JPH0776702A - Production of composite grain - Google Patents

Production of composite grain

Info

Publication number
JPH0776702A
JPH0776702A JP5246355A JP24635593A JPH0776702A JP H0776702 A JPH0776702 A JP H0776702A JP 5246355 A JP5246355 A JP 5246355A JP 24635593 A JP24635593 A JP 24635593A JP H0776702 A JPH0776702 A JP H0776702A
Authority
JP
Japan
Prior art keywords
metal
particles
fine particles
core
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5246355A
Other languages
Japanese (ja)
Inventor
Kouji Shiho
浩司 志保
Kiyoko Kawahara
希代子 川原
Kiyoshi Kasai
澄 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP5246355A priority Critical patent/JPH0776702A/en
Publication of JPH0776702A publication Critical patent/JPH0776702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform and rigid coating layer of metal and/or metal compd. excellent in preservation stability on a core fine grain by hydrolyzing a metal salt and/or metal alkoxide in an aq. medium wherein the fine core grains are dispersed. CONSTITUTION:The hydrolyzable salt of a metal other than iron and/or metal alkoxide are added to a reaction medium of water or alcohol wherein the fine core grains of metal, ceramic, org. matter, etc., are dispersed and hydrolyzed. The reaction system is controlled within + or -1.5 of the pH where the fine grain of the metal compd. and/or metal alkoxide begins to deposit, hence the metal salt and/or metal alkoxide are hydrolyzed, the extremely fine grain is efficiently adsorbed on the surface of the fine core grain, and a coating layer is formed. The layer is heat-treated, as required, to change its composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コアとなる微粒子上に
シェルとなる鉄以外の金属または金属化合物被覆層を有
する複合粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing composite particles having a core metal particle and a metal or metal compound coating layer other than iron as a shell.

【0002】[0002]

【従来の技術】新素材開発の観点から、各分野で複合粒
子開発への要求が高まっており、特に、コア材料として
金属、セラミックス、有機物等を区別せず用いることが
でき、さらに、それらを簡便で均一な表面処理改質を行
うことのできる複合粒子の製造技術が必要とされてい
る。さらにそれらの複合粒子に対しては、表面被覆層が
剥離・脱落しないこと、各種溶媒、溶質中へ溶出・移行
しないこと、保存安定性に優れること等が要求されてい
る。これまでコアとなる微粒子上に金属または金属化合
物被覆層を被覆する方法としては、メッキ法、ハイブリ
タイザー法等が工業的に使用されているが、前者は手法
が煩雑であり、コストがかかる等の欠点があり、後者は
コア粒子の大きさや強度に制限があり、均一な被覆層が
形成できず、かつ作業環境が悪い等の欠点があった。ま
た、上記問題点を解決する方法として加水分解性金属塩
の加水分解反応を利用した方法が挙げられる(特開平5
−140367号公報等)が、生産性が低い等の問題点
があった。
2. Description of the Related Art From the viewpoint of new material development, there is an increasing demand for development of composite particles in various fields, and in particular, metals, ceramics, organic substances, etc. can be used as core materials without distinction. There is a need for a technique for producing composite particles that allows simple and uniform surface treatment modification. Furthermore, it is required for these composite particles that the surface coating layer does not peel off / fall off, do not elute / migrate into various solvents or solutes, and have excellent storage stability. Until now, as a method for coating a metal or metal compound coating layer on the core fine particles, a plating method, a hybridizer method and the like have been industrially used, but the former method is complicated and costly. In the latter case, the size and strength of the core particles are limited, a uniform coating layer cannot be formed, and the working environment is poor. Further, as a method for solving the above-mentioned problems, a method utilizing a hydrolysis reaction of a hydrolyzable metal salt can be mentioned (Japanese Patent Laid-Open No. Hei 5)
No. 140367), but there are problems such as low productivity.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、コア
となる材料を限定することなく、簡便で均一な表面被覆
が可能で、生産性も高く、かつ表面被覆層が強固で溶媒
への溶出もなく、保存安定性にも優れた複合粒子の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to enable simple and uniform surface coating without limiting the material used as the core, high productivity, strong surface coating layer and solvent An object of the present invention is to provide a method for producing composite particles that does not elute and has excellent storage stability.

【0004】[0004]

【課題を解決するための手段】本発明によると、前記課
題は、コアとなる微粒子を水系媒体中に均一に分散した
分散液中で、反応系のpHを一定に制御しつつ、鉄以外の
加水分解性金属塩および/または鉄以外の金属アルコキ
シド(以下、単に「金属塩および/または金属アルコキ
シド」という。)を溶液状態において加水分解させ、該
微粒子上にシェルとなる金属および/または金属化合物
被覆層を形成し、必要に応じて熱処理を行うことを特徴
とする複合粒子の製造方法、によって達成される。
According to the present invention, the above-mentioned problems can be solved by controlling the pH of the reaction system in a dispersion liquid in which the core fine particles are uniformly dispersed in an aqueous medium, while controlling the pH of the reaction system other than iron. A metal and / or metal compound which becomes a shell on the fine particles by hydrolyzing a hydrolyzable metal salt and / or a metal alkoxide other than iron (hereinafter, simply referred to as “metal salt and / or metal alkoxide”) in a solution state. This is achieved by a method for producing composite particles, which comprises forming a coating layer and performing heat treatment as necessary.

