫の添加量に対する放電容量を示す
図、第4図は錫の添加量に対するサイクル寿命を示す図
である。 代理人の氏名 弁理士 粟野重孝 ほか1名男 図 族質容t (…Aha 勇 麹 第 図 盗Xl 量 f%〕 第 図
Figure 1 is a diagram showing a comparison of the discharge capacity of the sealed lead acid battery of the present invention and a conventional product, Figure 2 is a diagram showing a comparison of the life of a cycle test, and Figure 3 is a diagram showing the discharge capacity with respect to the amount of tin added. FIG. 4 is a diagram showing the cycle life with respect to the amount of tin added. Name of agent: Patent attorney Shigetaka Awano and 1 other person

Claims (1)

【特許請求の範囲】 (1)金属錫、もしくは錫化合物を正極活物質間に添加
したことを特徴とする鉛蓄電池。(2)錫化合物が硫酸
錫、または酸化錫である特許請求の範囲第1項記載の鉛
蓄電池。 (3)添加した錫元素のモル数が、正極活物質中の鉛の
モル数に対して0.01%〜5%である特許請求の範囲
第1項記載の鉛蓄電池。
[Claims] (1) A lead-acid battery characterized in that metallic tin or a tin compound is added between positive electrode active materials. (2) The lead-acid battery according to claim 1, wherein the tin compound is tin sulfate or tin oxide. (3) The lead-acid battery according to claim 1, wherein the number of moles of added tin element is 0.01% to 5% with respect to the number of moles of lead in the positive electrode active material.
JP2116225A 1990-05-02 1990-05-02 Liquid-filled lead-acid battery Expired - Lifetime JP2949772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116225A JP2949772B2 (en) 1990-05-02 1990-05-02 Liquid-filled lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116225A JP2949772B2 (en) 1990-05-02 1990-05-02 Liquid-filled lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0414758A true JPH0414758A (en) 1992-01-20
JP2949772B2 JP2949772B2 (en) 1999-09-20

Family

ID=14681931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116225A Expired - Lifetime JP2949772B2 (en) 1990-05-02 1990-05-02 Liquid-filled lead-acid battery

Country Status (1)

Country Link
JP (1) JP2949772B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849816A1 (en) * 1996-12-19 1998-06-24 Japan Storage Battery Company Limited Lead-acid battery and producing method thereof
JP2017183160A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Lead storage battery
WO2018025837A1 (en) * 2016-08-05 2018-02-08 株式会社Gsユアサ Lead storage cell
US9970394B2 (en) 2012-07-25 2018-05-15 Baldwin Filters, Inc. Filter housing, fluted filter and safety filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849816A1 (en) * 1996-12-19 1998-06-24 Japan Storage Battery Company Limited Lead-acid battery and producing method thereof
US9970394B2 (en) 2012-07-25 2018-05-15 Baldwin Filters, Inc. Filter housing, fluted filter and safety filter
JP2017183160A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Lead storage battery
WO2018025837A1 (en) * 2016-08-05 2018-02-08 株式会社Gsユアサ Lead storage cell
CN109565040A (en) * 2016-08-05 2019-04-02 株式会社杰士汤浅国际 Lead storage battery
CN109565040B (en) * 2016-08-05 2022-03-01 株式会社杰士汤浅国际 Lead-acid battery

Also Published As

Publication number Publication date
JP2949772B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US5302476A (en) High performance positive electrode for a lead-acid battery
KR20170129238A (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
JP3385879B2 (en) Anode plate for lead-acid battery
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JPH0414758A (en) Lead-acid accumulator
JP2002313332A (en) Control valve type lead-acid battery
JP2949773B2 (en) Lead storage battery
JP3047463B2 (en) Lead storage battery
JP4066509B2 (en) Manufacturing method of lead acid battery
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JP3013623B2 (en) Sealed lead-acid battery
JPH0414759A (en) Lead-acid accumulator
JP3196556B2 (en) Lead storage battery
JP3038995B2 (en) Lead storage battery
JPH07176330A (en) Organic electrolytic solution secondary battery and manufacture thereof
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JP2016213050A (en) Control valve-type lead storage battery and method for manufacturing the same
JPH0234757Y2 (en)
JPH10208746A (en) Sealed lead-acid battery
JPH04206150A (en) Lead acid battery
JP2553598B2 (en) Sealed lead acid battery
JP2021086732A (en) Positive electrode plate for lead acid battery, and lead acid battery
JP2021086730A (en) Method for manufacturing positive electrode plate for lead acid battery
JP2000182615A (en) Lead-acid battery
JP3040718B2 (en) Lead storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11