JPH07111344A - Thermoelectric power generating device - Google Patents

Thermoelectric power generating device

Info

Publication number
JPH07111344A
JPH07111344A JP5257115A JP25711593A JPH07111344A JP H07111344 A JPH07111344 A JP H07111344A JP 5257115 A JP5257115 A JP 5257115A JP 25711593 A JP25711593 A JP 25711593A JP H07111344 A JPH07111344 A JP H07111344A
Authority
JP
Japan
Prior art keywords
thermoelectric material
thermoelectric
fuel
temperature side
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5257115A
Other languages
Japanese (ja)
Inventor
Akiko Nakasuji
章子 中筋
Hisaaki Gyoten
久朗 行天
Yasushi Nakagiri
康司 中桐
Yoshiaki Yamamoto
義明 山本
Masato Hosaka
正人 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5257115A priority Critical patent/JPH07111344A/en
Publication of JPH07111344A publication Critical patent/JPH07111344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermoelectric power generating device higher in efficiency to convert heat into electricity. CONSTITUTION:A thermoelectric power generating device which efficiently converts heat into electricity taking advantage of burning gaseous or liquid fuel on the surface of thermoelectric material can be improved in energy conversion efficiency by a method (1) wherein both the ends of a thermoelectric material 2 are increased in temperature difference between them by taking advantage of cooling with the heat of evaporation of liquid fuel 4 or burning catalyst or also enhanced in combustion efficiency and current collecting efficiency by a method (2) wherein fuel inside the thermoelectric material is controlled in fluidity, and a current collecting superficial part of the thermoelectric material is also controlled in strength and condunctivity by using thermoelectric material of two or more-layered structure composed of layers different from each other in filling rate and conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポータブル機器の電源
等に用いられる、熱を電気に変換する機能を有する高効
率な熱電発電素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly efficient thermoelectric power generation element having a function of converting heat into electricity, which is used as a power source of portable equipment.

【0002】[0002]

【従来の技術】熱電効果は、温度差をつけると電圧が発
生し、逆に、通電すると温度差が発生するといった性質
を持ち、太陽光や廃熱利用による発電や、通電して局所
部分を冷却し、センサの冷却部や冷蔵庫、除湿機等に使
用されている。なかでも熱電発電は、環境問題がクロー
ズアップされている近年特に注目され、炎、海底、人体
の表面等で生じる温度差を利用した発電も期待されてい
る。それらの発電素子は、従来、p型とn型半導体素子
を組み合わせた熱電材料部分と両電極によって構成され
ている。
2. Description of the Related Art The thermoelectric effect has the property that a voltage is generated when a temperature difference is applied, and conversely a temperature difference is generated when a current is applied. It is used for cooling and cooling parts of sensors, refrigerators, dehumidifiers, etc. Among them, thermoelectric power generation has been particularly attracting attention in recent years because environmental issues have been highlighted, and it is expected that power generation using temperature difference generated at flame, seabed, human body surface, etc. Conventionally, these power generating elements are composed of a thermoelectric material portion in which p-type and n-type semiconductor elements are combined and both electrodes.

【0003】熱電発電素子の構成の従来例を図4を用い
て説明する。図4の熱電発電素子は、P型熱電材料9
と、N型熱電材料10と、それら各熱電材料の両側に図
のように取り付けられた金属電極8とによって形成さ
れ、熱電材料9、10のそれぞれの両端に温度勾配をつ
けると、金属電極8間に電圧が発生する。このような素
子を多数並列することにより、発電に使用することが可
能となる。
A conventional example of the structure of a thermoelectric power generating element will be described with reference to FIG. The thermoelectric power generation element of FIG. 4 has a P-type thermoelectric material 9
And the N-type thermoelectric material 10 and the metal electrodes 8 attached to both sides of each of the thermoelectric materials as shown in the figure. When a temperature gradient is applied to both ends of each of the thermoelectric materials 9 and 10, the metal electrode 8 is formed. A voltage is generated between them. By arranging many such elements in parallel, they can be used for power generation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、熱電材
料自体の性能が低いため、高いエネルギ変換効率が得ら
れないという制約があり、高いエネルギ変換効率を得る
ためには、材料の熱電性能の向上と並行して、素子の構
成上の改善が必要である。
However, since the performance of the thermoelectric material itself is low, there is a constraint that high energy conversion efficiency cannot be obtained. In order to obtain high energy conversion efficiency, it is necessary to improve the thermoelectric performance of the material. In parallel, improvements in the device structure are needed.