【0005】以下、本発明を詳細に説明する。これによ
り、本発明の目的、構成および効果が明確になるであろ
う。本発明における複合粒子のコアとなる微粒子(以
下、「コア微粒子」という。)の材料としては、特に限
定されるものではないが、例えばガラス、シリカ、アル
ミニウム、チタン、鉄、ニッケル、銅、銀、金、ステン
レススチール、酸化鉄、フェライト、カーボンブラック
等の無機材料;エチレン、プロピレン等のオレフィンの
(共)重合体;スチレン、ジビニルベンゼン等の芳香族
ビニル化合物の(共)重合体;酢酸ビニル等のビニルエ
ステルの(共)重合体;アクリロニトリル等のシアン化
ビニル化合物の(共)重合体;メタクリル酸メチル等の
(メタ)アクリル酸エステルの(共)重合体;塩化ビニ
ル、テトラフルオロエチレン等のハロゲン化ビニル化合
物の(共)重合体;ポリアセタール;ポリカーボネー
ト;ポリエステル;アルキド樹脂;不飽和ポリエステ
ル;ポリアリレート;ポリスルフィド;ポリスルホン;
ポリアミド(例えばナイロン−6、ナイロン−12
等);ポリイミド;ポリシロキサン;エポキシ樹脂;フ
ェノール樹脂;尿素樹脂;メラミン樹脂;ベンゾグアナ
ミン樹脂;セルロース;アイオノマー等を使用すること
ができる。コア微粒子が有機高分子材料である場合は、
架橋構造を有することもできる。これらのコア微粒子
は、予め2種以上の材料を混練・混合後、造粒、分級し
た粒子でもよく、また異なる材料からなる2種以上の粒
子の混合物であることもできる。これらのコア微粒子の
色調は特に限定されない。
The present invention will be described in detail below. This will clarify the objects, configurations and effects of the present invention. The material of the fine particles (hereinafter, referred to as “core fine particles”) serving as the core of the composite particles in the present invention is not particularly limited, but for example, glass, silica, aluminum, titanium, iron, nickel, copper, silver. Inorganic materials such as gold, stainless steel, iron oxide, ferrite and carbon black; (co) polymers of olefins such as ethylene and propylene; (co) polymers of aromatic vinyl compounds such as styrene and divinylbenzene; vinyl acetate (Co) polymers of vinyl esters such as acrylonitrile; (co) polymers of vinyl cyanide compounds such as acrylonitrile; (co) polymers of (meth) acrylic acid esters such as methyl methacrylate; vinyl chloride, tetrafluoroethylene, etc. (Co) polymer of halogenated vinyl compound; polyacetal; polycarbonate; polyester; alk Resins; unsaturated polyester; polyarylates; polysulfides; polysulfones;
Polyamide (eg nylon-6, nylon-12
Etc.); polyimide; polysiloxane; epoxy resin; phenol resin; urea resin; melamine resin; benzoguanamine resin; cellulose; ionomer and the like. When the core fine particles are an organic polymer material,
It can also have a crosslinked structure. These core fine particles may be particles obtained by kneading and mixing two or more kinds of materials in advance and then granulating and classifying the particles, or may be a mixture of two or more kinds of particles made of different materials. The color tone of these core particles is not particularly limited.

【0006】コア微粒子の調製方法としては、特に限定
されるものではないが、例えば転動造粒、流動層造粒、
撹拌造粒、解砕・粉砕造粒、圧縮造粒、押出造粒、溶融
造粒、混合造粒、噴霧冷却造粒、噴霧乾燥造粒、沈澱・
析出造粒、凍結乾燥造粒、懸濁凝集造粒、滴下冷却造粒
等の物理的造粒法;乳化重合、懸濁重合、沈澱重合等の
化学的造粒法等を、コア微粒子の材料に応じて適宜選択
して造粒し、分級する方法を挙げることができる。ま
た、コア微粒子が市販品として入手できる場合は、それ
を使用することもできる。
The method for preparing the core fine particles is not particularly limited, but for example, rolling granulation, fluidized bed granulation,
Agitation granulation, crushing / crushing granulation, compression granulation, extrusion granulation, melt granulation, spray cooling granulation, spray drying granulation, precipitation
Physical granulation methods such as precipitation granulation, freeze-drying granulation, suspension aggregation granulation, drop cooling granulation; chemical granulation methods such as emulsion polymerization, suspension polymerization, precipitation polymerization, etc. A method of appropriately selecting, granulating and classifying can be mentioned. In addition, when the core fine particles are commercially available, they can be used.

【0007】本発明においては、以上のようなコア微粒
子上にシェルとなる金属および/または金属化合物被覆
層を形成し、必要に応じて熱処理を行うことにより複合
粒子を製造する。
In the present invention, the metal and / or metal compound coating layer serving as a shell is formed on the core fine particles as described above, and heat treatment is carried out if necessary to produce composite particles.

【0008】コア微粒子上に金属および/または金属化
合物被覆層を設けるための処理プロセスは、基本的に
は、コア微粒子の均一な分散液中で、金属塩および/ま
たは金属アルコキシドを、溶液状態においてpHを一定に
制御して加水分解させ、必要に応じて熱処理することか
らなる。この加水分解は、室温または加熱下で容易に進
行し、その結果コア粒子上に金属および/または金属化
合物が均一に被覆される。
The treatment process for providing the metal and / or metal compound coating layer on the core fine particles is basically carried out in a solution of a metal salt and / or a metal alkoxide in a uniform dispersion liquid of the core fine particles. It consists of controlling the pH at a constant level for hydrolysis, and then heat-treating it if necessary. This hydrolysis easily proceeds at room temperature or under heating, so that the metal and / or metal compound is uniformly coated on the core particles.

