JP3446146B2 - Thermoelectric generation method and device - Google Patents

Thermoelectric generation method and device

Info

Publication number
JP3446146B2
JP3446146B2 JP21758093A JP21758093A JP3446146B2 JP 3446146 B2 JP3446146 B2 JP 3446146B2 JP 21758093 A JP21758093 A JP 21758093A JP 21758093 A JP21758093 A JP 21758093A JP 3446146 B2 JP3446146 B2 JP 3446146B2
Authority
JP
Japan
Prior art keywords
thermoelectric power
power generation
porous
thermoelectric
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21758093A
Other languages
Japanese (ja)
Other versions
JPH0774397A (en
Inventor
亮三 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP21758093A priority Critical patent/JP3446146B2/en
Publication of JPH0774397A publication Critical patent/JPH0774397A/en
Application granted granted Critical
Publication of JP3446146B2 publication Critical patent/JP3446146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電発電素子を利用した
熱電発電方法及びその装置に関し、特に多孔質媒体を用
いた燃焼法を組み合わせた新規な熱電発電方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric power generation method and apparatus using a thermoelectric power generation element, and more particularly to a novel thermoelectric power generation method and apparatus combined with a combustion method using a porous medium.

【0002】[0002]

【従来の技術】従来、ゼーベック効果を利用した熱電発
電素子は、金属の場合には例えば熱電対が、半導体の場
合には各種の熱電気変換デバイスがそれぞれよく知られ
ている。図4は半導体による熱電発電素子の一例を示
し、p型の半導体41とn型の半導体42とをΠ型に組
み合わせたものである。半導体41,42の一端側、す
なわち高温接合部には高温側電極43を共通に設け、半
導体41,42の他端側、すなわち低温側接合部には低
温側電極44,45を個別に設けている。
2. Description of the Related Art Conventionally, as thermoelectric generators utilizing the Seebeck effect, for example, thermocouples are well known for metals and various thermoelectric conversion devices are well known for semiconductors. FIG. 4 shows an example of a thermoelectric power generation element made of a semiconductor, in which a p-type semiconductor 41 and an n-type semiconductor 42 are combined in a π type. The high temperature side electrode 43 is commonly provided at one end side of the semiconductors 41 and 42, that is, the high temperature joint portion, and the low temperature side electrodes 44 and 45 are individually provided at the other end side of the semiconductors 41 and 42, that is, the low temperature side joint portion. There is.

【0003】このような熱電発電素子によれば、高温側
接合部と低温側接合部とに温度差T=TH −TL を与え
ると、これらの両端には電圧VABが発生する。それ故、
低温側電極44と45との間に負荷を接続すると、電流
が流れ電力を取り出すことができる。
[0003] According to such a thermoelectric power generation element, given a temperature difference T = T H -T L on the high temperature side joint portion and the low temperature-side junction voltage V AB generated for these ends. Therefore,
When a load is connected between the low temperature side electrodes 44 and 45, a current flows and electric power can be taken out.

【0004】この種の熱電発電素子の最大効率ηmax
次の数式1で表わされる。
The maximum efficiency η max of this type of thermoelectric generator is represented by the following mathematical formula 1.

【0005】[0005]

【数1】 ただし、Mは下記の数式2で表わされる。[Equation 1] However, M is represented by the following mathematical formula 2.

【0006】[0006]

【数2】 数式2中、Zは熱電発電素子の性能指数と呼ばれるパラ
メータであり、次の数3で表わされる。
[Equation 2] In Expression 2, Z is a parameter called a performance index of the thermoelectric power generation element, and is expressed by the following Expression 3.

【0007】[0007]

【数3】 数式3中、αはゼーベック係数、σは導電率、λは熱伝
導率である。
[Equation 3] In Equation 3, α is the Seebeck coefficient, σ is the conductivity, and λ is the thermal conductivity.