【0005】これについては以下のような例がこれまで
提案されている。すなわち、多孔性熱電材料内部に燃料
ガスを通し、熱電材料の高温側で燃焼させることを特徴
とする熱電発電素子である。このような構成の場合、熱
電材料低温側は燃料ガスの顕熱による冷却が起こり、燃
料ガスの燃焼部である高温側との温度差が増大するた
め、エネルギ変換効率の向上が期待される。この変換効
率をさらに高めるためには、熱電材料低温側でより効率
の高い冷却を行うことや、燃料を熱電材料表面に近い位
置でかつ安定に燃焼させることが必要である。また、熱
電材料の高温側表面で発生する燃焼や集電のロスを減少
させるために、材料内部の燃料の流動状態を制御した
り、集電部分である熱電材料表面の強度や導電性を大き
くすることが必要である。
The following examples have been proposed so far. That is, the thermoelectric power generation element is characterized in that the fuel gas is passed through the inside of the porous thermoelectric material and is burned on the high temperature side of the thermoelectric material. In the case of such a configuration, cooling on the low temperature side of the thermoelectric material occurs due to sensible heat of the fuel gas, and the temperature difference with the high temperature side, which is the combustion portion of the fuel gas, increases, so that improvement in energy conversion efficiency is expected. In order to further improve the conversion efficiency, it is necessary to perform more efficient cooling on the low temperature side of the thermoelectric material and to burn the fuel stably at a position close to the surface of the thermoelectric material. In addition, in order to reduce the loss of combustion and current collection that occurs on the high temperature side surface of the thermoelectric material, the flow state of the fuel inside the material is controlled, and the strength and conductivity of the thermoelectric material surface, which is the current collecting part, are increased. It is necessary to.

【0006】本発明は、これらの課題を解決し、より一
層高いエネルギ変換効率を持つ熱電発電素子の提供を目
的とする。
An object of the present invention is to solve these problems and to provide a thermoelectric power generation element having higher energy conversion efficiency.

【0007】[0007]

【課題を解決するための手段】本発明による熱電発電素
子は、ガス状または液体の燃料の熱電材料表面での燃焼
を利用した高効率な発電素子であり、液体燃料の気化熱
で熱電材料の低温側を冷却することを特徴とする、また
は燃料を熱電材料高温側表面で触媒燃焼させることを特
徴とする。あるいはまたは性質の異なる二層以上の構造
を有する熱電材料を用いることを特徴とするものであ
る。
The thermoelectric power generation element according to the present invention is a highly efficient power generation element that utilizes combustion of a gaseous or liquid fuel on the surface of the thermoelectric material. It is characterized in that the low temperature side is cooled, or that the fuel is catalytically burned on the high temperature side surface of the thermoelectric material. Alternatively, a thermoelectric material having a structure of two or more layers having different properties is used.

【0008】[0008]

【作用】上記のような構成の本発明では、熱電材料低温
側の気化熱による冷却または高温側の触媒燃焼によっ
て、熱電材料両端の温度差を増大することができ、従来
よりエネルギ変換効率の高い熱電発電素子を、従来の熱
電材料の性能のままで製造することが可能となる。
In the present invention having the above-mentioned structure, the temperature difference between the both ends of the thermoelectric material can be increased by cooling by the heat of vaporization on the low temperature side of the thermoelectric material or by catalytic combustion on the high temperature side. It is possible to manufacture the thermoelectric power generation element with the performance of the conventional thermoelectric material.

【0009】また、充填率や導電率等の性質の異なる熱
電材料を組み合わせて多層構造にすることにより、材料
内部の気液界面の位置や燃料ガスの流量を制御したり、
集電部分である熱電材料表面の強度や導電性を大きくす
ることができ、ロスの少ない、長時間使用可能な熱電発
電素子を製造することが可能となる。
Further, by combining thermoelectric materials having different properties such as filling rate and conductivity to form a multilayer structure, the position of the gas-liquid interface inside the material and the flow rate of fuel gas can be controlled,
It is possible to increase the strength and conductivity of the surface of the thermoelectric material that is the current collecting portion, and it is possible to manufacture a thermoelectric power generation element that has little loss and can be used for a long time.