【0009】前記加水分解性金属塩としてはCu(NO
32、CuCl2、CuSO4等の銅塩、TiCl4、T
iCl2、TiSO4等のチタン塩、Y(NO33、YC
3等のイットリウム塩、ZrSO4、ZrCl2、Zr
(NO32等のジルコニウム塩、Cr(NO33、Cr
Cl3等のクロミニウム塩、Al(NO33、Al2(S
43のようなアルミニウム塩、Ni(NO32、Ni
Cl2等のニッケル塩等が挙げられる。また、加水分解
性金属アルコキシドとしては、LiOCH3、NaOC
3、Cu(OCH32、Ca(OCH32、Sr(O
252、Ba(OC252、Zn(OC252
B(OCH33、Al(OCH33、Al(OC25
3、Al(iso−OC373、Al(OC493
Ga(OC253、Y(OC493、Si(OC
254、Si(OCH34、Si(iso−OC
374、Si(t−OC494、Ge(OC
254、Pb(OC494、P(OCH33、Sb
(OC253、VO(OC253、Ta(OC37
5、W(OC256、La(OC373、Nd(OC2
53、Ti(OCH34、Ti(OC254、Ti
(iso−OC374、Ti(OC494、Zr(O
CH34、Zr(OC254、Zr(OC374、Z
r(OC494等の単一金属アルコキシド、La[A
l(iso−OC3743、Mg[Al(iso−O
3742、Mg[Al(sec−OC4942
Ni[Al(iso−OC3742、(C37O)2
Zr[Al(OC3742、Ba[Zr(OC25
92等の複合金属アルコキシド等が挙げられる。これら
の金属塩および/または金属アルコキシドは単独でまた
は二種以上を混合して使用することができる。
As the hydrolyzable metal salt, Cu (NO
3 ) 2 , copper salts such as CuCl 2 , CuSO 4 , TiCl 4 , T
Titanium salts such as iCl 2 , TiSO 4 , Y (NO 3 ) 3 , YC
Yttrium salt such as l 3 , ZrSO 4 , ZrCl 2 , Zr
Zirconium salt such as (NO 3 ) 2 Cr (NO 3 ) 3 Cr
Chromium salts such as Cl 3 , Al (NO 3 ) 3 , Al 2 (S
Aluminum salts such as O 4 ) 3 , Ni (NO 3 ) 2 , Ni
Examples thereof include nickel salts such as Cl 2 . Further, as the hydrolyzable metal alkoxide, LiOCH 3 , NaOC
H 3, Cu (OCH 3) 2, Ca (OCH 3) 2, Sr (O
C 2 H 5 ) 2 , Ba (OC 2 H 5 ) 2 , Zn (OC 2 H 5 ) 2 ,
B (OCH 3 ) 3 , Al (OCH 3 ) 3 , Al (OC 2 H 5 )
3, Al (iso-OC 3 H 7) 3, Al (OC 4 H 9) 3,
Ga (OC 2 H 5 ) 3 , Y (OC 4 H 9 ) 3 , Si (OC
2 H 5 ) 4 , Si (OCH 3 ) 4 , Si (iso-OC
3 H 7 ) 4 , Si (t-OC 4 H 9 ) 4 , Ge (OC
2 H 5 ) 4 , Pb (OC 4 H 9 ) 4 , P (OCH 3 ) 3 , Sb
(OC 2 H 5 ) 3 , VO (OC 2 H 5 ) 3 , Ta (OC 3 H 7 )
5 , W (OC 2 H 5 ) 6 , La (OC 3 H 7 ) 3 , Nd (OC 2
H 5 ) 3 , Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 , Ti
(Iso-OC 3 H 7) 4, Ti (OC 4 H 9) 4, Zr (O
CH 3 ) 4 , Zr (OC 2 H 5 ) 4 , Zr (OC 3 H 7 ) 4 , Z
a single metal alkoxide such as r (OC 4 H 9 ) 4 , La [A
l (iso-OC 3 H 7 ) 4] 3, Mg [Al (iso-O
C 3 H 7) 4] 2 , Mg [Al (sec-OC 4 H 9) 4] 2,
Ni [Al (iso-OC 3 H 7) 4] 2, (C 3 H 7 O) 2
Zr [Al (OC 3 H 7 ) 4] 2, Ba [Zr (OC 2 H 5)
9 ] 2 and the like composite metal alkoxides and the like. These metal salts and / or metal alkoxides can be used alone or in admixture of two or more.

【0010】加水分解反応における金属塩および/また
は金属アルコキシドの使用量は通常、0.01ミリモル
/反応媒体1リットル以上、特に好ましくは1ミリモル
/反応媒体1リットル以上である。上限は金属塩および
/または金属アルコキシドが室温あるいは加熱下で反応
媒体中に完全に溶解でき、均一な加水分解を生じ得る限
界であり、金属塩、金属アルコキシド、および反応媒体
の種類によって異なるが、通常、10,000ミリモル
/反応媒体1リットル以下である。
The amount of the metal salt and / or metal alkoxide used in the hydrolysis reaction is usually 0.01 mmol / liter of reaction medium or more, particularly preferably 1 mmol / liter of reaction medium or more. The upper limit is a limit at which the metal salt and / or the metal alkoxide can be completely dissolved in the reaction medium at room temperature or under heating to cause uniform hydrolysis, and varies depending on the type of the metal salt, the metal alkoxide, and the reaction medium, Usually, it is 10,000 mmol / liter or less of the reaction medium.

【0011】また、加水分解反応におけるコア微粒子の
濃度は、通常、0.01g/反応媒体1リットル以上、
特に好ましくは0.5g/反応媒体1リットル以上であ
る。コア微粒子の上限濃度は、コア微粒子および得られ
る複合粒子の均一な分散状態を維持できる限界であり、
通常、300g/反応媒体1リットル以下である。
The concentration of the core fine particles in the hydrolysis reaction is usually 0.01 g / liter of the reaction medium or more,
It is particularly preferably 0.5 g / liter of reaction medium or more. The upper limit concentration of the core fine particles is a limit that can maintain a uniform dispersion state of the core fine particles and the resulting composite particles,
Usually, it is 300 g / liter of reaction medium or less.

【0012】加水分解反応における反応媒体としては、
水を主体とし、必要に応じて、例えばメタノール、エタ
ノール、n−プロパノール、イソプロパノール、n−ブ
タノール、t−ブタノール等のアルコール類の如き有機
溶媒を併用する。特に好ましい反応媒体は、水単独また
は水と飽和アルコールとの混合溶媒である。有機溶媒を
水と併用する場合は、水との混和性、混合溶媒への各金
属塩および/または金属アルコキシドの溶解性等を考慮
して、各有機溶媒の使用量を適宜調節する。
The reaction medium in the hydrolysis reaction is
Water is the main component, and if necessary, an organic solvent such as alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, etc. is used together. A particularly preferred reaction medium is water alone or a mixed solvent of water and a saturated alcohol. When the organic solvent is used in combination with water, the amount of each organic solvent used is appropriately adjusted in consideration of miscibility with water, solubility of each metal salt and / or metal alkoxide in the mixed solvent, and the like.

【0013】加水分解反応に際しては、金属塩および/
または金属アルコキシドの溶液中におけるコア微粒子お
よび得られる複合粒子の分散状態を均一に維持すること
が重要である。例えばコア微粒子の分散状態が悪く、該
微粒子が数個〜数百個凝集した固まりとなっては、その
まま金属および/または金属化合物で被覆されてしま
い、均一な複合粒子を得ることができず、また、得られ
た複合粒子が反応媒体中で会合、凝集し、再分散できな
くても、均一な複合粒子とすることができない。
In the hydrolysis reaction, metal salts and / or
Alternatively, it is important to maintain the dispersion state of the core fine particles and the resulting composite particles in the solution of the metal alkoxide. For example, the dispersed state of the core fine particles is poor, and when the fine particles are aggregated into several to several hundreds, they are directly coated with the metal and / or the metal compound, and uniform composite particles cannot be obtained. Further, even if the obtained composite particles are associated with each other in the reaction medium, aggregated, and cannot be redispersed, uniform composite particles cannot be obtained.

