JPH0759371A - Method and equipment for generation of energy - Google Patents

Method and equipment for generation of energy

Info

Publication number
JPH0759371A
JPH0759371A JP3227375A JP22737591A JPH0759371A JP H0759371 A JPH0759371 A JP H0759371A JP 3227375 A JP3227375 A JP 3227375A JP 22737591 A JP22737591 A JP 22737591A JP H0759371 A JPH0759371 A JP H0759371A
Authority
JP
Japan
Prior art keywords
heat
generator
energy converter
energy
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3227375A
Other languages
Japanese (ja)
Inventor
Friedrich Harbach
フリードリヒ・ハルバッハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of JPH0759371A publication Critical patent/JPH0759371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/21Temperature-sensitive devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/10Heat inputs by burners
    • F02G2254/11Catalytic burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/30Heat inputs using solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/13003Energy recovery by thermoelectric elements, e.g. by Peltier/Seebeck effect, arranged in the combustion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/60Thermoelectric generators, e.g. Peltier or Seebeck elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/80Electric generators driven by external combustion engines, e.g. Stirling engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers

Abstract

PURPOSE: To provide a method with which a heat generator can be directly heated by using at least one heat source and an energy converter, linked with the heat source and provide a device for implementing the method. CONSTITUTION: Heat is generated by combustion of a catalyst. A heat generator 1, which converts the heat into electrical energy is brought into contact with a heat exchanger 5 in the region of a high temperature chamber 2, and further, the heat exchanger 5 is linked with a catalyst combustion device 6. The heat generator 1 consists of a sodium concentration cell, a Seebeck generator or a Sterling engine having a generator on its downstream.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、少なくとも一個の熱源と該熱源
に連結したエネルギー変換器とを使用して、熱を電気エ
ネルギーに変換する方法、および該方法を実行するため
の装置に関する。
The present invention relates to a method for converting heat into electrical energy using at least one heat source and an energy converter connected to the heat source, and an apparatus for carrying out the method.

【0002】技術の現状では、放物面鏡の焦点にナトリ
ウム濃淡電池を設けた装置が知られており、太陽エネル
ギーを電気エネルギーに変換するために使用されてい
る。また、このような装置として、ナトリウム濃淡電池
の代りに下流に発電機を備えたスターリングエンジンを
使用したものが知られている。この他、放物面鏡の焦点
に蓄熱器を設けた装置も知られている。これらのエネル
ギー変換器は、蓄熱器に直結している。ドイツ特許出願
P 3,920,012.4には、熱発電機が記載されている。該発
電機は、太陽エネルギーだけでなく、化石燃料によって
作動する一以上の燃焼器によってもまた所望の温度にま
で加熱され得る。このような熱源が使用される場合、前
記熱発電機の設計において種々の問題が生じる。特に、
前記熱発電機には、熱機械的に安定であること、耐食性
があること、吸収性が高いこと、高い熱伝導率を有する
ことといった性能が確保されなくてはならない。とりわ
け、高い吸収率を他の要件と組合せることは、熱発電機
の設計上かなり困難である。更に、直接的な炎による燃
焼の結果として、温度が許容範囲外または望ましくない
程度にまで高くなることが頻繁に起こる。
In the state of the art, devices are known in which a sodium concentration cell is provided at the focal point of a parabolic mirror and are used to convert solar energy into electrical energy. Further, as such a device, there is known a device that uses a Stirling engine having a generator downstream in place of the sodium concentration battery. In addition, a device in which a heat storage device is provided at the focal point of a parabolic mirror is also known. These energy converters are directly connected to the heat accumulator. German patent application P 3,920,012.4 describes a thermo-generator. The generator can be heated to the desired temperature not only by solar energy, but also by one or more combustors operated by fossil fuels. When such a heat source is used, various problems occur in the design of the thermoelectric generator. In particular,
The thermo-generator must ensure performance such as thermo-mechanical stability, corrosion resistance, high absorption, and high thermal conductivity. Above all, combining high absorptivity with other requirements is rather difficult in the design of thermogenerators. In addition, temperatures often become unacceptable or undesirably high as a result of direct flame combustion.