【0008】ところで、この種の熱電発電素子の効率は
高々10%程度にすぎない。これは、高温側接合部に加
えられる熱量をQ1 とすると、そのほとんどが2つの低
温側接合部から排熱Q2 として系外に捨てられ、(Q1
−Q2 )のわずかなエネルギーが電力に変換されるにす
ぎないという事情に起因する。しかも、発生した電力を
取り出す際には、熱電発電素子内にジュール熱が起こ
り、熱損失を増加させるという事情もある。これに対
し、ジュール熱が小さくなるような熱電発電素子の材料
として導電率のσの大きなものを選択すると、熱伝導率
λも大きくなって排熱Q2 を増加させるだけでなく、結
果的に低温側接合部の温度TL を押し上げてΔTが小さ
くなり、ゼーベック効果の低下を招くという二律相反性
の問題がある。
By the way, the efficiency of this type of thermoelectric power generating element is no more than about 10%. This is because when the amount of heat applied to the high temperature side joint is Q 1 , most of it is discarded from the system as exhaust heat Q 2 from the two low temperature side joints (Q 1
This is due to the fact that a small amount of energy of −Q 2 ) is converted into electric power. Moreover, when the generated electric power is taken out, Joule heat is generated in the thermoelectric power generation element, which increases the heat loss. On the other hand, if a material having a large conductivity σ is selected as the material of the thermoelectric power generation element that reduces the Joule heat, the thermal conductivity λ also increases and the exhaust heat Q 2 is increased. There is a problem of bi-reciprocity in which the temperature T L of the low temperature side junction is pushed up and ΔT becomes small, resulting in a decrease in the Seebeck effect.

【0009】[0009]

【発明が解決しようとする課題】これに対し、本発明者
は、多孔質媒体を用いた燃焼現象について研究した結
果、多孔質媒体内に急峻な温度勾配が得られる点に着目
した。ここで、多孔質媒体とは、固体内に無数の微小な
空隙があり、しかも固体相が連続しているとともに空隙
も連続しているものであり、金属材料でいえば、例えば
セルメット(住友電気工業(株)製)なる商品で提供さ
れているものがある。
On the other hand, as a result of researching the combustion phenomenon using a porous medium, the present inventor has noticed that a steep temperature gradient can be obtained in the porous medium. Here, the porous medium is a medium in which there are innumerable minute voids in the solid, moreover, the solid phase is continuous and the voids are also continuous. In the case of a metal material, for example, Celmet (Sumitomo Electric Some products are provided by Kogyo Co., Ltd.

【0010】このような、多孔質媒体を用いた燃焼法で
は、多孔質媒体の両端面の間に数倍〜十数倍の著しい温
度差が生じることが確認されている。このように大きな
温度差が生じるのは、低温側接合部では可燃性ガスの連
続的供給によって冷却され、高温側接合部では平面状の
火炎によって加熱され、さらに媒体が多孔質であるため
遮熱効果が高いためである。
In such a combustion method using a porous medium, it has been confirmed that a significant temperature difference of several times to several tens of times occurs between both end faces of the porous medium. This large temperature difference occurs because the low temperature side joint is cooled by continuous supply of combustible gas, the high temperature side joint is heated by a flat flame, and the medium is porous, so the heat shield This is because the effect is high.

【0011】このような知見に基づいて、本発明は高い
熱効率の得られる熱電発電方法及び装置を提供すること
にある。
Based on such knowledge, the present invention is to provide a thermoelectric generation method and apparatus which can obtain high thermal efficiency.

【0012】[0012]

【課題を解決するための手段】本発明による熱電発電方
法は、多孔質の熱電発電媒体の両端面にそれぞれ電極を
配設するとともに、前記熱電発電媒体の一方の端面から
可燃性ガスを導入し、他方の端面から排出すると共に燃
焼させる燃焼反応を行うことにより、可燃性ガスを導入
する端面の電極に近い領域で最も低く、他方の端面の電
極に近い領域で最も高い温度分布を前記熱電発電媒体中
に形成し、前記電極から熱電発電電力を取り出すように
したことを特徴とする。
In the thermoelectric power generation method according to the present invention, electrodes are provided on both end faces of a porous thermoelectric power generation medium, and a flammable gas is introduced from one end face of the thermoelectric power generation medium. , The temperature distribution is the lowest in the region near the electrode on the end face where the combustible gas is introduced, and the highest temperature distribution in the region near the electrode on the other end face by performing the combustion reaction of discharging and burning the other end face. It is characterized in that it is formed in a medium and the thermoelectric power generated is taken out from the electrode.