【0014】コア微粒子および複合粒子の均一な分散状
態を維持するためには、金属塩および/または金属アル
コキシドを含む反応媒体に可溶な高分子化合物、界面活
性剤等を、分散安定剤として反応媒体中に添加すること
が好ましい。
In order to maintain the uniformly dispersed state of the core fine particles and the composite particles, a polymer compound soluble in the reaction medium containing a metal salt and / or a metal alkoxide, a surfactant, etc. are reacted as a dispersion stabilizer. It is preferably added to the medium.

【0015】このような分散安定剤としては、例えばカ
ルボキシメチルセルロースのナトリウム塩、ヒドロキシ
エチルセルロース、ポロアクリル酸ナトリウム、ポロエ
チレンオキシド、ポリビニルアルコール、ポリビニルピ
ロリドン等の高分子化合物;ステアリン酸ナトリウム、
ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸
ナトリウム、ジフェニルエーテルジスルホン酸ナトリウ
ム、コハク酸ジアルキルエステルスルホン酸ナトリウム
等の界面活性剤を挙げることができる。好ましい分散安
定剤は、ポリビニルピロリドン、ドデシルベンゼンスル
ホン酸ナトリウム等である。これらの分散安定剤は、高
分子化合物および界面活性剤それぞれについて、単独で
または2種以上を混合して使用することができ、また高
分子化合物と界面活性剤とを併用することもできる。
Examples of such dispersion stabilizers include polymeric compounds such as sodium salt of carboxymethyl cellulose, hydroxyethyl cellulose, sodium poloacrylate, poloethylene oxide, polyvinyl alcohol and polyvinylpyrrolidone; sodium stearate,
Surfactants such as sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium diphenyl ether disulfonate, sodium succinate dialkyl ester sulfonate can be mentioned. Preferred dispersion stabilizers are polyvinylpyrrolidone, sodium dodecylbenzene sulfonate and the like. These dispersion stabilizers can be used either individually or as a mixture of two or more of the polymer compound and the surfactant, or the polymer compound and the surfactant can be used in combination.

【0016】分散安定剤の使用量は、コア微粒子100
重量部に対して、好ましくは1重量部以上、さらに好ま
しくは3〜300重量部、特に好ましくは5〜250重
量部である。
The amount of the dispersion stabilizer used is 100
It is preferably 1 part by weight or more, more preferably 3 to 300 parts by weight, and particularly preferably 5 to 250 parts by weight, based on parts by weight.

【0017】本発明における金属塩および/または金属
アルコキシドの加水分解反応により、複合粒子が形成さ
れるメカニズムは、基本的に2つある。その1つは、
(i)加水分解された金属イオンおよび/または加水分
解により生成した錯体が、コア微粒子表面に吸着されて
被覆層を形成するメカニズムである。他の1つは、(ii)
加水分解段階を経て、金属および/または金属化合物の
極めて小さい微小粒子からなる核が反応初期に形成さ
れ、この微小粒子が、ヘテロ凝集機構によってコア微粒
子表面に吸着されることにより、被覆層が成長するとい
うメカニズムである。この後者のメカニズムでは、コア
微粒子上に吸着される金属および/または金属化合物の
微小粒子の数と粒径とを調節することにより、被覆層の
厚みを制御することが可能となる。
There are basically two mechanisms for forming composite particles by the hydrolysis reaction of the metal salt and / or metal alkoxide in the present invention. One of them is
(I) A mechanism in which a hydrolyzed metal ion and / or a complex produced by hydrolysis is adsorbed on the surface of the core fine particles to form a coating layer. The other one is (ii)
After the hydrolysis step, nuclei consisting of extremely small particles of metal and / or metal compound are formed in the initial stage of the reaction, and these minute particles are adsorbed on the surface of the core particles by the hetero-aggregation mechanism, so that the coating layer grows. It is a mechanism to do. With this latter mechanism, the thickness of the coating layer can be controlled by adjusting the number and the particle size of the fine particles of the metal and / or the metal compound adsorbed on the core fine particles.

【0018】前記2つのメカニズムのうち、(ii)ヘテロ
凝集機構を経るメカニズムは、コア微粒子が電荷を有す
る場合に支配的となる。例えば、金属塩および/または
金属アルコキシドの加水分解反応が、生成される金属化
合物の微小粒子の等電点以上のpHで起こる場合は、コ
ア微粒子に正電荷を持たせることにより、該微小粒子が
効率よく吸着される。また、金属塩および/または金属
アルコキシドの加水分解反応が、金属化合物の微小粒子
の等電点以下のpHで起こる場合は、コア微粒子に負電
荷を持たせることにより、該微小粒子が効率よく吸着さ
れることになる。
Among the above two mechanisms, the mechanism (ii) that goes through the hetero aggregation mechanism becomes dominant when the core fine particles have an electric charge. For example, when the hydrolysis reaction of the metal salt and / or the metal alkoxide occurs at a pH higher than the isoelectric point of the fine particles of the metal compound to be produced, the fine particles of the core can be provided with a positive charge. Adsorbed efficiently. Further, when the hydrolysis reaction of the metal salt and / or the metal alkoxide occurs at a pH lower than the isoelectric point of the fine particles of the metal compound, the core fine particles are negatively charged to efficiently adsorb the fine particles. Will be done.

【0019】本発明において(ii)のメカニズムが採用さ
れる場合は、コア微粒子表面にスルホン酸基、カルボキ
シル基等を導入して負電荷を持たせることが好ましく、
それにより、コア微粒子の分散性も改善される。また、
(ii)のメカニズムが採用される場合は、ヘテロ凝集
を起こし易くするために反応系のpHを予め酸および/ま
たはアルカリを添加して調整してもよい。
When the mechanism (ii) is adopted in the present invention, it is preferable to introduce a sulfonic acid group, a carboxyl group or the like on the surface of the core fine particles to give a negative charge,
This also improves the dispersibility of the core fine particles. Also,
When the mechanism (ii) is adopted, the pH of the reaction system may be adjusted by adding an acid and / or an alkali in advance in order to facilitate heteroaggregation.

【0020】この際に使用される酸としては、例えば塩
酸、硫酸、硝酸、シュウ酸、酢酸等の無機酸または有機
酸を挙げることができ、またアルカリとしては、例えば
水酸化カリウム、水酸化ナトリウム、水酸化カルシウム
等の水酸化物およびアンモニア等を挙げることができ
る。これらの酸およびアルカリは、それぞれについて単
独でまたは2種以上を混合して使用することができ、ま
た必要により、酸とアルカリとの両者を併用して、pHを
微調整する。
Examples of the acid used in this case include inorganic or organic acids such as hydrochloric acid, sulfuric acid, nitric acid, oxalic acid and acetic acid, and examples of the alkali include potassium hydroxide and sodium hydroxide. , Hydroxides such as calcium hydroxide, and ammonia. These acids and alkalis can be used alone or in admixture of two or more, and if necessary, both the acid and the alkali are used in combination to finely adjust the pH.