【0003】それゆえ、本発明の目的は、簡易で且つよ
り直接的に熱発電機を加熱することを可能にする方法、
およびその方法を実行するための装置を提供することで
ある。 本発明の方法は、少なくとも一個の熱源(6)
と該熱源に連結したエネルギー変換器(1)とを使用し
て熱を電気エネルギーに変換する方法であって、前記エ
ネルギー変換器(1)に供給される熱が、触媒燃焼によ
って得られることを特徴とする。また、該方法を実行す
るための装置は、熱源(6)とエネルギー変換器(1)
とを有し、前記エネルギー変換器(1)は熱発電機とし
て設計されており、該変換器内の高温チャンバー(2)
が、熱を誘導するために触媒燃焼用に設計された部材
(6)に連結していることを特徴とする。
Therefore, it is an object of the present invention to provide a simple and more direct method of heating a thermogenerator,
And to provide an apparatus for performing the method. The method of the invention comprises at least one heat source (6)
A method for converting heat into electric energy using a heat exchanger and an energy converter (1) connected to the heat source, wherein the heat supplied to the energy converter (1) is obtained by catalytic combustion. Characterize. The apparatus for carrying out the method also comprises a heat source (6) and an energy converter (1).
And the energy converter (1) is designed as a thermo-generator, a high temperature chamber (2) in the converter
Is connected to a member (6) designed for catalytic combustion to induce heat.

【0004】触媒燃焼によって、熱発電機を所望の温度
にまで加熱することが問題なく可能になる一方、上述し
たような技術の現状における欠点を回避することもでき
る。本発明では、触媒燃焼器が熱交換器を介して前記熱
発電機の高温チャンバーに連結している。この結果、前
記熱発電機において、特に高い熱機械的安定性および耐
食性は不要となる。当該触媒燃焼により放出される熱量
は、その放出温度とは無関係であり、前記熱交換器を経
て熱発電機まで更なる障害なしに伝達され得る。この場
合、窒素酸化物の生成における汚染物質の発生、例え
ば、前記熱発電機が化石燃料で作動する燃焼器によって
加熱される時に発生するよう汚染物質は除かれる。
While catalytic combustion makes it possible to heat the thermogenerator to the desired temperature without problems, it also avoids the disadvantages of the state of the art as described above. In the present invention, the catalytic combustor is connected to the hot chamber of the thermogenerator via a heat exchanger. As a result, particularly high thermomechanical stability and corrosion resistance are unnecessary in the thermoelectric generator. The amount of heat released by the catalytic combustion is independent of its release temperature and can be transferred via the heat exchanger to the thermogenerator without further hindrance. In this case, pollutants are removed in the production of nitrogen oxides, such as those generated when the thermoelectric generator is heated by a fossil fuel operated combustor.

【0005】本発明の更なる特徴は、請求項3ないし7
の何れかに記載された点である。
Further features of the invention are set forth in claims 3-7.
It is the point described in any of the above.

【0006】以下、図面を参照して本発明を説明する。The present invention will be described below with reference to the drawings.

【0007】図1は、本発明に係る装置の一例の構成概
略を示す説明図である。同図において、1は熱発電機を
示す。ここで図示された例において、熱発電機1は、ナ
トリウム濃淡電池として形成されている。この熱発電機
1は、基本的な構成として高温チャンバー2および低温
チャンバー3を有する。これら二つのチャンバーは、ア
ルカリ金属イオンを伝導する壁4によって相互に密封さ
れ遮断されている。図に示す如く、高温チャンバー2の
一方の境界壁は、熱交換器5によって形成されており、
該高温チャンバー2に触媒燃焼器6が連接している。本
発明によれば、熱交換器5の外部表面5Fは、触媒層7
によって被覆されている。該触媒層7は、黒色希土類/
ペロブスカイト粉末を使用して形成されている。また、
触媒層7は、同時に燃焼器6の一部を構成している。こ
の燃焼器6には、燃焼に必要な気体または液体燃料が、
天然ガス、アルコール、またはディーゼルオイルの形態
で、燃焼用の空気または酸素と共に管6Lを経て導入さ
れ、触媒層7上を流れる。ここで触媒燃焼によって生ず
る気体の反応生成物は、管6Rを経て外部に放出され
る。触媒燃焼中に放出される熱は、熱交換器5によっ
て、ナトリウム濃淡電池のチャンバー2を加熱するため
に直接利用される。ナトリウム濃淡電池1は、熱輸送媒
体としてナトリウムを含有する。このナトリウムは、チ
ャンバー2が加熱された結果蒸発し、壁4を通過して移
動し、チャンバー3にアルカリ金属イオンを伝導する。
ここでチャンバー3は通常低温状態であるため、移動し
たナトリウム液相に戻る。次に、該ナトリウムは、チャ
ンバー3から管およびポンプ(図示せず)を経てチャン
バー2に戻る。ナトリムイオンが、前記アルカリ金属イ
オンを伝導する固体電解質壁をを通過する結果として、
電位は前記二つのチャンバー2および3の間の値をと
る。この電圧は、前記二つのチャンバー2および3の二
つの集電装置2Eと3Eとの間でタップされる。
FIG. 1 is an explanatory view showing a schematic configuration of an example of an apparatus according to the present invention. In the figure, 1 indicates a thermo-generator. In the example illustrated here, the thermoelectric generator 1 is formed as a sodium concentration cell. The thermoelectric generator 1 has a high temperature chamber 2 and a low temperature chamber 3 as a basic configuration. These two chambers are sealed and blocked from each other by a wall 4 that conducts alkali metal ions. As shown in the figure, one boundary wall of the high temperature chamber 2 is formed by the heat exchanger 5,
A catalytic combustor 6 is connected to the high temperature chamber 2. According to the present invention, the outer surface 5F of the heat exchanger 5 has the catalyst layer 7
Is covered by. The catalyst layer 7 is a black rare earth /
It is formed using perovskite powder. Also,
At the same time, the catalyst layer 7 constitutes a part of the combustor 6. In the combustor 6, the gas or liquid fuel required for combustion is
In the form of natural gas, alcohol, or diesel oil, it is introduced together with air or oxygen for combustion through the pipe 6L and flows on the catalyst layer 7. The gas reaction product generated by the catalytic combustion is discharged to the outside through the pipe 6R. The heat released during catalytic combustion is directly utilized by the heat exchanger 5 to heat the chamber 2 of the sodium concentration cell. The sodium concentration battery 1 contains sodium as a heat transport medium. This sodium evaporates as a result of the heating of the chamber 2, moves through the wall 4 and conducts alkali metal ions into the chamber 3.
Here, since the chamber 3 is usually in a low temperature state, it returns to the moved sodium liquid phase. The sodium then returns from chamber 3 to chamber 2 via a tube and pump (not shown). As a result of sodium ions passing through the solid electrolyte wall conducting the alkali metal ions,
The electric potential has a value between the two chambers 2 and 3. This voltage is tapped between the two current collectors 2E and 3E of the two chambers 2 and 3.

【0008】また、本発明では、上述したタイプの熱発
電機の代りに、ゼーベック発電機または下流に発電機を
備えたスターリングエンジンを使用することもできる。
In the present invention, it is also possible to use a Seebeck generator or a Stirling engine equipped with a generator downstream instead of the thermoelectric generator of the type described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るエネルギー発生装置の一例の構成
概略を示す説明図。
FIG. 1 is an explanatory diagram showing a schematic configuration of an example of an energy generation device according to the present invention.

【符号の説明】[Explanation of symbols]

1…熱発電機、2…高温チャンバー、3…低温チャンバ
ー、2E,3E…集電装置、4…壁、5…熱交換器、5
F…熱交換器の外部表面、6…触媒燃焼器、6L,6R
…管、7…触媒層
1 ... Thermo-generator, 2 ... High temperature chamber, 3 ... Low temperature chamber, 2E, 3E ... Current collector, 4 ... Wall, 5 ... Heat exchanger, 5
F ... External surface of heat exchanger, 6 ... Catalytic combustor, 6L, 6R
… Tube, 7… Catalyst layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一個の熱源(6)と該熱源に
連結したエネルギー変換器(1)とを使用して、熱を電
気エネルギーに変換する方法であって、 前記エネルギー変換器(1)に供給される熱が、触媒燃
焼によって得られることを特徴とする方法。
1. A method for converting heat into electrical energy using at least one heat source (6) and an energy converter (1) connected to the heat source, said energy converter (1) comprising: A method characterized in that the heat supplied is obtained by catalytic combustion.
【請求項2】 熱源(6)とエネルギー変換器(1)と
を有する請求項1記載の方法を実行する装置であって、 前記エネルギー変換器(1)が熱発電機として設計さ
れ、該変換器の高温チャンバー(2)が、熱を誘導する
ために触媒燃焼用に設計された部材(6)に連結してい
ることを特徴とする装置。
2. An apparatus for carrying out the method according to claim 1, comprising a heat source (6) and an energy converter (1), said energy converter (1) being designed as a thermo-generator, said converter. The high temperature chamber (2) of claim 1 is connected to a member (6) designed for catalytic combustion to induce heat.
【請求項3】 前記エネルギー変換器(1)の高温チャ
ンバー(2)が、触媒燃焼器(6)に連結した熱交換器
(5)と接する請求項2記載の装置。
3. A device according to claim 2, wherein the high temperature chamber (2) of the energy converter (1) contacts a heat exchanger (5) connected to a catalytic combustor (6).
【請求項4】 前記熱交換器(5)の外部表面(5F)
に触媒層(7)が設けられていることと、該外部表面
(5F)が触媒燃焼器(6)の内部表面となることとを
特徴とする請求項3記載の装置。
4. The outer surface (5F) of the heat exchanger (5)
A device according to claim 3, characterized in that a catalyst layer (7) is provided on the outer surface (5F) and the outer surface (5F) is the inner surface of the catalytic combustor (6).
【請求項5】 気体または液体燃料が、空気および酸素
と共に管(6L)を経て触媒燃焼器(6)に供給され、
触媒層(7)上を通過し得ることを特徴とする請求項3
または4記載の装置。
5. A gaseous or liquid fuel is supplied to a catalytic combustor (6) via a tube (6L) together with air and oxygen,
4. It can pass over the catalyst layer (7).
Or the device according to 4.
【請求項6】 前記触媒層(7)が、黒色希土類/ペロ
ブスカイト粉末から調製されていることを特徴とする請
求項3ないし5の何れかに記載の装置。
6. Device according to claim 3, characterized in that the catalyst layer (7) is prepared from a black rare earth / perovskite powder.
【請求項7】 前記熱発電機(1)が、ナトリウム濃淡
電池として、ゼーベック発電機として、または下流に発
電機を備えたスターリングエンジンとして設計されてい
ることを特徴とする請求項2ないし6の何れかに記載の
装置。
7. The thermoelectric generator (1) is designed as a sodium concentration cell, as a Seebeck generator, or as a Stirling engine with a generator downstream thereof. The device according to claim 1.
JP3227375A 1990-09-07 1991-09-06 Method and equipment for generation of energy Pending JPH0759371A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4028375:5 1990-09-07
DE4028375A DE4028375A1 (en) 1990-09-07 1990-09-07 Heat to electrical energy conversion - using heat source and energy converter and heat supplied to converter is obtained by catalytic combustion

Publications (1)

Publication Number Publication Date
JPH0759371A true JPH0759371A (en) 1995-03-03

Family

ID=6413772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3227375A Pending JPH0759371A (en) 1990-09-07 1991-09-06 Method and equipment for generation of energy

Country Status (2)

Country Link
JP (1) JPH0759371A (en)
DE (1) DE4028375A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513092A (en) * 2019-09-18 2019-11-29 吉林大学 A kind of exploitation of auxiliary oil shale in-situ catalytic combustion system and its application method
CN111211000A (en) * 2020-01-08 2020-05-29 南京航空航天大学 Thermally charged supercapacitor with nanoparticle electrolyte

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT402848B (en) * 1993-03-16 1997-09-25 Vaillant Gmbh Fluid heater
NL1001511C2 (en) * 1995-10-26 1997-05-02 Stichting Energie Catalytic burner element, combustion engine comprising such a burner element and device provided with such a combustion engine.
WO2010102634A2 (en) 2009-03-11 2010-09-16 Dantherm Power A/S Combustion system for generating heat and power

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT126498B (en) * 1931-01-28 1932-01-25 Viktor Dr Leisser Device for generating electrical energy.
US4835071A (en) * 1987-08-06 1989-05-30 California Institute Of Technology Thin metal electrode for AMTEC

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110513092A (en) * 2019-09-18 2019-11-29 吉林大学 A kind of exploitation of auxiliary oil shale in-situ catalytic combustion system and its application method
CN111211000A (en) * 2020-01-08 2020-05-29 南京航空航天大学 Thermally charged supercapacitor with nanoparticle electrolyte
CN111211000B (en) * 2020-01-08 2021-05-25 南京航空航天大学 Thermally charged supercapacitor with nanoparticle electrolyte

Also Published As

Publication number Publication date
DE4028375A1 (en) 1992-03-12

Similar Documents

Publication Publication Date Title
JP4460219B2 (en) Thermoelectric generator and method for improving efficiency in a system of a thermoelectric generator
Zhao et al. Performance characteristics of a direct carbon fuel cell/thermoelectric generator hybrid system
Chubb Analysis of gas dissociation solar thermal power system
US20020179137A1 (en) Improved tpv cylindrical generator for home cogeneration
Diver et al. Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport
KR101703955B1 (en) Thermoelectric generation system and hybrid boiler using the same
CN105827152A (en) Micro-combustion thermoelectric generator based on porous medium micro-combustion
Andraka et al. Solar heat pipe testing of the Stirling thermal motors 4-120 Stirling engine
JPH0759371A (en) Method and equipment for generation of energy
Guo et al. Performance analysis and multi-objective optimization for a hybrid system based on solid oxide fuel cell and supercritical CO2 Brayton cycle with energetic and ecological objective approaches
JP2001153470A (en) Solar heat power generating system
EP1245796B1 (en) Hybrid combustion power system
RU2111422C1 (en) Combined solar-electric power plant
JPH07111344A (en) Thermoelectric power generating device
Mattarolo Development and modelling of a thermophotovoltaic system
RU2191447C2 (en) Thermoelectric generator
US20020185168A1 (en) Thermoelectric vaporizer for the efficient generation of electricity thermoelectrically and for the simultaneous vaporization of a cryogen
JP4777536B2 (en) Porous thermoelectric generator
JP3047561B2 (en) Waste heat recovery method for waste incinerator
JP2001178163A (en) Method and apparatus for power generation using solar heat
JPS60119305A (en) Thermoelectric conversion-organic medium cycle composite generator
Palmer et al. Solar farms utilizing low-pressure closed-cycle gas turbines
Morris Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating
Andraka et al. Recent reflux receiver developments under the US DOE program
Crowley et al. Performance of a wick return AMTEC cell with a micromachined condenser