【0013】本発明によればまた、両端に電極を設けた
多孔質の熱電発電素子と、熱電発電素子に対して一方の
端面から可燃性ガスを導入し、他方の端面から排出する
と共に燃焼せしめる手段を備えたことを特徴とする熱電
発電装置が得られる。
According to the present invention, a porous thermoelectric power generating element having electrodes at both ends, and a combustible gas is introduced from one end surface of the thermoelectric power generating element, discharged from the other end surface thereof, and burned. A thermoelectric generator comprising the means is obtained.

【0014】なお、前記熱電発電素子としては、例えば
多孔質のp型半導体とn型半導体とを接合したものが使
用される。
As the thermoelectric power generation element, for example, one in which a porous p-type semiconductor and an n-type semiconductor are joined is used.

【0015】[0015]

【実施例】本発明の実施例を説明する前に、本発明と密
接な関係にあり、本発明の原理ともいえる熱伝導と熱電
発電について言及する。ゼーベック効果とは、量子効果
は別途考えるとすれば、熱伝導によって誘起された図4
に破線で示すような温度分布に応じ、半導体41,42
のいずれかにおいてホールあるいは電子が励起されて起
電力が発生すると考えられているが、問題はこの電気現
象が熱伝導(自由電子あるいはフォノン)による熱移動
と連携していることが熱電変換の本質であると考えられ
ている点にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing the embodiments of the present invention, reference will be made to heat conduction and thermoelectric power generation, which are closely related to the present invention and can be said to be the principle of the present invention. Seebeck effect, if we consider quantum effect separately,
According to the temperature distribution as shown by the broken line in FIG.
It is thought that holes or electrons are excited in either of these to generate electromotive force, but the problem is that the essence of thermoelectric conversion is that this electrical phenomenon is linked with heat transfer by heat conduction (free electrons or phonons). Is considered to be.

【0016】もし、このことが熱電変換の前提条件であ
るとすれば、高温側接合部に加えられた熱量Q1 の大半
は低温側接合部で排熱Q2 として捨てなければならない
ことになる。したがって、Q1 とQ2 のわずかな差が電
力に変換され、またQ2 は大気温度近くの低質の熱エネ
ルギーであるためほとんど利用価値が無いことになり、
高効率の熱電発電が難しいとされる背景になっている。
If this is a prerequisite for thermoelectric conversion, most of the heat quantity Q 1 applied to the high temperature side junction must be discarded as exhaust heat Q 2 at the low temperature side junction. . Therefore, the slight difference between Q 1 and Q 2 is converted into electric power, and since Q 2 is low-quality heat energy near atmospheric temperature, it has almost no utility value.
This is the background behind the difficulty of high-efficiency thermoelectric power generation.

【0017】これに対し、本発明においては、図1に示
すように、多孔質媒体による熱電発電媒体11の中を可
燃性ガスが、図1中に白抜きの矢印で示すように、低温
側接合部12から高温側接合部13に向かう方向に流
れ、高温側接合部13側で点火して安定な平面状の火炎
14を生じさせると、可燃性ガスを導入する端面に近い
領域で最も低く、排出する端面に近い領域で最も高い温
度になる。その結果、図1中に破線で示すような高温側
H 、低温側TL の温度分布が形成される。
On the other hand, in the present invention, as shown in FIG. 1, a combustible gas is contained in the thermoelectric power generation medium 11 made of a porous medium, and a low temperature side as shown by an outlined arrow in FIG. When flowing in the direction from the joint portion 12 toward the high temperature side joint portion 13 and igniting on the high temperature side joint portion 13 side to generate a stable flat flame 14, it becomes the lowest in the region near the end face into which the combustible gas is introduced. , The highest temperature is reached in the area near the end face to be discharged. As a result, a temperature distribution on the high temperature side T H and the low temperature side T L as shown by the broken line in FIG. 1 is formed.