【0021】これらの酸またはアルカリを反応媒体に添
加する場合、それらの使用量は、通常、1モル/反応媒
体1リットル以下であるが、好ましくは0.5モル/反
応媒体1リットル以下、特に好ましくは0.005〜
0.2モル/反応媒体1リットルである。
When these acids or alkalis are added to the reaction medium, the amount used is usually 1 mol / liter of the reaction medium or less, preferably 0.5 mol / liter of the reaction medium or less, and particularly preferably. Preferably 0.005-
0.2 mol / 1 liter of reaction medium.

【0022】金属および/または金属化合物被覆層を形
成する場合、金属塩および/または金属アルコキシドの
加水分解速度は速すぎても遅すぎても被覆層の成長が円
滑に起こらず、その結果金属および/または金属化合物
被覆層に隙間や凹凸が生じたり、さらには金属および/
または金属化合物が被覆層に均一に成長できず、小粒子
となって遊離する場合がある。したがって本発明におい
ては金属塩および/または金属アルコキシドの加水分解
反応の速度を調節するために加水分解反応時の反応系の
pHを一定に制御する。ここで、反応系のpHを一定に制御
するということは、該加水分解反応において、金属化合
物および/または金属アルコキシドの微小粒子が析出し
始めるpHから±1.5の範囲内で反応系のpHを制御する
ことをいう。好ましいpHの範囲は金属塩および/または
金属アルコキシドの種類によって異なる。例えば銅また
は銅化合物被覆層を形成する場合、銅塩および/または
銅アルコキシドの加水分解時の反応系のpHを4〜7、好
ましくは4.5〜6.5、特に好ましくは5〜6に制御
する。
When forming a metal and / or metal compound coating layer, the rate of hydrolysis of the metal salt and / or metal alkoxide is too fast or too slow, so that the growth of the coating layer does not occur smoothly. / Or gaps or irregularities are formed in the metal compound coating layer, and further metal and / or
Alternatively, the metal compound may not be able to grow uniformly on the coating layer and may be released as small particles. Therefore, in the present invention, in order to control the rate of the hydrolysis reaction of the metal salt and / or metal alkoxide, the reaction system during the hydrolysis reaction is controlled.
Control the pH constant. Here, controlling the pH of the reaction system to be constant means that in the hydrolysis reaction, the pH of the reaction system is within a range of ± 1.5 from the pH at which the fine particles of the metal compound and / or the metal alkoxide start to precipitate. It means controlling. The preferred pH range depends on the type of metal salt and / or metal alkoxide. For example, when forming a copper or copper compound coating layer, the pH of the reaction system at the time of hydrolysis of the copper salt and / or copper alkoxide is set to 4 to 7, preferably 4.5 to 6.5, and particularly preferably 5 to 6. Control.

【0023】金属塩および/または金属アルコキドを含
む反応媒体は、通常、酸性を示し、加水分解反応により
pHはさらに低下する。加水分解時の反応系のpHを一定に
制御するには随時pHを微調整することが重要である。し
たがって、(a) 反応媒体中に尿素および/またはホルム
アミドを添加しておき、それらの熱分解によるpH上昇を
相殺するように、金属塩および/または金属アルコキシ
ドおよび/または酸を逐次あるいは連続的に添加する方
法、(b)金属塩および/または金属アルコキシドを一括
して、逐次または連続的に添加し、金属塩および/また
は金属アルコシドの加水分解によるpH低下を、尿素およ
び/またはアルカリの逐次添加または連続添加により相
殺する方法、(c) これらの方法の組み合わせ等により、
加水分解時のpHを実質的に一定に維持することが好まし
い。このように逐次添加または連続添加される酸として
は、例えば塩酸、硫酸、硝酸、シュウ酸、酢酸等の無機
塩または有機塩を挙げることができ、またアルカリとし
ては例えば水酸化カリウム、水酸化ナトリウム、水酸化
カルシウム等の水酸化物およびアンモニア等を挙げるこ
とができる。これらの酸およびアルカリはそれぞれにつ
いて単独でまたは2種以上混合して使用することができ
る。
The reaction medium containing a metal salt and / or a metal alkoxide usually exhibits acidity and is
The pH will drop further. In order to control the pH of the reaction system during hydrolysis to be constant, it is important to finely adjust the pH as needed. Therefore, (a) urea and / or formamide is added to the reaction medium, and metal salts and / or metal alkoxides and / or acids are sequentially or continuously added so as to offset the increase in pH due to their thermal decomposition. Method of addition, (b) adding metal salt and / or metal alkoxide collectively and sequentially or continuously to decrease pH due to hydrolysis of metal salt and / or metal alcoside, and adding urea and / or alkali sequentially Or a method of offsetting by continuous addition, (c) a combination of these methods,
It is preferred to maintain the pH during hydrolysis substantially constant. Examples of the acid added sequentially or continuously include inorganic salts or organic salts such as hydrochloric acid, sulfuric acid, nitric acid, oxalic acid and acetic acid, and examples of the alkali include potassium hydroxide and sodium hydroxide. , Hydroxides such as calcium hydroxide, and ammonia. These acids and alkalis can be used alone or in admixture of two or more.

【0024】また、必要により酸とアルカリの両者を併
用してpHを微調整することができる。例えば、銅または
銅化合物を被覆する場合は酸としては硝酸と塩酸が好ま
しく、またアルカリとしては水酸化ナトリウムとアンモ
ニアが好ましい。
If necessary, both the acid and the alkali can be used together to finely adjust the pH. For example, when coating copper or a copper compound, nitric acid and hydrochloric acid are preferable as the acid, and sodium hydroxide and ammonia are preferable as the alkali.

【0025】これらの逐次あるいは連続的に添加される
酸またはアルカリの規定度は、通常、0.01〜10規
定であり、好ましくは0.05〜1規定である。
The normality of the acid or alkali added sequentially or continuously is usually 0.01 to 10 N, preferably 0.05 to 1 N.