【0010】[0010]

【実施例】【Example】

(実施例1)本発明の第1の実施例について、図1を参
照しながら説明する。
(Embodiment 1) A first embodiment of the present invention will be described with reference to FIG.

【0011】図1において、本実施例の熱電発電素子
は、円筒形のセラミック容器20内部に構成されてい
る。すなわち、セラミック容器20内の片側には熱電材
料2が配置され、この熱電材料2はバルク状のMn添加
のFeSi2熱電材料であり、さらに、熱電材料2の表
裏にはそれぞれ金属電極1が設置されている。また、セ
ラミック容器20の内の中央の熱電材料2の低温側に
は、アルミナ製の多孔性セラミック3が配置されてい
る。さらに、セラミック容器20の反対側スペースに
は、エタノールからなる液体燃料4が貯められている。
多孔性セラミック3の表裏は、熱電材料2の低温側表面
と液体燃料4に接触するように構成されている。
In FIG. 1, the thermoelectric power generating element of this embodiment is constructed inside a cylindrical ceramic container 20. That is, the thermoelectric material 2 is arranged on one side in the ceramic container 20, and the thermoelectric material 2 is a bulk Mn-added FeSi 2 thermoelectric material. Further, the metal electrodes 1 are installed on the front and back of the thermoelectric material 2, respectively. Has been done. A porous ceramic 3 made of alumina is arranged on the low temperature side of the thermoelectric material 2 in the center of the ceramic container 20. Further, in the space on the opposite side of the ceramic container 20, the liquid fuel 4 made of ethanol is stored.
The front and back surfaces of the porous ceramic 3 are configured to contact the low temperature side surface of the thermoelectric material 2 and the liquid fuel 4.

【0012】以上のように構成された熱電発電素子につ
いて、図1を用いてその動作を説明する。
The operation of the thermoelectric power generating element configured as described above will be described with reference to FIG.

【0013】まず、図1の熱電発電素子に供給された液
体燃料4は、多孔性セラミック3を介して、熱電材料2
の内部を低温側表面から通過する。液体燃料4は熱電材
料2の内部で気化し、熱電材料2の高温側に送り込まれ
る。このエタノール蒸気を熱電材料2の高温側表面Aで
燃焼させる。この燃焼によって、高温側の温度を300度
程度に保ち、かつ熱電材料2内部の液体エタノールを気
化し続けることができる。また、このメニスカス(気液
界面)Bでエタノールの気化熱により、熱電材料2の低
温側を冷却することができる。この冷却方法は、従来の
燃料ガスの顕熱を利用する方法と比べて冷却能力が高
く、また本実施例では低温側表面の温度がエタノールの
沸点である78度より上がることはない。このように、熱
電材料2の表裏に発生する温度差は従来より大きくな
り、高温側と低温側表面にそれぞれ設置された金属電極
1間により大きな電圧を発生させることが可能となる。
First, the liquid fuel 4 supplied to the thermoelectric power generating element of FIG. 1 passes through the porous ceramic 3 and the thermoelectric material 2
Passes through the inside of the cold side surface. The liquid fuel 4 is vaporized inside the thermoelectric material 2 and is sent to the high temperature side of the thermoelectric material 2. This ethanol vapor is burned on the high temperature side surface A of the thermoelectric material 2. By this combustion, the temperature on the high temperature side can be maintained at about 300 degrees and the liquid ethanol inside the thermoelectric material 2 can be continuously vaporized. Further, the low temperature side of the thermoelectric material 2 can be cooled by the heat of vaporization of ethanol at the meniscus (gas-liquid interface) B. This cooling method has a higher cooling capacity than the conventional method that uses the sensible heat of the fuel gas, and in this embodiment, the temperature of the low temperature side surface does not rise above the boiling point of ethanol of 78 degrees. As described above, the temperature difference generated between the front and back of the thermoelectric material 2 becomes larger than in the conventional case, and it becomes possible to generate a larger voltage between the metal electrodes 1 respectively installed on the high temperature side surface and the low temperature side surface.

【0014】以上のように本実施例によれば、熱電材料
の低温側で気化熱による冷却を行うことにより、熱電材
料の表裏に発生する温度差が増大し、従来よりもさらに
エネルギ変換効率の高い発電を行うことが可能である。
As described above, according to this embodiment, since the thermoelectric material is cooled by the heat of vaporization on the low temperature side, the temperature difference generated between the front and back of the thermoelectric material is increased, and the energy conversion efficiency is further improved as compared with the conventional case. It is possible to generate high power.