【0018】伝熱学では、これを対流支配によって形成
される温度場といい、熱伝導を考慮した厳密な解析によ
って明らかにすることができ、固体内の熱放射も考慮し
た理論解析により、固体内の熱伝導は温度分布形成に決
定的役割を果たすことはないことが確認されている。そ
して、可燃性ガスは熱伝導に逆らって流れて行くことに
より、低温側接合部からの排熱Q2 を大幅に低減するこ
とができ、高効率化が可能になるのである。排熱Q2
低減はまた、多孔質の熱電発電媒体内でジュール熱が生
じて低温側接合部に移動しようとする。しかし、可燃性
ガスの導入により押し戻されることになり、結果とし
て、温度分布は熱電発電媒体の熱伝導率に支配されず対
流現象によって決まることにも起因している。
In heat transfer, this is called a temperature field formed by convection control, and it can be clarified by a rigorous analysis that considers heat conduction. It has been confirmed that the internal heat conduction does not play a decisive role in forming the temperature distribution. Then, the combustible gas flows against the heat conduction, so that the exhaust heat Q 2 from the low temperature side joint can be significantly reduced, and the efficiency can be improved. The reduction of the exhaust heat Q 2 also tends to generate Joule heat in the porous thermoelectric generation medium and move to the low temperature side junction. However, it is pushed back by the introduction of the combustible gas, and as a result, the temperature distribution is not governed by the thermal conductivity of the thermoelectric power generation medium and is determined by the convection phenomenon.

【0019】図2は本発明による熱電発電装置を要部の
みについて模式的に示しており、複層のp型半導体21
とn型半導体22とを、絶縁体23を介在させて交互に
重ねて熱電発電媒体とし、この熱電発電媒体の両端には
p型半導体21とn型半導体22との直列接続体が得ら
れるように電極24,25を設けて熱電発電素子20と
して成る。p型半導体21、n型半導体22は、いずれ
も多孔質構造を有し、電極24,25も多孔質構造とし
て電極24側から電極25側へ向かう可燃性ガスの流れ
を実現できる構造にされている。
FIG. 2 schematically shows the thermoelectric generator according to the present invention only for the main part, and includes a multi-layered p-type semiconductor 21.
The n-type semiconductor 22 and the n-type semiconductor 22 are alternately stacked with the insulator 23 interposed therebetween to form a thermoelectric power generation medium, and a series connection body of the p-type semiconductor 21 and the n-type semiconductor 22 is obtained at both ends of the thermoelectric power generation medium. Electrodes 24 and 25 are provided on the above to form the thermoelectric power generation element 20. Each of the p-type semiconductor 21 and the n-type semiconductor 22 has a porous structure, and the electrodes 24 and 25 are also structured to realize a flow of a combustible gas from the electrode 24 side to the electrode 25 side. There is.

【0020】このような熱電発電素子に対して、電極2
4側から電極25側に向けて可燃性ガスを導入し、電極
25側で点火(点火手段は図示省略)して燃焼反応を生
じさせると、温度分布は可燃性ガスを導入する端面にお
けるn型半導体とp型半導体の接合部で最も低い温度T
L となり、可燃性ガスを排出する端面におけるp型半導
体とn型半導体の接合部で最も高い温度TH となる。そ
の結果、電極24と25との間には温度差(TH
L )にもとづく起電力が発生し、電力を得ることがで
きる。
For such a thermoelectric generator, the electrode 2
When combustible gas is introduced from the 4 side toward the electrode 25 side and ignition (ignition means is not shown) is caused on the electrode 25 side to cause a combustion reaction, the temperature distribution is n-type on the end face where the combustible gas is introduced. The lowest temperature T at the junction between the semiconductor and p-type semiconductor
The temperature becomes L , which is the highest temperature T H at the junction of the p-type semiconductor and the n-type semiconductor on the end face that discharges the flammable gas. As a result, the temperature difference between the electrodes 24 and 25 (T H -
Electromotive force is generated based on TL ), and electric power can be obtained.