【0026】また、前記尿素および/またはホルムアミ
ドの使用量は、通常、1000g/反応媒体1リットル
以下であり、好ましくは200g/反応媒体1リットル
以下、特に好ましくは10〜100g/反応媒体1リッ
トルである。
The amount of urea and / or formamide used is usually 1000 g / liter of reaction medium or less, preferably 200 g / liter of reaction medium or less, particularly preferably 10 to 100 g / liter of reaction medium. is there.

【0027】金属塩および/または金属アルコキシドの
加水分解反応によりコア粒子上に形成される金属および
/または金属化合物被覆層の厚さは、金属塩および/ま
たは金属アルコキシドの使用量、反応時間等を制御する
ことにより適宜に調節することができる。
The thickness of the metal and / or metal compound coating layer formed on the core particles by the hydrolysis reaction of the metal salt and / or metal alkoxide depends on the amount of the metal salt and / or metal alkoxide used, the reaction time and the like. It can be adjusted appropriately by controlling.

【0028】また、金属および/または金属化合物被覆
層の厚さおよび密度は、金属および/または金属化合物
被覆層を形成した複合粒子をシード粒子として、金属塩
および/または金属アルコキシドの加水分解反応を繰り
返すことにより大きくすることができる。
The thickness and density of the metal and / or metal compound coating layer are determined by the hydrolysis reaction of the metal salt and / or metal alkoxide using the composite particles having the metal and / or metal compound coating layer as seed particles. It can be increased by repeating.

【0029】このようにして形成された金属および/ま
たは金属化合物被覆層は熱処理を行うことによりその組
成を変換することができる。例えばシェルが塩基性炭酸
銅(Cu(OH)2CuCO3)の場合、空気中で好まし
くは200℃以上、さらに好ましくは240℃以上、特
に好ましくは250℃以上で加熱することにより酸化銅
(CuO)に変換することができる。またシェルが酸化
銅または塩基性炭酸銅の場合、水素雰囲気下で好ましく
は100℃以上、さらに好ましくは130℃以上、特に
好ましくは140℃以上に加熱することにより金属銅に
変換することができる。
The composition of the metal and / or metal compound coating layer thus formed can be converted by heat treatment. For example, when the shell is basic copper carbonate (Cu (OH) 2 CuCO 3 ), copper oxide (CuO) is preferably obtained by heating in air at 200 ° C. or higher, more preferably 240 ° C. or higher, and particularly preferably 250 ° C. or higher. ) Can be converted to. When the shell is copper oxide or basic copper carbonate, it can be converted to metallic copper by heating in a hydrogen atmosphere to preferably 100 ° C or higher, more preferably 130 ° C or higher, and particularly preferably 140 ° C or higher.

【0030】金属塩および/または金属アルコシドの加
水分解によりコア微粒子上に金属および/または金属化
合物被覆層を形成する前記プロセスは、所望の複合粒子
の生成効率が高く、しかも安全であり、工業的に極めて
効率的かつ容易に実施することができる。
The above-mentioned process of forming the metal and / or metal compound coating layer on the core fine particles by the hydrolysis of the metal salt and / or metal alcoside has a high production efficiency of desired composite particles, is safe, and is industrially useful. It can be implemented very efficiently and easily.

【0031】本発明により得られる複合粒子の平均粒径
は、コア微粒子の平均粒径、金属および/または金属化
合物被覆層の厚さ等を調節することにより、適宜に設定
することができるが、通常、0.07〜50μm、好ま
しくは0.1〜20μm、特に好ましくは0.1〜10
μmである。なお、これらの粒子は、通常、球形状ある
いはほぼ球形状で得られるが、必ずしも対称形状とはい
えない場合の平均粒径は、短軸径をとるものとする。
The average particle size of the composite particles obtained by the present invention can be appropriately set by adjusting the average particle size of the core fine particles, the thickness of the metal and / or metal compound coating layer, and the like. Usually, 0.07 to 50 μm, preferably 0.1 to 20 μm, particularly preferably 0.1 to 10
μm. Note that these particles are usually obtained in a spherical shape or a substantially spherical shape, but the average particle diameter when the shape is not necessarily symmetrical is taken to be the minor axis diameter.

【0032】また、前記複合粒子の粒子径に対するコア
微粒子の粒子径の比(以下、「内径比」という。)は、
通常、0.4〜0.99であり、好ましくは0.5〜
0.99、特に好ましくは0.6〜0.99である。内
径比が0.4〜0.99の範囲外では、金属および/ま
たは金属化合物被覆層の厚さが厚過ぎるか薄過ぎるた
め、良好な特性を有する粒子を効率よく製造することが
困難な場合がある。
The ratio of the particle size of the core fine particles to the particle size of the composite particles (hereinafter referred to as "inner diameter ratio") is
Usually, it is 0.4 to 0.99, preferably 0.5 to
0.99, particularly preferably 0.6 to 0.99. When the inner diameter ratio is out of the range of 0.4 to 0.99, the thickness of the metal and / or metal compound coating layer is too thick or too thin, which makes it difficult to efficiently produce particles having good properties. There is.

【0033】本発明により得られる複合粒子は、コア微
粒子を限定せず、各種無機材料および有機高分子材料等
との複合化が可能であり、かつそれらを均一に被覆する
ことができ生産性も高い。また、例えば水中に分散して
超音波を当てても、もはや被覆層がコア微粒子から剥離
したり脱落することがないとともに、被覆層成分が各種
溶媒または媒質中へ溶出あるいは移行するおそれがな
く、また保存安定性にも優れる。しかもコア微粒子本来
の特性が何ら損なわれることがないので、粒子全体とし
ての強度および耐熱性を、コア微粒子と同等の優れたも
のとすることができる。
The composite particles obtained by the present invention are not limited to the core fine particles, and can be compounded with various inorganic materials and organic polymer materials, etc., and they can be uniformly coated to improve productivity. high. Further, for example, even when dispersed in water and subjected to ultrasonic waves, the coating layer is no longer peeled or dropped from the core fine particles, and there is no risk of the coating layer components being eluted or transferred into various solvents or media, It also has excellent storage stability. Moreover, since the original characteristics of the core fine particles are not impaired at all, the strength and heat resistance of the particles as a whole can be made as excellent as those of the core fine particles.