【0015】なお、熱電材料2として、FeSi2系以
外に、Si−Ge系、SiC系等の他の熱電変換材料を
使用してもよい。また液体燃料4として、アルコール以
外にベンジン、石油等を用いることもできる。熱電材料
2の高温側の金属電極1は網目状に設置することが望ま
しい。
As the thermoelectric material 2, other thermoelectric conversion materials such as Si-Ge system and SiC system may be used in addition to the FeSi 2 system. In addition to alcohol, benzine, petroleum, or the like can be used as the liquid fuel 4. The metal electrode 1 on the high temperature side of the thermoelectric material 2 is preferably installed in a mesh shape.

【0016】(実施例2)本発明の第3の実施例につい
て、図2を参照しながら説明する。
(Embodiment 2) A third embodiment of the present invention will be described with reference to FIG.

【0017】図2において、Mn添加のFeSi2熱電
材料2と金属電極1と多孔性セラミック3と液体燃料4
が図1と同様に構成されているが、図2ではさらに、熱
電材料2の高温側の表面に触媒5として活性アルミナ担
持白金触媒が設置されている。触媒5の表面Cには金属
電極1が網目状に設置されている。
In FIG. 2, a FeSi 2 thermoelectric material 2 containing Mn, a metal electrode 1, a porous ceramic 3 and a liquid fuel 4 are shown.
2 has the same structure as in FIG. 1, but in FIG. 2, an activated alumina-supported platinum catalyst is installed as the catalyst 5 on the surface of the thermoelectric material 2 on the high temperature side. On the surface C of the catalyst 5, the metal electrodes 1 are installed in a mesh shape.

【0018】このような構成では、熱電材料2の高温側
表面に送り込まれたエタノール蒸気を、触媒5によっ
て、材料表面に近い位置で安定に燃焼させることができ
る。そのため、本実施例の高温側表面の温度を、触媒を
用いない場合よりも高く保つことができる。また、触媒
燃焼を行えば、燃焼に必要な燃料の量が減少するため、
発電の効率アップにつながる。
With such a configuration, the ethanol vapor sent to the high temperature side surface of the thermoelectric material 2 can be stably burned by the catalyst 5 at a position close to the material surface. Therefore, the temperature of the high temperature side surface of the present embodiment can be kept higher than in the case where no catalyst is used. In addition, catalytic combustion reduces the amount of fuel required for combustion,
This leads to an increase in power generation efficiency.

【0019】以上のように本実施例によれば、熱電材料
の高温側で液体燃料4の触媒燃焼を行うことにより、熱
電材料の表裏に発生する温度差が増大し、従来よりもさ
らにエネルギ変換効率の高い発電を行うことが可能であ
る。
As described above, according to the present embodiment, the catalytic combustion of the liquid fuel 4 on the high temperature side of the thermoelectric material increases the temperature difference between the front and back of the thermoelectric material, resulting in a further energy conversion. It is possible to generate power with high efficiency.

【0020】なお、熱電材料2として、FeSi2系以
外に、Si−Ge系、SiC系等の熱電変換材料を使用
してもよい。また液体燃料4として、アルコール以外に
ベンジン、石油等を用いることもできるのはもちろんで
あるが、液体燃料4の代わりに、プロパンと酸素の混合
ガス等の気体燃料を用いることも可能である。この場
合、熱電材料の低温側は、燃料ガスの顕熱で冷却される
が、低温側、高温側とも本実施例より高温となるため、
より高温性の熱電材料が必要である。
As the thermoelectric material 2, a thermoelectric conversion material such as Si-Ge system or SiC system may be used in addition to the FeSi 2 system. In addition to alcohol, benzine, petroleum, or the like can be used as the liquid fuel 4, but a gaseous fuel such as a mixed gas of propane and oxygen can be used instead of the liquid fuel 4. In this case, the low temperature side of the thermoelectric material is cooled by the sensible heat of the fuel gas, but since both the low temperature side and the high temperature side are higher in temperature than this embodiment,
Higher temperature thermoelectric materials are needed.

【0021】(実施例3)本発明の第3の実施例につい
て、図3を参照しながら説明する。
(Embodiment 3) A third embodiment of the present invention will be described with reference to FIG.