【0021】熱電発電素子の材料は、前述した数式3に
おける分子α2 σの大きい材料が好ましく、このような
材料としては半導体が最適であるが、これに限らず、熱
電対用の金属のほか、熱電発電効果のある材料であれば
多孔質の金属あるいはセラミックス材料であっても利用
可能である。例えば、半導体を多孔質にするには、粒子
状あるいは粉末状にした半導体材料をプレスし、焼結す
ると粉末の一部が相互に接合し、しかも粉体の間に微小
な空隙ができる。金属の場合も同様な方法でできる。多
孔質体は空隙部及び固体部が連続していればよく、たと
えば前記材料からなる金網や繊維の集合体でもよい。こ
のほか、熱電対用の金属の場合には、多数の熱電対をそ
の低温側接合部及び高温側接合部がそれぞれ可燃性ガス
導入側及び排出側の電極になるように束ねるとともに各
熱電対を電気的に直列接続するように電極を構成して実
現することもできる。
The material of the thermoelectric power generation element is preferably a material having a large molecule α 2 σ in the above-mentioned formula 3, and a semiconductor is the most suitable as such a material, but the material is not limited to this, and other than the metal for the thermocouple. A porous metal or ceramic material can be used as long as it has a thermoelectric power generation effect. For example, in order to make a semiconductor porous, when a semiconductor material in the form of particles or powder is pressed and sintered, some of the powder particles are bonded to each other, and minute voids are formed between the powder particles. The same method can be used for metal. The porous body only needs to have continuous voids and solid portions, and may be, for example, a wire mesh or an aggregate of fibers made of the above material. In addition, in the case of metal for thermocouples, a large number of thermocouples should be bundled so that the low temperature side joint and the high temperature side joint serve as the flammable gas introduction side and discharge side electrodes, respectively. It can also be realized by configuring the electrodes so that they are electrically connected in series.

【0022】図3は本発明の効果を確認するための熱電
対用の実験装置を示す。本装置では、熱電対31は直径
1.0mm、長さ30mmのアルメル−クロメル線を3
025対直列に接続したものを用いた。これらの熱電対
を断面が2.25mm2 の正方形の貫通孔を3025個
配列した厚さ25mmのセラミックス製多孔体燃焼室3
2に配置した。このような実験装置により、一方の端面
から都市ガスを供給し、他方の端面で燃焼させた。都市
ガス導入部の熱電対の温度は70℃、燃焼部の温度は5
65℃であった。この状態で負荷抵抗RL の値を0.2
Ω及び1.0Ωとした時の熱電発電電力はそれぞれ85
W及び38Wであった。以上のような実験に基づいて、
本発明によれば上記の実験のごとき温度差が容易に得ら
れるので、温度差1000℃を得ることができれば、上
記のアルメル−クロメル熱電対(一本あたり0.14W
として)を200000〜400000本束ねて多孔体
を構成すると、本発明により得られる熱電発電電力は
2.8〜5.6kWになると考えられる。
FIG. 3 shows a thermocouple experimental apparatus for confirming the effect of the present invention. In this device, the thermocouple 31 has a diameter of 1.0 mm and a length of 30 mm, which is an alumel-chromel wire.
025 pair connected in series was used. A ceramic porous combustion chamber 3 with a thickness of 25 mm in which 3025 square through holes having a cross section of 2.25 mm 2 are arranged in these thermocouples 3
Placed in 2. With such an experimental apparatus, city gas was supplied from one end face and burned at the other end face. The temperature of the thermocouple in the city gas inlet is 70 ° C and the temperature in the combustor is 5
It was 65 ° C. In this state, set the load resistance R L to 0.2
The thermoelectric power generated when Ω and 1.0Ω are 85
W and 38W. Based on the above experiments,
According to the present invention, a temperature difference such as in the above experiment can be easily obtained.
It is considered that the thermoelectric power generated by the present invention is 2.8 to 5.6 kW by bundling 200,000 to 400,000 of the above) to form a porous body.