【0034】[0034]

【実施例】次に実施例により、本発明をさらに具体的に
説明する。但し、本発明は、その要旨を越えない限り、
これらの実施例に何ら制約されるものでない。 実施例1 平均粒径5.0μmの架橋ジビニルベンゼン重合体粒子
100gおよび濃硫酸800ミリリットルの混合物を、
室温で12時間撹拌したのち、洗浄して、スルホン化架
橋粒子を得た。このスルホン化架橋粒子を濃度15.7
重量%に分散した水分散液159ミリリットル、3重量
%ポリビニルピロリドン水溶液200ミリリットルおよ
び蒸留水481リットルの混合物を、2分間超音波処理
したのち、85℃に加熱した。次いで、硝酸銅3水和物
0.24gおよび尿素6.00gを蒸留水20ミリリッ
トルに溶解した溶液を一度に添加し、その1時間後に、
蒸留水40ミリリットルに溶解した尿素20.0g、蒸
留水100ミリリットルに溶解した硝酸銅3水和物2
4.0gを、反応系のpHを6.8に制御しつつ、4時間
かけて添加した。添加終了後ただちに反応系を氷冷水4
リットル中に添加して反応を停止させ、ろ過した。得ら
れた粒子を水で洗浄後、40℃で12時間、減圧乾燥し
た。この粒子を走査型電子顕微鏡で観察したところ、平
均粒径が5.3μm、内径比が0.94で、均一な被覆
層を有する、青白色、球状の複合粒子であった。また、
この複合粒子をX線回折および熱重量分析により分析し
たところ、コアが架橋ジビニルベンゼン重合体粒子、シ
ェルが塩基性炭酸銅(Cu(OH)2CuCO3) から
なることが確認された。この複合粒子を複合粒子Aとす
る。
EXAMPLES Next, the present invention will be described more specifically by way of examples. However, the present invention does not exceed the gist of the invention.
There is no limitation to these examples. Example 1 A mixture of 100 g of crosslinked divinylbenzene polymer particles having an average particle size of 5.0 μm and 800 ml of concentrated sulfuric acid,
The mixture was stirred at room temperature for 12 hours and then washed to obtain sulfonated crosslinked particles. The concentration of the sulfonated crosslinked particles was 15.7
A mixture of 159 ml of an aqueous dispersion having a concentration of 3 wt%, 200 ml of a 3 wt% aqueous solution of polyvinylpyrrolidone, and 481 liter of distilled water was subjected to ultrasonic treatment for 2 minutes and then heated to 85 ° C. Then, a solution of 0.24 g of copper nitrate trihydrate and 6.00 g of urea dissolved in 20 ml of distilled water was added all at once, and 1 hour later,
Urea 20.0 g dissolved in distilled water 40 ml, copper nitrate trihydrate 2 dissolved in distilled water 100 ml 2
4.0 g was added over 4 hours while controlling the pH of the reaction system to 6.8. Immediately after the completion of the addition, the reaction system was cooled with ice
The reaction was stopped by adding it to 1 liter and filtering. The obtained particles were washed with water and dried under reduced pressure at 40 ° C. for 12 hours. When the particles were observed with a scanning electron microscope, they were bluish-white, spherical composite particles having an average particle diameter of 5.3 μm, an inner diameter ratio of 0.94, and a uniform coating layer. Also,
When the composite particles were analyzed by X-ray diffraction and thermogravimetric analysis, it was confirmed that the core consisted of crosslinked divinylbenzene polymer particles and the shell consisted of basic copper carbonate (Cu (OH) 2 CuCO 3 ). This composite particle is referred to as composite particle A.

【0035】実施例2 複合粒子A20gを、水素雰囲気中、10℃/分の昇温
速度で、室温から130℃まで昇温したのち、130℃
に1時間保持し、次いで10℃/分の降温速度で、室温
まで冷却した。得られた粒子を走査型電子顕微鏡で観察
したところ、平均粒径が5.2μm、内径比が0.96
で、均一な被覆層を有する、黒褐色、球状の複合粒子で
あった。 この複合粒子を前記と同様にして分析したと
ころ、コアが架橋ジビニルベンゼン重合体粒子、シェル
が金属銅からなる複合粒子であることが確認された。
Example 2 20 g of the composite particles A were heated from room temperature to 130 ° C. at a heating rate of 10 ° C./min in a hydrogen atmosphere, and then heated to 130 ° C.
At room temperature for 1 hour, and then cooled to room temperature at a temperature decrease rate of 10 ° C./min. Observation of the obtained particles with a scanning electron microscope revealed that the average particle size was 5.2 μm and the inner diameter ratio was 0.96.
And was a black-brown, spherical composite particle having a uniform coating layer. When the composite particles were analyzed in the same manner as above, it was confirmed that the core was a crosslinked divinylbenzene polymer particle and the shell was a composite particle composed of metallic copper.

【0036】[0036]

【発明の効果】本発明により得られる複合粒子は、コア
微粒子を限定せず、各種無機材料および有機高分子材料
等との複合化が可能であり、かつそれらを均一に被覆す
ることができ、生産性も高い。また、例えば水中に分散
して超音波を当てても、もはや被覆層がコア微粒子から
剥離したり脱落するおそれがなく、また保存安定性にも
優れる。しかもコア微粒子本来の特性が何ら損なわれる
ことがないので、粒子全体としての強度および耐熱性
を、コア微粒子と同等の優れたものとすることができ
る。また、本発明により得られる複合粒子は、電子材
料、導電材料、光学材料、触媒、触媒担体、滑剤、耐熱
材料、スペーサー粒子、カラム充填材、診断薬用担体、
隠蔽材料、難燃化剤、化粧品改質剤、ペースト、帯電防
止剤、電気粘性流体、研磨剤、ガスセンサー、塗料添加
剤、電磁波シールド剤、磁性流体、造影剤、抗菌剤、ス
イッチコネクター、顔料、UVカット剤等として好適に
使用することができる。
INDUSTRIAL APPLICABILITY The composite particles obtained by the present invention are not limited to the core fine particles, can be composited with various inorganic materials and organic polymer materials, and can uniformly coat them. High productivity. Further, for example, even when dispersed in water and exposed to ultrasonic waves, the coating layer is no longer likely to peel or fall off from the core fine particles, and the storage stability is excellent. Moreover, since the original characteristics of the core fine particles are not impaired at all, the strength and heat resistance of the particles as a whole can be made as excellent as those of the core fine particles. The composite particles obtained by the present invention are electronic materials, conductive materials, optical materials, catalysts, catalyst carriers, lubricants, heat resistant materials, spacer particles, column packing materials, carriers for diagnostic agents,
Concealment material, flame retardant, cosmetic modifier, paste, antistatic agent, electrorheological fluid, abrasive, gas sensor, paint additive, electromagnetic wave shielding agent, magnetic fluid, contrast agent, antibacterial agent, switch connector, pigment , And can be suitably used as a UV cut agent and the like.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 26/00 B // C03B 8/02 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area C23C 26/00 B // C03B 8/02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コアとなる微粒子を水系媒体中に均一に
分散した分散液中で、反応系のpHを一定に制御しつつ、
鉄以外の加水分解性金属塩および/または鉄以外の金属
アルコキシドを溶液状態において加水分解させ、該微粒
子上にシェルとなる金属および/または金属化合物被覆
層を形成し、必要に応じて熱処理を行うことを特徴とす
る複合粒子の製造方法。
1. A dispersion in which fine particles to be a core are uniformly dispersed in an aqueous medium, while controlling the pH of the reaction system at a constant level,
A hydrolyzable metal salt other than iron and / or a metal alkoxide other than iron is hydrolyzed in a solution state to form a shell metal and / or metal compound coating layer on the fine particles, and heat treatment is performed if necessary. A method for producing composite particles, comprising:
JP5246355A 1993-09-07 1993-09-07 Production of composite grain Pending JPH0776702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5246355A JPH0776702A (en) 1993-09-07 1993-09-07 Production of composite grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5246355A JPH0776702A (en) 1993-09-07 1993-09-07 Production of composite grain

Publications (1)

Publication Number Publication Date
JPH0776702A true JPH0776702A (en) 1995-03-20

Family

ID=17147329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5246355A Pending JPH0776702A (en) 1993-09-07 1993-09-07 Production of composite grain

Country Status (1)

Country Link
JP (1) JPH0776702A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047416A1 (en) * 1996-06-10 1997-12-18 Nittetsu Mining Co., Ltd. Powder coated with multilayer coating
JPH1149565A (en) * 1997-07-31 1999-02-23 Taiyo Yuden Co Ltd Production of ceramic powder
WO1999022894A1 (en) * 1997-10-30 1999-05-14 Nittetsu Mining Co., Ltd. Coated powder and process for the preparation thereof
JP2000506206A (en) * 1996-03-06 2000-05-23 ロディア シミ Composite particles containing organic polymer and oxide and / or hydroxide
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
JP2005263590A (en) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology Water based wet forming of ceramic nanoparticle and method of manufacturing highly controlled porous ceramic
GB2415706B (en) * 2003-05-08 2006-09-27 Particle Sciences Inc Increased density particle molding
JPWO2014061545A1 (en) * 2012-10-15 2016-09-05 積水化学工業株式会社 Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
WO2022080487A1 (en) * 2020-10-16 2022-04-21 住友金属鉱山株式会社 METHOD FOR MANUFACTURING IRON (Fe)-NICKEL (Ni) ALLOY POWDER

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506206A (en) * 1996-03-06 2000-05-23 ロディア シミ Composite particles containing organic polymer and oxide and / or hydroxide
EA000820B1 (en) * 1996-06-10 2000-04-24 Ниттецу Майнинг Ко., Лтд. Powder coated with multilayer coating
WO1997047416A1 (en) * 1996-06-10 1997-12-18 Nittetsu Mining Co., Ltd. Powder coated with multilayer coating
JPH1149565A (en) * 1997-07-31 1999-02-23 Taiyo Yuden Co Ltd Production of ceramic powder
KR100544869B1 (en) * 1997-10-30 2006-01-24 닛데츠 고교 가부시키가이샤 Coated powder and process for the preparation thereof
WO1999022894A1 (en) * 1997-10-30 1999-05-14 Nittetsu Mining Co., Ltd. Coated powder and process for the preparation thereof
US6387532B1 (en) 1997-10-30 2002-05-14 Nittetsu Mining Co., Ltd. Coated powder and process for the preparation thereof
CN100444992C (en) * 1997-10-30 2008-12-24 日铁矿业株式会社 Coated powder and process for the preparation thereof
JP2004083371A (en) * 2002-08-28 2004-03-18 National Institute For Materials Science Process for producing ceramic porous body
GB2415706B (en) * 2003-05-08 2006-09-27 Particle Sciences Inc Increased density particle molding
JP2005263590A (en) * 2004-03-19 2005-09-29 National Institute Of Advanced Industrial & Technology Water based wet forming of ceramic nanoparticle and method of manufacturing highly controlled porous ceramic
JP4524425B2 (en) * 2004-03-19 2010-08-18 独立行政法人産業技術総合研究所 Ceramic nanoparticle-coated organic resin sphere particles, molded body thereof, porous ceramics, and production method thereof
JPWO2014061545A1 (en) * 2012-10-15 2016-09-05 積水化学工業株式会社 Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
WO2022080487A1 (en) * 2020-10-16 2022-04-21 住友金属鉱山株式会社 METHOD FOR MANUFACTURING IRON (Fe)-NICKEL (Ni) ALLOY POWDER

Similar Documents

Publication Publication Date Title
JPH0776702A (en) Production of composite grain
JP4113045B2 (en) White powder and method for producing the same
JPS6155562B2 (en)
JPH0617231B2 (en) Needle-shaped conductive titanium oxide and method for producing the same
JPH08176620A (en) Production of silver powder
JP3009581B2 (en) Conductive paint
JP2994020B2 (en) Method for producing conductive titanium dioxide powder
JP3360351B2 (en) Method for producing ferromagnetic composite particles
JP3374483B2 (en) Method for producing composite particles and hollow particles
JP2531588B2 (en) Method for producing metal-supported particles having ferromagnetism
JP3273375B2 (en) Method for producing composite particles
JPH0426514A (en) Production of plate-like conductive zinc oxide
JP3779146B2 (en) Method for producing metal oxide-coated particles
US4305752A (en) Metallic iron particles for magnetic recording
CA1132008A (en) Metallic iron particles for magnetic recording produced by reducing an iron oxide precursor coated with an antimony compound
JP3319109B2 (en) Method for producing composite particles
JPS6021307A (en) Production of ferromagnetic metallic powder
JP3407385B2 (en) Method for producing composite particles and hollow particles
JPH06234522A (en) Electrically conductive material and its production
JP2696232B2 (en) Stabilized red phosphorus and method for producing the same
JPH01259108A (en) Manufacture of copper super fine powder
JPS5877505A (en) Production of metallic magnetic powder
JP2000034582A (en) Composite particle and hollow particle
CN109897228B (en) Surface polymerization modified hydrotalcite material and preparation method thereof
JPH06162817A (en) Conductive particulate and its manufacture