【0022】図3において、Mn添加のFeSi2熱電
材料2と金属電極1と多孔性セラミック3と液体燃料4
が図2と同様に構成されているが、図3で用いる熱電材
料2はFeSi2の二層構造であり、高温側は高密度層
5、低温側は充填率50%以下の多孔質層6によって形成
されている。
In FIG. 3, a FeSi 2 thermoelectric material 2 containing Mn, a metal electrode 1, a porous ceramic 3 and a liquid fuel 4 are shown.
2 has the same structure as in FIG. 2, but the thermoelectric material 2 used in FIG. 3 has a two-layer structure of FeSi 2 , and the high temperature side is a high density layer 5, and the low temperature side is a porous layer 6 with a filling rate of 50% or less. Is formed by.

【0023】このような構成では、熱電材料2の多孔質
層6内部を通過する液体燃料4は、多孔質層6と高密度
層5の境界面Bで気化され、エタノール蒸気となって高
密度層5内部を通過し、高温側表面で燃焼する。そのた
め、熱電材料2内部のメニスカス(気液界面)Bの位置
を固定することができ、高温側表面の燃焼を安定でかつ
効率的に行うことが可能となる。また、充填の状態によ
って燃料の流量を調節することもできる。なお、本実施
例では熱電材料は2層であったが、3層以上でもかまわ
ない。
In such a structure, the liquid fuel 4 passing through the inside of the porous layer 6 of the thermoelectric material 2 is vaporized at the boundary surface B between the porous layer 6 and the high density layer 5 to become ethanol vapor and has a high density. It passes through the inside of layer 5 and burns on the hot side surface. Therefore, the position of the meniscus (gas-liquid interface) B inside the thermoelectric material 2 can be fixed, and combustion on the high temperature side surface can be performed stably and efficiently. Also, the flow rate of fuel can be adjusted depending on the filling state. Although the thermoelectric material has two layers in this embodiment, it may have three or more layers.

【0024】以上のように本実施例によれば、充填率の
異なる多層構造を有する熱電材料を用いて、熱電材料内
部を通過する燃料の流量やメニスカスの位置等、燃料の
流動状態を制御することにより、より効率的な燃焼を行
うことができるため、従来よりエネルギ変換効率の高い
発電を行うことが可能である。
As described above, according to the present embodiment, the flow state of the fuel such as the flow rate of the fuel passing through the inside of the thermoelectric material and the position of the meniscus is controlled by using the thermoelectric material having the multi-layer structure having different filling rates. As a result, more efficient combustion can be performed, and thus power generation with higher energy conversion efficiency than in the past can be performed.

【0025】なお、熱電材料2の多層構造を利用した燃
料の流動状態の制御以外に、高密度層によって、電極の
取付部等の強度を大きくすることもできる。
In addition to controlling the flow state of the fuel by utilizing the multilayer structure of the thermoelectric material 2, the strength of the electrode mounting portion and the like can be increased by the high density layer.

【0026】また、液体燃料4の代わりに気体燃料を用
いる場合、細孔の形状等の粒子構造の異なる多層構造を
持つ多孔性熱電材料2を用いて、気体燃料の流れを制御
することもできる。
When a gas fuel is used instead of the liquid fuel 4, the flow of the gas fuel can be controlled by using the porous thermoelectric material 2 having a multi-layer structure having different particle structures such as the shape of pores. .

【0027】また、導電性の高い層を表面側に持つ熱電
材料2を用いて集電の効率を高めることも可能である。
この方法は、集電部分が燃焼面である高温側に特に有用
である。
It is also possible to increase the efficiency of current collection by using the thermoelectric material 2 having a highly conductive layer on the surface side.
This method is particularly useful on the high temperature side where the current collecting portion is the combustion surface.

【0028】[0028]

【発明の効果】以上述べたところから明らかなように、
本発明は、液体燃料の気化熱で熱電材料の低温側を冷却
する、または燃料を熱電材料高温側表面で触媒燃焼させ
ることにより、熱電材料両端の温度差を増大することが
でき、従来よりエネルギ変換効率の高い熱電発電素子
を、従来の熱電材料の性能のままで製造することが可能
となる。
As is apparent from the above description,
The present invention can increase the temperature difference between both ends of the thermoelectric material by cooling the low temperature side of the thermoelectric material by the heat of vaporization of the liquid fuel, or by catalytically burning the fuel on the high temperature side surface of the thermoelectric material, which is more energy efficient than before. It is possible to manufacture a thermoelectric power generation element with high conversion efficiency while maintaining the performance of conventional thermoelectric materials.

【0029】また、性質の異なる二層以上の構造を有す
る熱電材料を用いることにより、材料内部の燃料の流動
状態を制御したり、集電部分である熱電材料表面の強度
や導電性を大きくすることができ、ロスの少ない、長時
間使用可能な熱電発電素子を製造することが可能とな
る。
Further, by using a thermoelectric material having a structure of two or more layers having different properties, it is possible to control the flow state of the fuel inside the material and to increase the strength and conductivity of the surface of the thermoelectric material which is the current collecting portion. Therefore, it is possible to manufacture a thermoelectric power generation element that can be used for a long time with less loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における、液体燃料の気
化熱による冷却を利用した熱電発電素子の構成図
FIG. 1 is a configuration diagram of a thermoelectric power generation element that utilizes cooling by heat of vaporization of a liquid fuel according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における、触媒燃焼を利
用した熱電発電素子の構成図
FIG. 2 is a configuration diagram of a thermoelectric power generation element using catalytic combustion according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における、性質の異なる
二層以上の構造を有する熱電材料を用いた熱電発電素子
の構成図
FIG. 3 is a configuration diagram of a thermoelectric power generation element using a thermoelectric material having a structure of two or more layers having different properties according to a third embodiment of the present invention.

【図4】従来の熱電発電素子の構成図FIG. 4 is a block diagram of a conventional thermoelectric generator

【符号の説明】[Explanation of symbols]

1 金属電極 2 熱電材料 3 多孔性セラミック 4 液体燃料 5 触媒 6 高密度層 7 多孔質層 8 金属電極 9 P型熱電材料 10 N型熱電材料 1 Metal Electrode 2 Thermoelectric Material 3 Porous Ceramics 4 Liquid Fuel 5 Catalyst 6 High Density Layer 7 Porous Layer 8 Metal Electrode 9 P-Type Thermoelectric Material 10 N-Type Thermoelectric Material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 義明 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 保坂 正人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshiaki Yamamoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Masato Hosaka, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱電材料と、それを挟む電極とを備え、
前記熱電材料の低温側は液体燃料の気化熱で冷却され、
気化した前記燃料が前記熱電材料の高温側表面で燃焼す
ることを特徴とする熱電発電素子。
1. A thermoelectric material, and electrodes sandwiching the thermoelectric material,
The low temperature side of the thermoelectric material is cooled by the heat of vaporization of the liquid fuel,
A thermoelectric power generation element, wherein the vaporized fuel burns on the surface of the thermoelectric material on the high temperature side.
【請求項2】 燃料が多孔性の熱電材料の内部を通過す
ることを特徴とする請求項1記載の熱電発電素子。
2. The thermoelectric power generating element according to claim 1, wherein the fuel passes through the inside of the porous thermoelectric material.
【請求項3】 熱電材料と、それを挟む電極とを備え、
前記熱電材料内部に液体またはガス状の燃料が通され、
また前記熱電材料の高温側表面で前記燃料が触媒燃焼す
ることを特徴とする熱電発電素子。
3. A thermoelectric material and electrodes sandwiching the thermoelectric material,
Liquid or gaseous fuel is passed inside the thermoelectric material,
Further, the thermoelectric power generation element is characterized in that the fuel is catalytically burned on the high temperature side surface of the thermoelectric material.
【請求項4】 性質の異なる二層以上の構造を有する熱
電材料と、それを挟む電極とを備え、前記熱電材料内部
に、液体またはガス状の燃料が通され、また、前記熱電
材料の高温側表面で前記燃料が燃焼することを特徴とす
る熱電発電素子。
4. A thermoelectric material having a structure of two or more layers having different properties and electrodes sandwiching the structure, a liquid or gaseous fuel is passed through the inside of the thermoelectric material, and the thermoelectric material has a high temperature. A thermoelectric power generation element, wherein the fuel burns on a side surface.
JP5257115A 1993-10-14 1993-10-14 Thermoelectric power generating device Pending JPH07111344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257115A JPH07111344A (en) 1993-10-14 1993-10-14 Thermoelectric power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257115A JPH07111344A (en) 1993-10-14 1993-10-14 Thermoelectric power generating device

Publications (1)

Publication Number Publication Date
JPH07111344A true JPH07111344A (en) 1995-04-25

Family

ID=17301946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257115A Pending JPH07111344A (en) 1993-10-14 1993-10-14 Thermoelectric power generating device

Country Status (1)

Country Link
JP (1) JPH07111344A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065045A (en) * 2001-08-24 2003-03-05 Toyota Motor Corp Exhaust heat recovery device
JP2006136172A (en) * 2004-11-09 2006-05-25 Ishikawajima Harima Heavy Ind Co Ltd Generation set and power generating method
JP2006332398A (en) * 2005-05-27 2006-12-07 Toshiba Corp Thermoelectric direct converter
KR100849504B1 (en) * 2007-05-22 2008-07-31 한국기계연구원 A thermo-electric power generating module using a micro channel-type catalytic combustor
JP2009247206A (en) * 2001-02-09 2009-10-22 Bsst Llc Improved efficiency thermoelectrics utilizing convective heat flow
KR101529219B1 (en) * 2014-09-30 2015-06-16 차병미 Power generator using the lost heat of the gas burner
US9178128B2 (en) 2011-11-17 2015-11-03 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
JP2019192904A (en) * 2018-03-02 2019-10-31 国立大学法人東京農工大学 Thermoelectric conversion element, photodetector, image element, and photothermoelectric conversion element
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247206A (en) * 2001-02-09 2009-10-22 Bsst Llc Improved efficiency thermoelectrics utilizing convective heat flow
JP2003065045A (en) * 2001-08-24 2003-03-05 Toyota Motor Corp Exhaust heat recovery device
JP2006136172A (en) * 2004-11-09 2006-05-25 Ishikawajima Harima Heavy Ind Co Ltd Generation set and power generating method
JP2006332398A (en) * 2005-05-27 2006-12-07 Toshiba Corp Thermoelectric direct converter
KR100849504B1 (en) * 2007-05-22 2008-07-31 한국기계연구원 A thermo-electric power generating module using a micro channel-type catalytic combustor
US9178128B2 (en) 2011-11-17 2015-11-03 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
US9865794B2 (en) 2011-11-17 2018-01-09 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
KR101529219B1 (en) * 2014-09-30 2015-06-16 차병미 Power generator using the lost heat of the gas burner
JP2019192904A (en) * 2018-03-02 2019-10-31 国立大学法人東京農工大学 Thermoelectric conversion element, photodetector, image element, and photothermoelectric conversion element
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating

Similar Documents

Publication Publication Date Title
Wu et al. Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator
US7244887B2 (en) Electrical cells, components and methods
US20110023927A1 (en) Micro-combustion power system with metal foam heat exchanger
JP2004526322A (en) Thermoelectric generator with improved energy conversion efficiency using convective heat flow
US7070634B1 (en) Plasma reformer for hydrogen production from water and fuel
US6737180B2 (en) Electrochemical conversion system
WO2006017389A1 (en) Fuel flexible thermoelectric micro-generator with micro-turbine
JPH07111344A (en) Thermoelectric power generating device
CN105914859A (en) Power generation device and charging system
EP1514326A1 (en) Electrochemical conversion system
JP2004129442A (en) Power-generating set
Lim et al. Thermally chargeable supercapacitor working in a homogeneous, changing temperature field
US3523829A (en) Electrochemical power supply regenerated by heat
US8614392B1 (en) Micro-combustion power system with dual path counter-flow system
JP3446146B2 (en) Thermoelectric generation method and device
JP3331607B2 (en) Hydrogen storage and release method for hydrogen storage alloy with composite thermoelectric element
JP2005027485A (en) Portable thermoelectric generator
US20020127441A1 (en) Electrochemical conversion system
JPS6342181A (en) Thermoelectric generator
KR100891491B1 (en) Generating System using Catalytic heater
WO2015066651A1 (en) Methods for high speed hydrogen injection, accelerated combustion and associated systems and apparatus
CA2575896A1 (en) Fuel flexible thermoelectric micro-generator
JPH0759371A (en) Method and equipment for generation of energy
JPH07221353A (en) Thermoelectric element
CN100414730C (en) Heat engine of alkali metals