【0023】[0023]

【発明の効果】以上説明してきたように、本発明によれ
ば多孔質媒体を用いた燃焼法により、多孔質媒体の両端
面の間に大きな温度差を生じせしめるとともに、多孔質
媒体の熱伝導率に支配されることなく低温側接合部から
放出される排熱を低減することができるので高効率の熱
電発電を行うことができる。
As described above, according to the present invention, the combustion method using a porous medium causes a large temperature difference between both end faces of the porous medium and also the heat conduction of the porous medium. Since the exhaust heat released from the low temperature side joint can be reduced without being controlled by the rate, highly efficient thermoelectric power generation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the principle of the present invention.

【図2】本発明による熱電発電装置の要部を概略的に示
した断面図である。
FIG. 2 is a sectional view schematically showing a main part of a thermoelectric generator according to the present invention.

【図3】本発明の効果を確認するための実験装置を示し
た図である。
FIG. 3 is a diagram showing an experimental apparatus for confirming the effect of the present invention.

【図4】従来の熱電発電素子の一例を説明するための図
である。
FIG. 4 is a diagram for explaining an example of a conventional thermoelectric generator.

【符号の説明】[Explanation of symbols]

11,20 熱電発電素子 12 低温側接合部 13 高温側接合部 14,34 火炎 21,41 p型半導体 22,42 n型半導体 23 絶縁体 24,25,43,44,45 電極 11,20 Thermoelectric generator 12 Low temperature side joint 13 High temperature side joint 14,34 flame 21,41 p-type semiconductor 22,42 n-type semiconductor 23 Insulator 24, 25, 43, 44, 45 electrodes

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質の熱電発電媒体の両端面にそれぞ
れ電極を配設するとともに、前記熱電発電媒体の一方の
端面から可燃性ガスを導入し、他方の端面から排出する
と共に燃焼させる燃焼反応を行うことにより、前記可燃
性ガスを導入する端面の電極に近い領域で最も低く、前
記他方の端面の電極に近い領域で最も高い温度分布を前
記熱電発電媒体中に形成し、前記電極から熱電発電電力
を取り出すようにしたことを特徴とする熱電発電方法。
1. A combustion reaction in which electrodes are provided on both end faces of a porous thermoelectric power generation medium, and a combustible gas is introduced from one end face of the thermoelectric power generation medium and discharged from the other end face and burned. By performing the above, the temperature distribution is formed in the thermoelectric power generation medium to have the lowest temperature distribution in the region near the electrode on the end face where the combustible gas is introduced, and the highest temperature distribution in the region near the electrode on the other end face. A thermoelectric power generation method characterized in that generated power is taken out.
【請求項2】 請求項1記載の熱電発電方法において、
前記熱電発電媒体は多孔質のp型半導体と多孔質のn型
半導体を電極部で接合したものであることを特徴とする
熱電発電方法。
2. The thermoelectric power generation method according to claim 1,
The thermoelectric power generation method is characterized in that the thermoelectric power generation medium is formed by joining a porous p-type semiconductor and a porous n-type semiconductor at an electrode portion.
【請求項3】 両端に電極を設けた多孔質の熱電発電素
子と、該熱電発電素子に対して一方の端面から可燃性ガ
スを導入し、他方の端面から排出すると共に燃焼せしめ
る手段を備えたことを特徴とする熱電発電装置。
3. A porous thermoelectric power generating element having electrodes at both ends, and means for introducing a combustible gas from one end surface of the thermoelectric power generating element, discharging the combustible gas from the other end surface, and burning the combustible gas. A thermoelectric generator characterized in that.
【請求項4】 請求項3記載の熱電発電装置において、
前記熱電発電素子は多孔質のp型半導体と多孔質のn型
半導体を電極部で接合したものであることを特徴とする
熱電発電装置。
4. The thermoelectric generator according to claim 3,
The thermoelectric power generation device is characterized in that the thermoelectric power generation element is formed by joining a porous p-type semiconductor and a porous n-type semiconductor at an electrode portion.
JP21758093A 1993-09-01 1993-09-01 Thermoelectric generation method and device Expired - Fee Related JP3446146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21758093A JP3446146B2 (en) 1993-09-01 1993-09-01 Thermoelectric generation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21758093A JP3446146B2 (en) 1993-09-01 1993-09-01 Thermoelectric generation method and device

Publications (2)

Publication Number Publication Date
JPH0774397A JPH0774397A (en) 1995-03-17
JP3446146B2 true JP3446146B2 (en) 2003-09-16

Family

ID=16706513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21758093A Expired - Fee Related JP3446146B2 (en) 1993-09-01 1993-09-01 Thermoelectric generation method and device

Country Status (1)

Country Link
JP (1) JP3446146B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598405B2 (en) * 2001-02-09 2003-07-29 Bsst Llc Thermoelectric power generation utilizing convective heat flow
JP4777536B2 (en) * 2001-05-16 2011-09-21 オパーツ株式会社 Porous thermoelectric generator
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
CN104990301B (en) 2007-05-25 2019-04-16 詹思姆公司 Distribution formula thermoelectricity heating and cooling system and method
EP2315987A2 (en) 2008-06-03 2011-05-04 Bsst Llc Thermoelectric heat pump
IN2012DN00830A (en) 2009-07-24 2015-06-26 Bsst Llc
FR2962597B1 (en) * 2010-07-06 2013-04-26 Commissariat Energie Atomique DEVICE FOR GENERATING CURRENT AND / OR VOLTAGE BASED ON THERMOELECTRIC MODULE ARRANGED IN A FLOW OF FLUID.
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Also Published As

Publication number Publication date
JPH0774397A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
JP3446146B2 (en) Thermoelectric generation method and device
JP5422383B2 (en) Thermoelectric conversion module, heat exchanger using the same, thermoelectric temperature control device, and thermoelectric power generator
CN101313421B (en) Thermoelectric conversion module and heat exchanger and thermoelectric power generator using it
JP5066139B2 (en) Thermoelectric generator with improved energy conversion efficiency using convective heat flow
CN102792579B (en) Electricity generation system
JP2009081287A (en) Thermoelectric conversion module and heat exchanger using the same, thermoelectric temperature controller, and thermoelectric generator
US8927849B2 (en) Waste heat thermoelectric generator with auxiliary burner
US4463214A (en) Thermoelectric generator apparatus and operation method
TW201447194A (en) Self-powered boiler using thermoelectric generator
EP3020077B1 (en) Thermoelectric generator
JPH08222771A (en) Thermoelectric power generation element and thermoelectric power generation equipment
TWI234634B (en) Multiple hot zone igniters
CA2171384C (en) Thermo-electric power generation using porous metal blocks having a plurality of thermocouples connected in series
JP2009081178A (en) Method of manufacturing thermoelectric conversion module
Susanto et al. Application of thermoelectric generator TEG type parallel series electric circuit produces electricity from heat rocket stove
JP3223330B2 (en) Thermoelectric generation method and device
JP3585565B2 (en) Thermoelectric element using porous metal
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator
KR20120112735A (en) Device for generating electric energy from a heat-conducting material
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
CN208579332U (en) Gas source automatic identification control device
CN108768213A (en) A kind of temperature difference electricity generation device
JP4777536B2 (en) Porous thermoelectric generator
JPH08254468A (en) Thermoelectric generating element and temperature sensor combining metal materials as thermocouple
JP3614531B2 (en) Thermoelectric generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030528

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees