JP2006332398A - Thermoelectric direct converter - Google Patents

Thermoelectric direct converter Download PDF

Info

Publication number
JP2006332398A
JP2006332398A JP2005154926A JP2005154926A JP2006332398A JP 2006332398 A JP2006332398 A JP 2006332398A JP 2005154926 A JP2005154926 A JP 2005154926A JP 2005154926 A JP2005154926 A JP 2005154926A JP 2006332398 A JP2006332398 A JP 2006332398A
Authority
JP
Japan
Prior art keywords
temperature side
direct conversion
thermal
semiconductor
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154926A
Other languages
Japanese (ja)
Other versions
JP5105718B2 (en
Inventor
Naokazu Iwanade
直和 岩撫
Naruhito Kondo
成仁 近藤
Osamu Tsuneoka
治 常岡
Kazuki Tateyama
和樹 舘山
Takahiro Sogo
敬寛 十河
Akihiro Hara
昭浩 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005154926A priority Critical patent/JP5105718B2/en
Publication of JP2006332398A publication Critical patent/JP2006332398A/en
Application granted granted Critical
Publication of JP5105718B2 publication Critical patent/JP5105718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric direct converter that decreases friction between each of high temperature side electrodes and each of thermoelectric direct conversion semiconductor pairs, even when a displacement takes place between each of the high temperature side electrodes and each of the thermoelectric direct conversion semiconductor pairs due to thermal deformation, so that damages or breakages can thereby be prevented. <P>SOLUTION: The thermoelectric direct converter 1 disclosed herein is provided with a plurality of paired thermoelectric direct conversion semiconductor 4; low temperature side electrodes 6 each joined with low temperature side ends of the thermoelectric direct conversion semiconductor pairs; a low temperature side insulation board 8 connected to the thermoelectric direct conversion semiconductor pairs via the low temperature side electrodes; the high temperature side electrodes 5 each located on the high temperature side ends of the thermoelectric direct conversion semiconductor pairs; a plurality of cover members 27 respectively covering the high temperature side electrodes 5; and a high temperature side insulation board 7 thermally connected to the high temperature side electrodes 5 via the high temperature side electrodes and the cover members, and slide members 28a, 28b are provided between each of the high temperature side electrodes and each of the thermoelectric direct conversion semiconductor pairs. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は熱−電気直接変換装置に係り、特に変換効率を良好に維持できる熱−電気直接変換装置に関する。   The present invention relates to a thermal-electrical direct conversion device, and more particularly to a thermal-electrical direct conversion device that can maintain good conversion efficiency.

近年、人類が消費するエネルギー量が歴史的に例を見ない速度で急増した結果、炭酸ガス(CO)などの温室効果ガスによる地球温暖化の問題が浮上しており、地球環境を保全するためにCO発生を可及的に抑制可能なエネルギー源の開発が全世界的に渇望されている。このような状況の中で、主として省エネルギーの観点から、大規模な廃熱の利用が従来から進行し、現在では中小規模の廃熱まで、その再利用が注目されつつある。 In recent years, the amount of energy consumed by mankind has rapidly increased at an unprecedented rate. As a result, the problem of global warming caused by greenhouse gases such as carbon dioxide (CO 2 ) has emerged, and the global environment is preserved. Therefore, development of an energy source capable of suppressing CO 2 generation as much as possible is craved all over the world. Under such circumstances, mainly from the viewpoint of energy saving, the use of large-scale waste heat has been progressing, and the reuse of medium-to-small-scale waste heat is now attracting attention.

ところが、中小規模廃熱については、たとえその廃熱の質が高くとも、熱量規模自体が比較的小さいことから、たとえば蒸気タービンなどの大規模廃熱用の発電装置では、熱量に対して大掛りな装置が必要となる結果、発電効率が極めて低く、既存設備の改造や保守・補修コストに見合う電気量が得られないという課題があった。   However, with regard to medium- and small-scale waste heat, even if the quality of the waste heat is high, the amount of heat itself is relatively small. For example, in a power generator for large-scale waste heat such as a steam turbine, the amount of heat is large. As a result, the power generation efficiency is extremely low, and there is a problem that the amount of electricity corresponding to the modification of existing facilities and the maintenance and repair costs cannot be obtained.

また、その熱量規模が小さいことから、温水利用などの熱利用も見送られている場合が多く、全世界的に中小規模廃熱の利用は進捗し難い状況にある。そのため、これら中小規模の廃熱のエネルギーから電気エネルギーを簡易かつ小型の装置システムで変換できる熱−電気直接変換装置の開発実用化が待望されている。   In addition, due to the small amount of heat, the use of heat, such as the use of hot water, is often forgotten, and the use of medium- and small-scale waste heat is difficult to progress worldwide. Therefore, the development and practical application of a direct heat-electricity conversion device that can convert electric energy from the energy of waste heat of medium and small scales with a simple and small device system is awaited.

このような技術的要請に対処するため、半導体を用いて熱エネルギーを直接電気エネルギーに変換する熱−電気直接変換装置の開発が従来から進められている(例えば特許文献1参照)。   In order to cope with such technical demands, development of a direct thermal-electric conversion device that directly converts thermal energy into electrical energy using a semiconductor has been in progress (see, for example, Patent Document 1).

一般に、この種の熱−電気直接変換装置は、トムソン効果、ペルチェ効果、ゼーベック効果などの熱電効果を利用したp型およびn型の熱−電気直接変換半導体(熱伝変換素子)を組み合わせて構成される。一般的な構造を図4に示す。すなわち、従来の熱−電気直接変換装置100は、p型熱−電気直接変換半導体チップ(p型半導体)2およびn型熱−電気直接変換半導体チップ(n型半導体)3が、高温側電極5を有する高温側絶縁板7と、低温側電極6を有する低温側絶縁板8に挟まれた構造を有する。p型半導体2およびn型半導体3は、熱−電気直接変換半導体対(半導体対)4を形成し、変換装置全体では電気的及び熱的に多くの熱−電気直接変換半導体対が接続される。   In general, this type of direct heat-electric conversion device is composed of a combination of p-type and n-type direct heat-electric conversion semiconductors (thermoconduction elements) that use thermoelectric effects such as the Thomson effect, Peltier effect, and Seebeck effect. Is done. A general structure is shown in FIG. That is, in the conventional direct thermo-electric conversion device 100, the p-type thermo-electric direct conversion semiconductor chip (p-type semiconductor) 2 and the n-type thermo-electric direct conversion semiconductor chip (n-type semiconductor) 3 include the high temperature side electrode 5. And a low temperature side insulating plate 8 having a low temperature side electrode 6. The p-type semiconductor 2 and the n-type semiconductor 3 form a thermal-electrical direct conversion semiconductor pair (semiconductor pair) 4, and many thermal-electrical direct conversion semiconductor pairs are connected electrically and thermally in the entire conversion device. .

p型半導体2およびn型半導体3は、高温側電極5と接続され、さらにp型半導体2およびn型半導体3は、低温側電極6と低温側接合部12を介して接合されている。   The p-type semiconductor 2 and the n-type semiconductor 3 are connected to the high temperature side electrode 5, and the p type semiconductor 2 and the n type semiconductor 3 are joined to the low temperature side electrode 6 via the low temperature side junction 12.

上記のように構成された熱−電気直接変換装置1において、高温側電極5に熱流13が供給されると、熱はp型半導体2およびn型半導体3に伝達され、p型、n型半導体2、3を通過する熱流14に沿って、p型半導体2の内部では半導体キャリアである正孔16が、またn型半導体3の内部では半導体キャリアである電子17が、p型半導体2あるいはn型半導体3に低温側接合部12を介して接合されている低温側電極6に向かって移動する。   In the heat-electricity direct conversion device 1 configured as described above, when the heat flow 13 is supplied to the high temperature side electrode 5, the heat is transferred to the p-type semiconductor 2 and the n-type semiconductor 3, and the p-type and n-type semiconductors. Along the heat flow 14 passing through 2 and 3, holes 16 that are semiconductor carriers are formed inside the p-type semiconductor 2, and electrons 17 that are semiconductor carriers are formed inside the p-type semiconductor 3, and the p-type semiconductor 2 or n It moves toward the low temperature side electrode 6 joined to the mold semiconductor 3 via the low temperature side joint 12.

一方p型、n型半導体2、3を通過する熱流14は、低温側電極6を通過して低温側電極から放出される熱流15となる。ここで熱−電気直接変換装置1の外部に、適当な電気的負荷19が、熱−電気直接変換装置100に設置されている電極−電流取出手段との接続手段9と、それに接続された電流取出手段10とを介して、熱−電気直接変換装置1に電気的に接続されることにより、前記半導体キャリアの移動は電流の流れ18として熱−電気直接変換装置100の外部に取出して利用することができる。   On the other hand, the heat flow 14 that passes through the p-type and n-type semiconductors 2 and 3 becomes a heat flow 15 that passes through the low-temperature side electrode 6 and is released from the low-temperature side electrode. Here, an appropriate electrical load 19 is connected to the electrode-current extraction means 9 installed in the thermal-electrical direct conversion device 100 outside the thermal-electrical direct conversion device 1 and the current connected thereto. By being electrically connected to the thermal-electrical direct conversion device 1 via the extraction means 10, the movement of the semiconductor carrier is taken out of the thermal-electrical direct conversion device 100 and used as a current flow 18. be able to.

このように熱-電気直接変換装置は、高温側電極と低温側電極との温度差を、熱−電気直接変換半導体を用いて、直接電気に変換し装置外部に電力として取出すことができるものであるが、逆に外部から電流を与えることにより、低温側から高温側あるいは高温側から低温側に熱の移動を行うこともできる。   In this way, the thermal-electrical direct conversion device can convert the temperature difference between the high-temperature side electrode and the low-temperature side electrode directly into electricity using a thermal-electrical direct conversion semiconductor and take it out as power outside the device. However, on the contrary, heat can be transferred from the low temperature side to the high temperature side or from the high temperature side to the low temperature side by applying an electric current from the outside.

この他、熱−電気直接変換装置の形態としては種々提案されている。例えば特許文献2には、熱−電気直接変換半導体対を直線状に配列すると共に、熱−電気直接変換半導体対と電極の接合部にカーボンを主成分とした歪緩和電極を形成する形態のものが開示されている。   In addition, various types of direct thermal-electric conversion devices have been proposed. For example, Patent Document 2 discloses a configuration in which thermal-electrical direct conversion semiconductor pairs are linearly arranged and a strain relaxation electrode mainly composed of carbon is formed at the junction between the thermal-electrical direct conversion semiconductor pair and the electrode. Is disclosed.

また、特許文献3には、高温側絶縁板を樹脂及び無機系粉末からなる複合膜から形成する技術が開示されている。
特開2004−119833号公報 特開2000−188429号公報 特開平11−340523号公報
Patent Document 3 discloses a technique for forming a high temperature side insulating plate from a composite film made of a resin and an inorganic powder.
JP 2004-1119833 A JP 2000-188429 A JP 11-340523 A

図5は、従来の熱−電気直接変換装置100の構造の一形態を示す断面図である。一般に、熱−電気直接変換半導体対4の高温側と低温側との温度差が大きいほど発電効率は高くなる。また、熱−電気直接変換装置100に電流を印加し高温側電極と低温側電極との間に温度差を生じさせる場合にあっては、印加する電流が大きいほど大きな温度差を得ることができる。   FIG. 5 is a cross-sectional view showing one embodiment of the structure of a conventional direct thermal-electric conversion device 100. Generally, the power generation efficiency increases as the temperature difference between the high temperature side and the low temperature side of the thermoelectric direct conversion semiconductor pair 4 increases. Further, in the case where a current is applied to the thermo-electric direct conversion device 100 to cause a temperature difference between the high temperature side electrode and the low temperature side electrode, a larger temperature difference can be obtained as the applied current is larger. .

他方、熱−電気直接変換半導体対4の高温側と低温側との温度差が大きくなると、高温側と低温側の構成部材の熱変形量の差も大きくなる。   On the other hand, when the temperature difference between the high temperature side and the low temperature side of the thermoelectric direct conversion semiconductor pair 4 increases, the difference in the amount of thermal deformation between the constituent members on the high temperature side and the low temperature side also increases.

この熱変形量の差を吸収するため、高温側の電極(高温側電極5)を熱−電気直接変換半導体対4に固定せず、熱−電気直接変換半導体対4を跨ぐように載置する形態がとられることがある。高温側電極5と熱−電気直接変換半導体対4とを非固定とすることにより熱変形量を吸収することが可能となり、熱−電気直接変換半導体対4、低温側接合部12等の破損をある程度防止することができる。   In order to absorb this difference in the amount of thermal deformation, the high temperature side electrode (high temperature side electrode 5) is not fixed to the heat-electric direct conversion semiconductor pair 4, but is placed so as to straddle the heat-electric direct conversion semiconductor pair 4. Form may be taken. By unfixing the high temperature side electrode 5 and the heat-electricity direct conversion semiconductor pair 4, it becomes possible to absorb the amount of thermal deformation, and damage to the heat-electricity direct conversion semiconductor pair 4, the low temperature side junction 12, etc. It can be prevented to some extent.

この際、高温側電極5が振動等で移動することがないように、バスタブ状の箱構造を有するカバー部材27を、高温側電極5を覆うように配設する形態としている。このカバー部材27の存在によって、高温側電極5と熱−電気直接変換半導体対4とが非固定であっても、高温側電極5が熱−電気直接変換半導体対の高温側端面の位置から移動、或いはずれることを回避している。   At this time, the cover member 27 having a bathtub-like box structure is arranged so as to cover the high temperature side electrode 5 so that the high temperature side electrode 5 does not move due to vibration or the like. Due to the presence of the cover member 27, even if the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair 4 are not fixed, the high temperature side electrode 5 moves from the position of the high temperature side end face of the thermoelectric direct conversion semiconductor pair. Or avoiding misalignment.

しかしながら、上記構造においては、高温側と低温側の温度差によって熱変形が生じた場合、高温側電極5と熱−電気直接変換半導体対の接触面に熱膨張差に起因する摩擦力が発生し、この摩擦力によって熱−電気直接変換半導体対4、高温側電極5、又は低温側接合部12(以下、熱−電気直接変換半導体対4等という)が引っ張られたり圧縮されたりするため、熱−電気直接変換半導体対4等に傷や破損が発生し、結果的には発電性能が低下する可能性が残る。   However, in the above structure, when thermal deformation occurs due to the temperature difference between the high temperature side and the low temperature side, a frictional force due to the difference in thermal expansion is generated on the contact surface between the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair. The frictional force causes the heat-electric direct conversion semiconductor pair 4, the high temperature side electrode 5, or the low temperature side junction 12 (hereinafter referred to as the heat-electric direct conversion semiconductor pair 4 etc.) to be pulled or compressed. -There is a possibility that the electric direct conversion semiconductor pair 4 or the like may be damaged or damaged, resulting in a decrease in power generation performance.

本発明は、上記事情に鑑みてなされたもので、高温側電極と熱−電気直接変換半導体対との間に熱変形による変位が生じた場合であっても、高温側電極と熱−電気直接変換半導体対との間の摩擦を低減し、これにより熱−電気直接変換半導体対等の傷や破損を防止し、発電効率の低下を回避することができる熱−電気直接変換装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even when a displacement due to thermal deformation occurs between the high-temperature side electrode and the thermo-electric direct conversion semiconductor pair, the high-temperature side electrode and the thermo-electric direct To provide a thermal-electrical direct conversion device capable of reducing friction between the conversion semiconductor pair, thereby preventing scratches and breakage of the thermal-electrical direct conversion semiconductor pair and avoiding a decrease in power generation efficiency. Objective.

上記課題を解決するために、本発明に係る熱−電気直接変換装置は、請求項1に記載したように、p型半導体とn型半導体とからなる複数の熱−電気直接変換半導体対と、前記熱−電気直接変換半導体対の低温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の低温側電極と、前記複数の低温側電極を介して前記複数の熱−電気直接変換半導体対と熱的に接続される低温側絶縁板と、前記熱−電気直接変換半導体対の高温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の高温側電極と、前記複数の高温側電極のそれぞれを覆う複数のカバー部材と、前記複数の高温側電極及び前記カバー部材を介して前記複数の熱−電気直接変換半導体対と熱的に接続される高温側絶縁板とを備え、前記高温側電極と前記熱−電気直接変換半導体対との間に摺動部材を設けたことを特徴とする。   In order to solve the above-mentioned problem, a thermo-electric direct conversion device according to the present invention includes, as described in claim 1, a plurality of thermo-electric direct conversion semiconductor pairs composed of a p-type semiconductor and an n-type semiconductor, A plurality of low-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a low-temperature side end of the thermo-electric direct conversion semiconductor pair; and the plurality of heat- A low temperature side insulating plate thermally connected to the electrical direct conversion semiconductor pair, and a plurality of high temperatures electrically connecting the p-type semiconductor and the n-type semiconductor at the high temperature side end of the thermal-electrical direct conversion semiconductor pair And a plurality of cover members covering each of the plurality of high temperature side electrodes, and the plurality of heat-electrical direct conversion semiconductor pairs via the plurality of high temperature side electrodes and the cover member. A high temperature side insulating plate, and Characterized in that a sliding member between the electric direct conversion semiconductor pairs - the heat of.

また、上記課題を解決するために、本発明に係る熱−電気直接変換装置は、請求項2に記載したように、p型半導体とn型半導体とからなる複数の熱−電気直接変換半導体対と、前記熱−電気直接変換半導体対の低温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の低温側電極と、前記複数の低温側電極を介して前記複数の熱−電気直接変換半導体対と熱的に接続される低温側絶縁板と、前記熱−電気直接変換半導体対の高温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の高温側電極と、前記複数の高温側電極のそれぞれを覆う複数のカバー部材と、前記複数の高温側電極及び前記カバー部材を介して前記複数の熱−電気直接変換半導体対と熱的に接続される高温側絶縁板と、前記高温側絶縁板を覆う金属蓋、前記複数の熱−電気直接変換半導体対の周囲を取り囲む金属枠および前記低温側絶縁板を具備して形成され、前記複数の熱−電気直接変換半導体対を外気から遮断するとともに内部を真空もしくは不活性ガス雰囲気に保持する気密筐体とを備え、前記高温側電極と前記熱−電気直接変換半導体対との間に摺動部材を設けたことを特徴とする。   In order to solve the above-mentioned problem, a thermal-electrical direct conversion device according to the present invention comprises a plurality of thermal-electrical direct conversion semiconductor pairs comprising a p-type semiconductor and an n-type semiconductor as described in claim 2. A plurality of low-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a low-temperature side end portion of the thermo-electric direct conversion semiconductor pair, and the plurality of low-temperature side electrodes via the plurality of low-temperature side electrodes A low temperature side insulating plate thermally connected to the thermoelectric direct conversion semiconductor pair, and a plurality of the p type semiconductor and the n type semiconductor electrically connected at the high temperature side end of the thermoelectric direct conversion semiconductor pair A plurality of high temperature side electrodes, a plurality of cover members covering each of the plurality of high temperature side electrodes, and the plurality of heat-electrical direct conversion semiconductor pairs through the plurality of high temperature side electrodes and the cover member. The high temperature side insulation plate and the high temperature side insulation A metal lid that covers the plate, a metal frame that surrounds the plurality of thermal-electrical direct conversion semiconductor pairs, and the low-temperature side insulating plate are formed to shield the thermal-electrical direct conversion semiconductor pairs from the outside air. And an airtight housing for keeping the inside in a vacuum or an inert gas atmosphere, and a sliding member is provided between the high temperature side electrode and the thermo-electric direct conversion semiconductor pair.

本発明に係る熱−電気直接変換装置によれば、高温側電極と熱−電気直接変換半導体対との間に熱変形による変位が生じた場合であっても、高温側電極と熱−電気直接変換半導体対との間の摩擦を低減し、これにより熱−電気直接変換半導体対等の傷や破損を防止し、発電効率の低下を回避することができる。   According to the thermo-electric direct conversion device according to the present invention, even if a displacement due to thermal deformation occurs between the high-temperature side electrode and the thermo-electric direct conversion semiconductor pair, the high-temperature side electrode and the thermo-electric direct Friction between the conversion semiconductor pair can be reduced, thereby preventing damage and breakage of the thermal-electrical direct conversion semiconductor pair and avoiding a decrease in power generation efficiency.

本発明に係る熱−電気直接変換装置の実施形態について、添付図面を参照して説明する。   An embodiment of a direct thermal-electric conversion device according to the present invention will be described with reference to the accompanying drawings.

(1)第1の実施形態
図1(a)は第1の実施形態に係る熱−電気直接変換装置1の構造を模式的に示す断面図である。
(1) First Embodiment FIG. 1A is a cross-sectional view schematically showing the structure of a thermoelectric direct conversion device 1 according to a first embodiment.

熱−電気直接変換装置1は、p型半導体2とn型半導体3とからなる熱−電気直接変換半導体対4を複数有し、これら複数の熱−電気直接変換半導体対4が高温側絶縁板7と低温側基板22とに挟まれて構成されている。   The thermal-electrical direct conversion device 1 has a plurality of thermal-electrical direct conversion semiconductor pairs 4 composed of a p-type semiconductor 2 and an n-type semiconductor 3, and the plurality of thermal-electrical direct conversion semiconductor pairs 4 are high-temperature side insulating plates. 7 and the low-temperature side substrate 22.

熱−電気直接変換半導体対4は、図1(a)において上側が熱を印加する高温側であり、下側が熱を放熱する低温側となる。   In FIG. 1A, the heat-electricity direct conversion semiconductor pair 4 is a high temperature side to which heat is applied, and the lower side is a low temperature side to dissipate heat.

熱−電気直接変換半導体対4の低温側端部は、低温側接合部12を介して低温側電極6と電気的かつ熱的に接続されている。低温側電極6は、隣接する熱−電気直接変換半導体対4のp型半導体2の低温側端部とn型半導体3の低温側端部との間を電気的に接続している。   The low temperature side end of the thermoelectric direct conversion semiconductor pair 4 is electrically and thermally connected to the low temperature side electrode 6 via the low temperature side junction 12. The low temperature side electrode 6 electrically connects the low temperature side end of the p-type semiconductor 2 and the low temperature side end of the n-type semiconductor 3 of the adjacent direct thermal-electric conversion semiconductor pair 4.

一方、熱−電気直接変換半導体対4の高温側端部には高温側電極5が載置され、1つの熱−電気直接変換半導体対4を構成するp型半導体2とn型半導体3との間をこの高温側電極5によって電気的に接続する。   On the other hand, the high temperature side electrode 5 is placed on the high temperature side end of the thermoelectric direct conversion semiconductor pair 4, and the p type semiconductor 2 and the n type semiconductor 3 constituting one thermoelectric direct conversion semiconductor pair 4 are arranged. The space is electrically connected by the high temperature side electrode 5.

熱−電気直接変換半導体対4の高温側端部に熱が印加され、高温側端部と低温側端部との間に温度差が生じると、p型半導体2の内部では高温側から低温側に、逆にn型半導体3の内部では低温側から高温側に電流が流れる。   When heat is applied to the high temperature side end of the thermoelectric direct conversion semiconductor pair 4 and a temperature difference occurs between the high temperature side end and the low temperature side end, inside the p-type semiconductor 2 from the high temperature side to the low temperature side On the contrary, current flows from the low temperature side to the high temperature side inside the n-type semiconductor 3.

複数ある熱−電気直接変換半導体対4はそれぞれ高温側電極5及び低温側電極6を介して順次に接続されているため、各熱−電気直接変換半導体対4は電気的には直列接続の形態で電気エネルギーを生成することになる。直列接続された熱−電気直接変換半導体対4のうち、両端に位置する熱−電気直接変換半導体対4からは電流取出部10を介して外部に電気エネルギーを取り出すことができる。   Since the plurality of thermal-electrical direct conversion semiconductor pairs 4 are sequentially connected via the high-temperature side electrode 5 and the low-temperature side electrode 6, respectively, each thermal-electrical direct conversion semiconductor pair 4 is electrically connected in series. Will generate electrical energy. Of the heat-electricity direct conversion semiconductor pairs 4 connected in series, electric energy can be taken out from the heat-electricity direct conversion semiconductor pairs 4 located at both ends via the current extraction unit 10.

なお、電流取出部10に電流を印加することにより、熱−電気直接変換装置1を電気エネルギーから熱への変換装置として機能させることもできる。   In addition, by applying a current to the current extraction unit 10, the thermal-electrical direct conversion device 1 can also function as a conversion device from electrical energy to heat.

低温側基板22は、上記の低温側電極6、低温側絶縁板8、および低温系統への熱放出部24を備えて構成される。   The low temperature side substrate 22 includes the low temperature side electrode 6, the low temperature side insulating plate 8, and a heat release portion 24 to the low temperature system.

より具体的には、低温側絶縁板8は例えばセラミック板で形成され、このセラミック板の両面に金属板を接合することにより、低温側電極6と低温系統への熱放出部24とが一体的に形成される。この際、複数ある各低温側電極6は相互に分割され、低温側絶縁板接合部23を介して低温側絶縁板8の上にパッチ状に接合される。他方、低温系統への熱放出部24を形成する金属板は、低温側絶縁板8の低温側の略全面に渡って形成される。   More specifically, the low temperature side insulating plate 8 is formed of, for example, a ceramic plate, and the low temperature side electrode 6 and the heat release unit 24 to the low temperature system are integrated by bonding metal plates to both sides of the ceramic plate. Formed. At this time, the plurality of low temperature side electrodes 6 are divided from each other and bonded in a patch form on the low temperature side insulating plate 8 via the low temperature side insulating plate bonding portion 23. On the other hand, the metal plate forming the heat release portion 24 to the low temperature system is formed over substantially the entire low temperature side of the low temperature insulating plate 8.

このように低温側絶縁板8の表面に予め低温側電極6と低温側系統への熱放出部24とを接合させて低温側基板22を一体的に形成することにより、熱−電気直接変換装置1の組み立て作業が簡素化される。さらに、低温側絶縁板8と低温側電極6および低温側系統への熱放出部24との接合強度が高くまた両者の密着度も高く形成できるため、耐久性に優れた熱−電気直接変換装置1が得られる。   In this way, the low-temperature side substrate 22 is integrally formed on the surface of the low-temperature-side insulating plate 8 in advance by joining the low-temperature-side electrode 6 and the heat-dissipating portion 24 to the low-temperature-side system, thereby directly forming the low-temperature side substrate 22. The assembly work of 1 is simplified. Further, since the bonding strength between the low temperature side insulating plate 8 and the low temperature side electrode 6 and the heat release part 24 to the low temperature side system is high and the degree of adhesion between them can be high, the heat-electricity direct conversion device having excellent durability. 1 is obtained.

なお、低温側電極6および低温側系統への熱放出部24を形成する金属板の材料としては、耐熱性及び電気伝導性あるいは熱伝導性の点から、銅、銀、アルミニウム、錫、鉄基合金、ニッケル、ニッケル基合金、チタン、チタン基合金から選択される少なくとも1種から成ることが好ましい。   In addition, as a material of the metal plate which forms the low temperature side electrode 6 and the heat release part 24 to the low temperature side system, from the viewpoint of heat resistance and electrical conductivity or thermal conductivity, copper, silver, aluminum, tin, iron base It is preferably made of at least one selected from alloys, nickel, nickel-base alloys, titanium, and titanium-base alloys.

また、低温側絶縁板8を形成するセラミック板の材料としては、絶縁耐性の安定性の点から、アルミナもしくはアルミナを含有するセラミック、アルミナ粉末を分散含有する金属、窒化珪素もしくは窒化珪素を含有するセラミック、窒化アルミニウムもしくは窒化アルミニウムを含有するセラミック、ジルコニアもしくはジルコニアを含有するセラミック、イットリアもしくはイットリアを含有するセラミック、シリカあるいはシリカを含有するセラミック、ベリリアもしくはベリリアを含有するセラミックから選択される少なくとも1種から構成されることが好ましい。   Further, the material of the ceramic plate forming the low-temperature side insulating plate 8 includes alumina or a ceramic containing alumina, a metal containing alumina powder dispersedly, silicon nitride or silicon nitride from the viewpoint of stability of insulation resistance. At least one selected from ceramics, ceramics containing aluminum nitride or aluminum nitride, ceramics containing zirconia or zirconia, ceramics containing yttria or yttria, ceramics containing silica or silica, ceramics containing beryllia or beryllia It is preferable that it is comprised.

他方、熱−電気直接変換半導体対4の高温側端部の構成は低温側とは若干異なる。   On the other hand, the configuration of the high temperature side end of the thermoelectric direct conversion semiconductor pair 4 is slightly different from the low temperature side.

図1(b)は、熱−電気直接変換半導体対4の高温側の構成部材を示す図である。図1(b)に示したように、熱−電気直接変換半導体対4の高温側端部には、摺動部材28a、28bが設けられている。摺動部材28a、28bと熱−電気直接変換半導体対4とは非固定の状態で接触しており、摺動部材28aはp型半導体2の高温側端部に載置され、摺動部材28bはn型半導体3の高温側端部に載置されている。   FIG. 1B is a diagram showing components on the high temperature side of the thermoelectric direct conversion semiconductor pair 4. As shown in FIG. 1B, sliding members 28 a and 28 b are provided at the high temperature side end of the thermoelectric direct conversion semiconductor pair 4. The sliding members 28a, 28b and the thermal-electrical direct conversion semiconductor pair 4 are in contact with each other in an unfixed state, and the sliding member 28a is placed on the high temperature side end of the p-type semiconductor 2, and the sliding member 28b. Is placed on the high temperature side end of the n-type semiconductor 3.

摺動部材28a、28bの上からは高温側電極5が摺動部材28a、28bを跨ぐように載置される。この際、熱−電気直接変換半導体対4と高温側電極5との間も非固定の状態とする。高温側電極5は図1において上側から所定の圧力を受けて熱−電気直接変換半導体対4の方向に押圧されており、この押圧によって高温側電極5と熱−電気直接変換半導体対4との間の熱的および電気的な接続が確保される。   From the top of the sliding members 28a, 28b, the high temperature side electrode 5 is placed so as to straddle the sliding members 28a, 28b. At this time, the state between the thermoelectric direct conversion semiconductor pair 4 and the high temperature side electrode 5 is also not fixed. The high temperature side electrode 5 receives a predetermined pressure from the upper side in FIG. 1 and is pressed in the direction of the heat-electric direct conversion semiconductor pair 4, and by this pressing, the high temperature side electrode 5 and the heat-electric direct conversion semiconductor pair 4 are pressed. A thermal and electrical connection between them is ensured.

一方、摺動部材28a、28bおよび高温側電極5を非固定の状態で熱−電気直接変換半導体対4に接触させることによって、熱−電気直接変換半導体対4が熱変形を生じた場合であってもその熱変形を吸収し、熱−電気直接変換半導体対4や低温側接続部12等の破損を防止することが可能となる。   On the other hand, when the sliding members 28a and 28b and the high temperature side electrode 5 are brought into contact with the thermoelectric direct conversion semiconductor pair 4 in an unfixed state, the thermoelectric direct conversion semiconductor pair 4 is thermally deformed. However, it is possible to absorb the thermal deformation and prevent the thermal-electrical direct conversion semiconductor pair 4 and the low-temperature side connection portion 12 from being damaged.

摺動部材28a、28bは、高温側電極5と熱−電気直接変換半導体対4との間に熱膨張差に起因して生じる摩擦力を低減させるために設けられる部材である。   The sliding members 28 a and 28 b are members provided to reduce the frictional force generated due to the difference in thermal expansion between the high temperature side electrode 5 and the thermo-electric direct conversion semiconductor pair 4.

摺動部材28a、28bを設けない形態の場合には、高温側電極5と熱−電気直接変換半導体対4とがひとつの接触面によって接触することになる。この接触面に熱膨張差に起因する摩擦力が生じた場合、高温側電極5と熱−電気直接変換半導体対4とがたとえ非固定の状態であっても熱変形の吸収が不十分となる。特に、後述するように、高温側電極5が網状金属部材で形成されるような場合には、高温側電極5の表面は粗くなっているため、高温側電極5と熱−電気直接変換半導体対4とは相互に滑りにくくなる。このため、接触面の摩擦力は比較的大きなものとなり熱変形の吸収は不十分となる。   In the case where the sliding members 28a and 28b are not provided, the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair 4 come into contact with one contact surface. When a frictional force resulting from a difference in thermal expansion occurs on this contact surface, even if the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair 4 are in an unfixed state, absorption of thermal deformation becomes insufficient. . In particular, as will be described later, when the high temperature side electrode 5 is formed of a mesh metal member, the surface of the high temperature side electrode 5 is rough. 4 and it becomes difficult to slip each other. For this reason, the frictional force of the contact surface is relatively large and the thermal deformation is not sufficiently absorbed.

摺動部材28a、28bを高温側電極5と熱−電気直接変換半導体対4との間に設けることにより、高温側電極5と熱−電気直接変換半導体対4との間には二つの接触面を形成することができる。このため、摺動可能な接触面がひとつ増えることになり、熱−電気直接変換半導体対4等の熱変形を吸収しやすくなる。   By providing the sliding members 28a and 28b between the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair 4, there are two contact surfaces between the high temperature side electrode 5 and the thermoelectric direct conversion semiconductor pair 4. Can be formed. For this reason, the slidable contact surface is increased by one, and thermal deformation of the heat-electrical direct conversion semiconductor pair 4 and the like is easily absorbed.

また、高温側電極5が網状金属部材で形成されている場合には、高温側電極5と摺動部材28a、28bとの間の接触面は滑りにくくなるものの、摺動部材28a、28bと熱−電気直接変換半導体対4との接触面は平滑性を保持することができるため、全体としては摩擦力を低減することが可能となる。   Further, when the high temperature side electrode 5 is formed of a net-like metal member, the contact surface between the high temperature side electrode 5 and the sliding members 28a and 28b becomes less slippery, but the sliding members 28a and 28b and the heat -Since the contact surface with the electrical direct conversion semiconductor pair 4 can maintain smoothness, the frictional force can be reduced as a whole.

このように、摺動部材28a、28bを設けることによって熱−電気直接変換半導体対4等の熱変形の吸収が容易となり、熱−電気直接変換半導体対4等の破損を防止することができ、結果的に熱−電気直接変換装置1の発電効率を良好に維持することが可能となる。   Thus, by providing the sliding members 28a and 28b, absorption of thermal deformation of the heat-electric direct conversion semiconductor pair 4 and the like can be facilitated, and damage to the heat-electric direct conversion semiconductor pair 4 can be prevented. As a result, the power generation efficiency of the heat-electricity direct conversion device 1 can be maintained satisfactorily.

一方、高温側電極5や摺動部材28a、28bは非固定であるため、傾斜や振動等による移動を防止する対策を予め講じておく必要がある。カバー部材27はこのための部材であり、高温側電極5を覆うように高温側電極5の上から配設される。カバー部材27は、高温側電極5に臨む面に開口を有するバスタブ状の箱状部材で形成されている。カバー部材27は高温側電極5をカバー部材27の内部に収容し、高温側電極5が振動等によって大きく移動することを防止している。   On the other hand, since the high temperature side electrode 5 and the sliding members 28a and 28b are not fixed, it is necessary to take measures to prevent movement due to inclination, vibration, or the like. The cover member 27 is a member for this purpose, and is disposed from above the high temperature side electrode 5 so as to cover the high temperature side electrode 5. The cover member 27 is formed of a bathtub-like box-shaped member having an opening on the surface facing the high temperature side electrode 5. The cover member 27 accommodates the high temperature side electrode 5 inside the cover member 27 and prevents the high temperature side electrode 5 from being largely moved by vibration or the like.

摺動部材28a、28b、高温側電極5、カバー部材27、及び高温側絶縁板7は熱−電気直接変換装置1に印加される熱を熱−電気直接変換半導体対4の高温側端部に高い効率で伝えるため、熱伝導率の高い材料で形成する必要がある。また、これらの構成品は高温環境下、例えば約500℃以上、で使用されるため、高い耐熱性も要求される。以下にこれらの構成品の材料や細部構造について説明する。   The sliding members 28 a, 28 b, the high temperature side electrode 5, the cover member 27, and the high temperature side insulating plate 7 convert the heat applied to the thermo-electric direct conversion device 1 to the high temperature side end of the thermo-electric direct conversion semiconductor pair 4. In order to transmit with high efficiency, it is necessary to form with a material with high thermal conductivity. Further, since these components are used in a high temperature environment, for example, at about 500 ° C. or higher, high heat resistance is also required. The materials and detailed structures of these components will be described below.

摺動部材28a、28bは、ニッケル、コバルト、炭素、タンタル、チタン、アルミニウム、亜鉛、銅、ステンレス鋼、熱−電気直接変換半導体物質、またはこれらの組み合わせによって形成される。   The sliding members 28a and 28b are formed of nickel, cobalt, carbon, tantalum, titanium, aluminum, zinc, copper, stainless steel, a thermal-electric direct conversion semiconductor material, or a combination thereof.

摺動部材28a、28bとしてニッケル、コバルト、炭素、タンタル、チタン、アルミニウム、亜鉛、銅、ステンレス鋼を用いることによって、高い耐熱性が確保できると共に、これらの物質は電気抵抗が低いため、p型半導体2からn型半導体3へ流れる電力の損失を低く抑えることができる。摺動部材28a、28bとしてニッケル、コバルト、炭素、タンタル、チタン、アルミニウム、亜鉛、銅、ステンレス鋼を用いた場合には、摺動部材28aと摺動部材28bとは同じ材料を用いることになる。   By using nickel, cobalt, carbon, tantalum, titanium, aluminum, zinc, copper, and stainless steel as the sliding members 28a and 28b, high heat resistance can be secured, and since these materials have low electrical resistance, p-type Loss of power flowing from the semiconductor 2 to the n-type semiconductor 3 can be kept low. When nickel, cobalt, carbon, tantalum, titanium, aluminum, zinc, copper, or stainless steel is used as the sliding members 28a and 28b, the same material is used for the sliding member 28a and the sliding member 28b. .

また、摺動部材28a、28bとして熱−電気直接変換半導体を形成する物質を用いることによって、摺動部材28a、28b自体によっても熱−電気直接変換を行うことが可能となり、摺動部材28a、28bの挿入による熱−電気直接変換の損失を最小限に抑えることが可能となる。この際、摺動部材28a、28bを構成する熱−電気直接変換半導体の極性(p型或いはn型)は、それが接触する熱−電気直接変換半導体対4の極性に一致させる必要がある。即ち、摺動部材28aは、p型半導体2と同等の材料で、また、摺動部材28bは、n型半導体3と同等の材料で形成する必要がある。   In addition, by using a material that forms a thermo-electric direct conversion semiconductor as the sliding members 28a and 28b, it becomes possible to perform direct thermo-electric conversion also by the sliding members 28a and 28b themselves, It becomes possible to minimize the loss of direct thermal-electric conversion due to the insertion of 28b. At this time, the polarity (p-type or n-type) of the heat-electric direct conversion semiconductor constituting the sliding members 28a, 28b needs to match the polarity of the heat-electric direct conversion semiconductor pair 4 with which it contacts. That is, the sliding member 28 a needs to be formed of the same material as that of the p-type semiconductor 2, and the sliding member 28 b needs to be formed of the same material as that of the n-type semiconductor 3.

熱−電気直接変換半導体物質は、後述するp型半導体2或いはn型半導体3と同様の材料で形成される。   The thermal-electrical direct conversion semiconductor material is formed of the same material as that of the p-type semiconductor 2 or the n-type semiconductor 3 described later.

具体的には、熱電変換効率の観点から、および良好な熱電効果を長期間維持することができるという観点から、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウムおよびマグネシウムから選択される少なくとも3種の元素から構成される熱−電気直接変換半導体であることが好ましい。   Specifically, from the viewpoint of thermoelectric conversion efficiency and from the viewpoint that a good thermoelectric effect can be maintained for a long time, rare earth elements, actinoids, cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, Heat composed of at least three elements selected from titanium, zirconium, hafnium, nickel, tin, silicon, manganese, zinc, boron, carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium and magnesium An electric direct conversion semiconductor is preferable.

また、同様に熱電変化効率および熱電効果の維持性の観点から、熱−電気直接変換半導体対4を構成するp型半導体2およびn型半導体3は、(イ)酸化銅、炭素、ホウ素、ナトリウムおよびカルシウムの中から選択される1つの物質とコバルトとの層状複合酸化物、(ロ)窒化アルミニウム、(ハ)窒化ウラン、(ニ)窒化珪素、(ホ)二硫化モリブデン、(ヘ)スクッテルダイト型結晶構造を有するコバルトアンチモナイド化合物を主相とする熱電変換材料、(ト)クラスレート化合物を主相とする熱電変換材料および(チ)ハーフホイスラー化合物を主相とする熱電変換材料、の各物質から選択される1つの物質、2種以上の前記各物質からなる化合物、2種以上の前記各物質からなる混合物又は2種以上の前記各物質からなる固溶体で形成してもよい。この場合、上記のハーフホイスラー化合物は、チタン、ジルコニウム、ハフニウム、ニッケル、錫、コバルト、アンチモン、バナジウム、クロム、ニオブ、タンタル、モリブデン、パラジウムおよび希土類元素のうち、少なくとも1つを含む熱−電気直接変換半導体物質であることが好ましい。   Similarly, from the viewpoint of thermoelectric change efficiency and thermoelectric effect sustainability, the p-type semiconductor 2 and the n-type semiconductor 3 constituting the thermo-electric direct conversion semiconductor pair 4 are (i) copper oxide, carbon, boron, sodium. And a layered composite oxide of cobalt and one substance selected from calcium, (b) aluminum nitride, (c) uranium nitride, (d) silicon nitride, (e) molybdenum disulfide, (f) skutter A thermoelectric conversion material having a cobalt antimonide compound having a diete-type crystal structure as a main phase, a thermoelectric conversion material having (to) a clathrate compound as a main phase, and (h) a thermoelectric conversion material having a half-Heusler compound as a main phase, One substance selected from each of the substances, a compound comprising two or more kinds of the substances, a mixture comprising two or more kinds of the substances, or a solid solution comprising two or more kinds of the substances. It may be formed. In this case, the half-Heusler compound is a thermo-electric direct containing at least one of titanium, zirconium, hafnium, nickel, tin, cobalt, antimony, vanadium, chromium, niobium, tantalum, molybdenum, palladium, and rare earth elements. A conversion semiconductor material is preferred.

また、p型半導体2およびn型半導体3の主相の結晶構造は、良好な熱電効果の観点から、スクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造およびクラスレート構造のうちのいずれか1つ、或いはこれらの混相であることが好ましい。   In addition, the crystal structure of the main phase of the p-type semiconductor 2 and the n-type semiconductor 3 is selected from among a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, and a clathrate structure from the viewpoint of a good thermoelectric effect. Any one of these or a mixed phase thereof is preferable.

高温側電極5は、p型半導体2とn型半導体3とを電気的に接続するものであり、高い電気伝導性が必要となる。このため、例えば銅等の金属材料で形成される。   The high temperature side electrode 5 electrically connects the p-type semiconductor 2 and the n-type semiconductor 3 and requires high electrical conductivity. For this reason, it forms with metal materials, such as copper, for example.

一方、上述したように高温側電極5とp型半導体2或いはn型半導体3との端部は非固定の状態であるため、より一層接続部の密着性を高め電気抵抗を低減する必要がある。そこで、本実施形態に係る高温側電極5では、銅線等の金属細線を密に編んだ網状金属部材を用いて形成している。この網状金属部材で形成された高温側電極5を、カバー部材27を介して高温側絶縁板7で圧接することにより、網状金属部材が有する弾性によって、高温側電極5とp型半導体2或いはn型半導体3との端部との密着性が向上し、高い電気伝導性が確保できる。また、この密着性の向上により熱伝導性も併せて向上させることができる。   On the other hand, as described above, the end portions of the high temperature side electrode 5 and the p-type semiconductor 2 or the n-type semiconductor 3 are in an unfixed state, so that it is necessary to further increase the adhesion of the connection portion and reduce the electrical resistance. . Therefore, the high temperature side electrode 5 according to the present embodiment is formed using a net-like metal member in which fine metal wires such as copper wires are densely knitted. The high-temperature side electrode 5 and the p-type semiconductor 2 or n are bonded to the high-temperature side electrode 5 formed of the mesh-like metal member by pressing the high-temperature-side insulating plate 7 through the cover member 27 by the elasticity of the mesh-like metal member. Adhesion with the end portion with the mold semiconductor 3 is improved, and high electrical conductivity can be secured. Moreover, thermal conductivity can also be improved by this improvement in adhesion.

さらに、高温側電極5を網状金属部材で形成することにより、熱−電気直接変換半導体対4の高さ方向の誤差(単体及び個体間のばらつきを含む)を吸収することが可能となる。一般に、熱−電気直接変換半導体対4の高さは、製造誤差や印加される熱の不均一性等によって一定の誤差を生じるが、これらの誤差によって高温側電極5と熱−電気直接変換半導体対4との間の密着性が損なわれ、熱伝導性、電気伝導性の低下の要因となる。網状金属部材で形成された高温側電極5により、これらの誤差を吸収し、高い熱伝導性、電気伝導性を確保することができる。   Furthermore, by forming the high temperature side electrode 5 with a net-like metal member, it is possible to absorb errors in the height direction of the thermo-electrical direct conversion semiconductor pair 4 (including variations between single and individual). In general, the height of the thermo-electric direct conversion semiconductor pair 4 causes a certain error due to a manufacturing error, nonuniformity of applied heat, and the like, but these errors cause the high temperature side electrode 5 and the thermo-electric direct conversion semiconductor. Adhesiveness between the pair 4 is impaired, which causes a decrease in thermal conductivity and electrical conductivity. These errors can be absorbed by the high temperature side electrode 5 formed of a mesh metal member, and high thermal conductivity and electrical conductivity can be ensured.

カバー部材27は、電気伝導性は要求されないが、高い熱伝導性と耐熱性が要求される。このため、金属材料が用いられる場合がある。この場合にはカバー部材27が結果的に電気伝導性を有することになるため、隣接する熱−電気直接変換半導体対4のカバー部材27との電気絶縁性を確保するため、カバー部材27の表面に電気絶縁層(図示せず)を設ける形態としても良い。   The cover member 27 is not required to have electrical conductivity, but is required to have high thermal conductivity and heat resistance. For this reason, a metal material may be used. In this case, since the cover member 27 has electrical conductivity as a result, the surface of the cover member 27 is secured in order to ensure electrical insulation with the cover member 27 of the adjacent heat-electrical direct conversion semiconductor pair 4. An electrical insulating layer (not shown) may be provided on the surface.

高温側絶縁板7は、複数のカバー部材27の全体をほぼ覆うようにこれらの上から圧接するように設けられる。高温側絶縁板7の高温側面には熱が直接印加されるため、高い耐熱性が要求される。また、印加された熱を効率よく熱−電気直接変換半導体対4へ伝えるために高い熱伝導率が必要である。さらに、各熱−電気直接変換半導体対4との電気絶縁性を確保する必要もある。このため、高温側絶縁板7は、例えば、アルミナ(Al)等のように電気絶縁性を有し、熱伝導率が高くかつ耐熱性に優れた材料を用いたセラミック基板で形成される。 The high temperature side insulating plate 7 is provided so as to be in pressure contact with each other so as to substantially cover the entire plurality of cover members 27. Since heat is directly applied to the high temperature side surface of the high temperature side insulating plate 7, high heat resistance is required. Further, high heat conductivity is required to efficiently transmit the applied heat to the heat-electricity direct conversion semiconductor pair 4. Furthermore, it is necessary to ensure electrical insulation between each thermal-electrical direct conversion semiconductor pair 4. For this reason, the high temperature side insulating plate 7 is formed of a ceramic substrate using a material having electrical insulation properties such as alumina (Al 2 O 3 ), high thermal conductivity, and excellent heat resistance. The

高温側絶縁板7の熱伝導性をさらに高めるため、高温側絶縁板7の両面に熱伝導率の高い金属皮膜(箔)を形成する形態としても良い。例えば、高温側絶縁板7の高温側面のほぼ全面に第1の金属皮膜7aを設け、その反対側の面(カバー部材27と接する面)にパッチ上の複数の第2の金属皮膜7bを設ける形態とする。   In order to further increase the thermal conductivity of the high temperature side insulating plate 7, a metal film (foil) having a high thermal conductivity may be formed on both surfaces of the high temperature side insulating plate 7. For example, a first metal film 7a is provided on almost the entire high temperature side surface of the high temperature side insulating plate 7, and a plurality of second metal films 7b on the patch are provided on the opposite surface (the surface in contact with the cover member 27). Form.

第1、第2の金属皮膜7a、7bを設けることにより、高温側絶縁板7とその両面に接する構成品との密着性が高まり、熱伝導性を向上することができる。   By providing the first and second metal films 7a and 7b, the adhesiveness between the high temperature side insulating plate 7 and the components in contact with both surfaces thereof is increased, and the thermal conductivity can be improved.

なお、第2の金属皮膜7bは、カバー部材27の形状に略対応したパッチ形状とし、隣接するパッチとの間を離隔することにより、熱−電気直接変換半導体対4同士の電気絶縁性を確実にしている。   The second metal film 7b has a patch shape that substantially corresponds to the shape of the cover member 27, and ensures separation between the adjacent patches, thereby ensuring electrical insulation between the thermo-electric direct conversion semiconductor pairs 4. I have to.

熱−電気直接変換半導体対4を構成するp型半導体2およびn型半導体3は、熱電変換効率の観点から、および良好な熱電効果を長期間維持することができるという観点から、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウムおよびマグネシウムから選択される少なくとも3種の元素から構成される熱−電気直接変換半導体であることが好ましい。   The p-type semiconductor 2 and the n-type semiconductor 3 constituting the thermo-electric direct conversion semiconductor pair 4 are rare earth elements and actinoids from the viewpoint of thermoelectric conversion efficiency and from the viewpoint of maintaining a good thermoelectric effect for a long period of time. , Cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, titanium, zirconium, hafnium, nickel, tin, silicon, manganese, zinc, boron, carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium And a thermo-electric direct conversion semiconductor composed of at least three elements selected from magnesium and magnesium.

また、同様に熱電変化効率および熱電効果の維持性の観点から、熱−電気直接変換半導体対4を構成するp型半導体2およびn型半導体3は、(イ)酸化銅、炭素、ホウ素、ナトリウムおよびカルシウムの中から選択される1つの物質とコバルトとの層状複合酸化物、(ロ)窒化アルミニウム、(ハ)窒化ウラン、(ニ)窒化珪素、(ホ)二硫化モリブデン、(ヘ)スクッテルダイト型結晶構造を有するコバルトアンチモナイド化合物を主相とする熱電変換材料、(ト)クラスレート化合物を主相とする熱電変換材料および(チ)ハーフホイスラー化合物を主相とする熱電変換材料、の各物質から選択される1つの物質、2種以上の前記各物質からなる化合物、2種以上の前記各物質からなる混合物又は2種以上の前記各物質からなる固溶体で形成してもよい。この場合、上記のハーフホイスラー化合物は、チタン、ジルコニウム、ハフニウム、ニッケル、錫、コバルト、アンチモン、バナジウム、クロム、ニオブ、タンタル、モリブデン、パラジウムおよび希土類元素のうち、少なくとも1つを含む熱−電気直接変換半導体物質であることが好ましい。   Similarly, from the viewpoint of thermoelectric change efficiency and thermoelectric effect sustainability, the p-type semiconductor 2 and the n-type semiconductor 3 constituting the thermo-electric direct conversion semiconductor pair 4 are (i) copper oxide, carbon, boron, sodium. And a layered composite oxide of cobalt and one substance selected from calcium, (b) aluminum nitride, (c) uranium nitride, (d) silicon nitride, (e) molybdenum disulfide, (f) skutter A thermoelectric conversion material having a cobalt antimonide compound having a diete-type crystal structure as a main phase, a thermoelectric conversion material having (to) a clathrate compound as a main phase, and (h) a thermoelectric conversion material having a half-Heusler compound as a main phase, One substance selected from each of the substances, a compound comprising two or more kinds of the substances, a mixture comprising two or more kinds of the substances, or a solid solution comprising two or more kinds of the substances. It may be formed. In this case, the half-Heusler compound is a thermo-electric direct containing at least one of titanium, zirconium, hafnium, nickel, tin, cobalt, antimony, vanadium, chromium, niobium, tantalum, molybdenum, palladium, and rare earth elements. A conversion semiconductor material is preferred.

また、p型半導体2およびn型半導体3の主相の結晶構造は、良好な熱電効果の観点から、スクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造およびクラスレート構造のうちのいずれか1つ、或いはこれらの混相であることが好ましい。   In addition, the crystal structure of the main phase of the p-type semiconductor 2 and the n-type semiconductor 3 is selected from among a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, and a clathrate structure from the viewpoint of a good thermoelectric effect. Any one of these or a mixed phase thereof is preferable.

上記のように構成された熱−電気直接変換装置1によれば、熱−電気直接変換半導体対4の高温側の構成品、即ち、摺動部材28a、28b、高温側電極5、カバー部材27、及び高温側絶縁板7はいずれも高い熱伝導性と耐熱性を有する材料で形成され、かつ熱的に高い密着性を実現できるため、高温側絶縁板7の表面に印加された熱が効率よく熱−電気直接変換半導体対4に伝わり、高い熱電変換効率を確保することができる。   According to the heat-electric direct conversion device 1 configured as described above, the components on the high temperature side of the heat-electric direct conversion semiconductor pair 4, that is, the sliding members 28 a and 28 b, the high temperature side electrode 5, and the cover member 27. The high temperature side insulating plate 7 is made of a material having high thermal conductivity and heat resistance, and can achieve high thermal adhesion, so that the heat applied to the surface of the high temperature side insulating plate 7 is efficient. It is often transmitted to the thermo-electric direct conversion semiconductor pair 4 to ensure high thermoelectric conversion efficiency.

また、高温側電極5及びカバー部材27は、熱−電気直接変換半導体対4に非固定で載置する形態としているため、熱−電気直接変換半導体対4が熱変形した場合でも接合部に応力集中が生じることが無く、熱−電気直接変換半導体対4等の破損を防止することができる。   Moreover, since the high temperature side electrode 5 and the cover member 27 are configured to be mounted in a non-fixed manner on the thermoelectric direct conversion semiconductor pair 4, even when the thermoelectric direct conversion semiconductor pair 4 is thermally deformed, stress is applied to the joint portion. Concentration does not occur, and damage to the thermal-electrical direct conversion semiconductor pair 4 or the like can be prevented.

さらに、高温側電極5と熱−電気直接変換半導体対4との間に摺動部材28a、28bを設けたことにより、熱−電気直接変換半導体対4の接触面の摩擦力を低減することが可能となり、熱−電気直接変換半導体対4等の熱変形による破損をさらに効果的に防止することが可能となる。   Furthermore, by providing the sliding members 28a and 28b between the high temperature side electrode 5 and the heat-electric direct conversion semiconductor pair 4, the frictional force on the contact surface of the heat-electric direct conversion semiconductor pair 4 can be reduced. It becomes possible, and it becomes possible to prevent more effectively the damage by thermal deformation of the thermoelectric direct conversion semiconductor pair 4 grade | etc.,.

(2)第2の実施形態
図2は、第2の実施形態に係る熱−電気直接変換装置1aの外観を示す斜視図である。また、図3は、図2に示す熱−電気直接変換装置1aのX−X矢視断面図である。
(2) Second Embodiment FIG. 2 is a perspective view showing an external appearance of a thermoelectric direct conversion device 1a according to a second embodiment. 3 is a cross-sectional view of the thermoelectric direct conversion device 1a shown in FIG.

第2の実施形態に係る熱−電気直接変換装置1aは、複数の熱−電気直接変換半導体対4とその周辺の構成品等を気密筐体30に収容する形態である。   The thermal-electrical direct conversion device 1a according to the second embodiment is a form in which a plurality of thermal-electrical direct conversion semiconductor pairs 4 and their peripheral components are accommodated in an airtight casing 30.

気密筐体30は、複数の熱−電気直接変換半導体対4の高温側端部に熱的に接続される高温側絶縁板7を覆う金属蓋20と、複数の熱−電気直接変換半導体対4の周囲を取り囲む金属枠21と、複数の熱−電気直接変換半導体対4の低温側端部に熱的に接続される低温側基板22とから構成されている。気密筐体30は、複数の熱−電気直接変換半導体対4等からなる内部構成品を外気から遮断するとともに、気密筐体30の内部を真空もしくは不活性ガス雰囲気に保持する。   The hermetic housing 30 includes a metal lid 20 that covers the high temperature side insulating plate 7 that is thermally connected to the high temperature side ends of the plurality of heat-electric direct conversion semiconductor pairs 4, and a plurality of heat-electric direct conversion semiconductor pairs 4. And a low temperature side substrate 22 that is thermally connected to the low temperature side end portions of the plurality of thermal-electrical direct conversion semiconductor pairs 4. The hermetic casing 30 shields internal components including the plurality of direct heat-electric conversion semiconductor pairs 4 from the outside air, and holds the inside of the hermetic casing 30 in a vacuum or an inert gas atmosphere.

不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンから選択されるガスからなることが好ましい。或いはこれらの混合ガスでもよい。これらの非酸化性の気体を気密筐体30内に封入し、内部雰囲気を非活性とすることにより、半導体チップ等の構成部品が酸化等により劣化することが効果的に防止でき長期にわたって高い変換効率を維持できる熱−電気直接変換装置1aが得られる。   The inert gas is preferably composed of a gas selected from nitrogen, helium, neon, argon, krypton and xenon. Or these mixed gas may be sufficient. By encapsulating these non-oxidizing gases in the airtight housing 30 and deactivating the internal atmosphere, it is possible to effectively prevent deterioration of components such as semiconductor chips due to oxidation or the like, and high conversion over a long period of time. A direct thermal-electric conversion device 1a that can maintain efficiency is obtained.

また、熱−電気直接変換装置1aにおいて、不活性ガス雰囲気の圧力が、常温で外気圧より低く設定されていることが好ましい。気密筐体30内の不活性ガス雰囲気の圧力を外気圧より低く設定することにより、高温時の内圧の上昇に伴う破損を防止するとともに気密筐体30内の不活性ガス雰囲気中に水分が残留することが効果的に防止でき、水分による半導体チップの劣化損傷を効果的に抑止できる。さらに、気密筐体30内のガス雰囲気における熱伝導性が低下するために、半導体チップから金属枠方向に熱が放散することが防止でき、熱−電気変換効率を高めることができる。   Moreover, in the thermal-electrical direct conversion device 1a, it is preferable that the pressure of the inert gas atmosphere is set to be lower than the external pressure at normal temperature. By setting the pressure of the inert gas atmosphere in the hermetic casing 30 to be lower than the external pressure, damage due to an increase in the internal pressure at a high temperature is prevented, and moisture remains in the inert gas atmosphere in the hermetic casing 30. It can be effectively prevented, and deterioration damage of the semiconductor chip due to moisture can be effectively suppressed. Furthermore, since the thermal conductivity in the gas atmosphere in the hermetic casing 30 is lowered, it is possible to prevent heat from being dissipated from the semiconductor chip in the direction of the metal frame, and to improve the heat-electric conversion efficiency.

気密筐体30を構成する金属蓋20および金属枠21は、例えばニッケル基合金のような耐熱合金もしくは耐熱金属から形成される。金属蓋20および金属枠21を形成する耐熱合金もしくは耐熱金属としては、高温度使用環境における耐久性の点から、ニッケル基合金の他、ニッケル、炭素鋼、ステンレス鋼、クロムを含む鉄基合金、シリコンを含む鉄基合金、コバルトを含有する合金又はニッケル若しくは銅を含有する合金のいずれかより選択されることが好ましい。   The metal lid 20 and the metal frame 21 constituting the hermetic casing 30 are made of a heat-resistant alloy such as a nickel base alloy or a heat-resistant metal, for example. As the heat-resistant alloy or heat-resistant metal forming the metal lid 20 and the metal frame 21, from the viewpoint of durability in a high temperature use environment, in addition to a nickel-based alloy, an iron-based alloy containing nickel, carbon steel, stainless steel, chromium, It is preferably selected from any of an iron-base alloy containing silicon, an alloy containing cobalt, or an alloy containing nickel or copper.

金属蓋20と金属枠21とは、例えば溶接によって接合される。この他、金属蓋20と金属枠21とを一体的に成形する形態でもよい。金属蓋20と金属枠21とを一体成形することによって部品点数が減り組立作業が簡素化される。   The metal lid 20 and the metal frame 21 are joined by welding, for example. In addition, the metal lid 20 and the metal frame 21 may be integrally formed. By integrally forming the metal lid 20 and the metal frame 21, the number of parts is reduced and the assembling work is simplified.

金属枠21と低温側基板22との接合方法は、特に限定されるものではないが、接合強度の点から、溶接、ハンダ付け若しくはロウ付け、拡散接合又は接着剤により接合されていることが好ましい。   The joining method of the metal frame 21 and the low temperature side substrate 22 is not particularly limited, but is preferably joined by welding, soldering or brazing, diffusion joining, or an adhesive from the viewpoint of joining strength. .

気密筐体30を構成する低温側基板22は、基本的には第1の実施形態と同様のものである。ただし、熱−電気直接変換装置1aから電流を取り出す電流取出手段10は、低温側基板22を貫通する接続手段9を介して熱−電気直接変換半導体対4(直列に接続された熱−電気直接変換半導体対4のうち、両端に位置する熱−電気直接変換半導体対4)と接続されており、気密筐体30の機密性を維持する形態となっている。   The low temperature side substrate 22 constituting the hermetic casing 30 is basically the same as that of the first embodiment. However, the current extraction means 10 for extracting current from the thermal-electrical direct conversion device 1a is connected to the thermal-electrical direct conversion semiconductor pair 4 (thermal-electrical direct connected in series) via the connection means 9 penetrating the low temperature side substrate 22. The conversion semiconductor pair 4 is connected to the thermal-electrical direct conversion semiconductor pair 4) located at both ends, so that the confidentiality of the airtight housing 30 is maintained.

気密筐体30の内部に収容される熱−電気直接変換半導体対4、高温側電極5、摺動部材28a、28b、カバー部材27、高温側絶縁板7はいずれも第1の実施形態と同様のものである。   The thermal-electrical direct conversion semiconductor pair 4, the high temperature side electrode 5, the sliding members 28 a and 28 b, the cover member 27, and the high temperature side insulating plate 7 housed in the airtight housing 30 are all the same as in the first embodiment. belongs to.

第2の実施形態によれば、第1の実施形態と同様の効果が得られる他、気密筐体30を備えていることにより、熱−電気直接変換装置1aを単独で空気中に設置し、高温環境下で長時間動作させても内部構成品の酸化や窒化による劣化を効果的に抑止することが可能となり、長期間にわたって高い熱電変換効率を維持することができる。   According to the second embodiment, in addition to obtaining the same effect as the first embodiment, by providing the airtight housing 30, the direct thermal-electric conversion device 1a is installed in the air, Even when operated in a high temperature environment for a long time, it is possible to effectively suppress deterioration due to oxidation or nitridation of internal components, and high thermoelectric conversion efficiency can be maintained over a long period of time.

なお、本発明は上記の各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせても良い。   Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the constituent elements over different embodiments may be appropriately combined.

(a)は、本発明に係る熱−電気直接変換装置の第1の実施形態の構造を模式的に示す断面図であり、(b)はその高温側構成品の細部及び組み立て手順を示す図。(A) is sectional drawing which shows typically the structure of 1st Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention, (b) is a figure which shows the detail and assembly procedure of the high temperature side component . 本発明に係る熱−電気直接変換装置の第2の実施形態の外観を示す斜視図。The perspective view which shows the external appearance of 2nd Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention. 本発明に係る熱−電気直接変換装置の第2の実施形態の構造を模式的に示す断面図。Sectional drawing which shows typically the structure of 2nd Embodiment of the thermoelectric direct conversion apparatus which concerns on this invention. 熱−電気直接変換装置の一般的構成及び動作概念を示す説明図。Explanatory drawing which shows the general structure and operation | movement concept of a thermal-electrical direct conversion apparatus. 従来の熱−電気直接変換装置の構造を模式的に示す断面図。Sectional drawing which shows typically the structure of the conventional thermal-electrical direct conversion apparatus.

符号の説明Explanation of symbols

1、1a 熱−電気直接変換装置
2 p型半導体
3 n型半導体
4 熱−電気直接変換半導体対
5 高温側電極
6 低温側電極
7 高温側絶縁板
7a 第1の金属皮膜
7b 第2の金属皮膜
8 低温側絶縁板
10 電流取出手段
12 低温側接合部
20 金属蓋
21 金属枠
22 低温側基板
23 低温側絶縁板接合部
24 低温側系統への熱放出部
27 カバー部材
28a、28b 摺動部材
30 気密筐体
DESCRIPTION OF SYMBOLS 1, 1a Thermal-electrical direct conversion apparatus 2 P-type semiconductor 3 N-type semiconductor 4 Thermal-electrical direct conversion semiconductor pair 5 High temperature side electrode 6 Low temperature side electrode 7 High temperature side insulating plate 7a 1st metal film 7b 2nd metal film 8 Low temperature side insulating plate 10 Current extraction means 12 Low temperature side joint portion 20 Metal lid 21 Metal frame 22 Low temperature side substrate 23 Low temperature side insulating plate joint portion 24 Heat release portion 27 to the low temperature side system Cover members 28a, 28b Sliding member 30 Airtight enclosure

Claims (15)

p型半導体とn型半導体とからなる複数の熱−電気直接変換半導体対と、
前記熱−電気直接変換半導体対の低温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の低温側電極と、
前記複数の低温側電極を介して前記複数の熱−電気直接変換半導体対と熱的に接続される低温側絶縁板と、
前記熱−電気直接変換半導体対の高温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の高温側電極と、
前記複数の高温側電極のそれぞれを覆う複数のカバー部材と、
前記複数の高温側電極及び前記カバー部材を介して前記複数の熱−電気直接変換半導体対と熱的に接続される高温側絶縁板と、
を備え、
前記高温側電極と前記熱−電気直接変換半導体対との間に摺動部材を設けたことを特徴とする熱−電気直接変換装置。
a plurality of direct thermal-electric conversion semiconductor pairs consisting of a p-type semiconductor and an n-type semiconductor;
A plurality of low-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a low-temperature side end of the thermo-electric direct conversion semiconductor pair;
A low temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of low temperature side electrodes;
A plurality of high-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a high-temperature side end of the thermo-electric direct conversion semiconductor pair;
A plurality of cover members covering each of the plurality of high temperature side electrodes;
A high temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of high temperature side electrodes and the cover member;
With
A thermal-electrical direct conversion device, wherein a sliding member is provided between the high temperature side electrode and the thermal-electrical direct conversion semiconductor pair.
p型半導体とn型半導体とからなる複数の熱−電気直接変換半導体対と、
前記熱−電気直接変換半導体対の低温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の低温側電極と、
前記複数の低温側電極を介して前記複数の熱−電気直接変換半導体対と熱的に接続される低温側絶縁板と、
前記熱−電気直接変換半導体対の高温側端部において前記p型半導体とn型半導体とを電気的に接続する複数の高温側電極と、
前記複数の高温側電極のそれぞれを覆う複数のカバー部材と、
前記複数の高温側電極及び前記カバー部材を介して前記複数の熱−電気直接変換半導体対と熱的に接続される高温側絶縁板と、
前記高温側絶縁板を覆う金属蓋、前記複数の熱−電気直接変換半導体対の周囲を取り囲む金属枠および前記低温側絶縁板を具備して形成され、前記複数の熱−電気直接変換半導体対を外気から遮断するとともに内部を真空もしくは不活性ガス雰囲気に保持する気密筐体とを備え、
前記高温側電極と前記熱−電気直接変換半導体対との間に摺動部材を設けたことを特徴とする熱−電気直接変換装置。
a plurality of direct thermal-electric conversion semiconductor pairs consisting of a p-type semiconductor and an n-type semiconductor;
A plurality of low-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a low-temperature side end of the thermo-electric direct conversion semiconductor pair;
A low temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of low temperature side electrodes;
A plurality of high-temperature side electrodes that electrically connect the p-type semiconductor and the n-type semiconductor at a high-temperature side end of the thermo-electric direct conversion semiconductor pair;
A plurality of cover members covering each of the plurality of high temperature side electrodes;
A high temperature side insulating plate thermally connected to the plurality of thermal-electrical direct conversion semiconductor pairs via the plurality of high temperature side electrodes and the cover member;
A metal lid that covers the high-temperature side insulating plate, a metal frame that surrounds the plurality of thermal-electrical direct conversion semiconductor pairs, and the low-temperature side insulating plate are formed, and the plural thermal-electrical direct conversion semiconductor pairs are formed. It has an airtight housing that shields it from the outside air and keeps the inside in a vacuum or inert gas atmosphere,
A thermal-electrical direct conversion device, wherein a sliding member is provided between the high temperature side electrode and the thermal-electrical direct conversion semiconductor pair.
前記摺動部材は、ニッケル、コバルト、炭素、タンタル、チタン、アルミニウム、亜鉛、銅、ステンレス鋼、熱−電気直接変換半導体物質、またはこれらの組み合わせであることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 3. The sliding member according to claim 1, wherein the sliding member is nickel, cobalt, carbon, tantalum, titanium, aluminum, zinc, copper, stainless steel, a thermoelectric direct conversion semiconductor material, or a combination thereof. The thermal-electrical direct conversion apparatus as described. 前記熱−電気直接変換半導体物質は、それが接触する熱−電気直接変換半導体対と同じ極性であることを特徴とする請求項3に記載の熱−電気直接変換装置。 4. The thermal-electrical direct conversion device according to claim 3, wherein the thermal-electrical direct conversion semiconductor material has the same polarity as the thermal-electrical direct conversion semiconductor pair that it contacts. 前記熱−電気直接変換半導体物質は、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウムおよびマグネシウムのうち少なくとも3つ以上の元素からなることを特徴とする請求項3に記載の熱−電気直接変換装置。 The thermal-electrical direct conversion semiconductor materials are rare earth elements, actinides, cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, titanium, zirconium, hafnium, nickel, tin, silicon, manganese, zinc, boron, carbon. The thermo-electric direct conversion device according to claim 3, comprising at least three elements selected from the group consisting of nitrogen, gallium, germanium, indium, vanadium, niobium, barium and magnesium. 前記熱−電気直接変換半導体物質の主相の結晶構造は、スクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造およびクラスレート構造のうちいずれか1つ又はそれらの混相であることを特徴とする請求項3に記載の熱−電気直接変換装置。 The crystal structure of the main phase of the thermo-electric direct conversion semiconductor material is any one of a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, and a clathrate structure, or a mixed phase thereof. The direct thermal-electric conversion device according to claim 3. 前記熱−電気直接変換半導体物質は、
(イ)酸化銅、炭素、ホウ素、ナトリウムおよびカルシウムの中から選択される1つの物質とコバルトとの層状複合酸化物、
(ロ)窒化アルミニウム、(ハ)窒化ウラン、(ニ)窒化珪素、(ホ)二硫化モリブデン、
(ヘ)スクッテルダイト型結晶構造を有するコバルトアンチモナイド化合物を主相とする熱電変換材料、
(ト)クラスレート化合物を主相とする熱電変換材料、および
(チ)ハーフホイスラー化合物を主相とする熱電変換材料、
の各物質から選択される1つの物質、2種以上の前記各物質からなる化合物、2種以上の前記各物質からなる混合物、又は2種以上の前記各物質からなる固溶体であることを特徴とする請求項3に記載の熱−電気直接変換装置。
The thermal-electrical direct conversion semiconductor material is:
(A) A layered composite oxide of cobalt and one substance selected from copper oxide, carbon, boron, sodium and calcium,
(B) aluminum nitride, (c) uranium nitride, (d) silicon nitride, (e) molybdenum disulfide,
(F) a thermoelectric conversion material whose main phase is a cobalt antimonide compound having a skutterudite-type crystal structure;
(G) a thermoelectric conversion material having a clathrate compound as a main phase, and (h) a thermoelectric conversion material having a half-Heusler compound as a main phase,
One substance selected from each of the above substances, a compound composed of two or more kinds of the respective substances, a mixture composed of two or more kinds of the respective substances, or a solid solution composed of two or more kinds of the respective substances. The thermal-electrical direct conversion device according to claim 3.
前記ハーフホイスラー化合物は、チタン、ジルコニウム、ハフニウム、ニッケル、錫、コバルト、アンチモン、バナジウム、クロム、ニオブ、タンタル、モリブデン、パラジウムおよび希土類元素のうち、少なくとも1つを含む熱−電気直接変換半導体物質であることを特徴とする請求項7に記載の熱−電気直接変換装置。 The half-Heusler compound is a direct thermal-electric conversion semiconductor material containing at least one of titanium, zirconium, hafnium, nickel, tin, cobalt, antimony, vanadium, chromium, niobium, tantalum, molybdenum, palladium, and rare earth elements. 8. The thermal-electrical direct conversion device according to claim 7, wherein the thermal-electrical direct conversion device is provided. 前記p型半導体および前記n型半導体は、希土類元素、アクチノイド、コバルト、鉄、ロジウム、ルテニウム、パラジウム、白金、ニッケル、アンチモン、チタン、ジルコニウム、ハフニウム、ニッケル、錫、シリコン、マンガン、亜鉛、ボロン、炭素、窒素、ガリウム、ゲルマニウム、インジウム、バナジウム、ニオブ、バリウムおよびマグネシウムのうち少なくとも3つ以上の元素からなる熱−電気直接変換半導体物質より構成されることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 The p-type semiconductor and the n-type semiconductor are rare earth elements, actinides, cobalt, iron, rhodium, ruthenium, palladium, platinum, nickel, antimony, titanium, zirconium, hafnium, nickel, tin, silicon, manganese, zinc, boron, 3. The heat-electricity direct conversion semiconductor material composed of at least three elements of carbon, nitrogen, gallium, germanium, indium, vanadium, niobium, barium and magnesium, according to claim 1 or 2. Direct heat-electric conversion device. 前記p型半導体および前記n型半導体の主相の結晶構造は、スクッテルダイト構造、充填スクッテルダイト構造、ホイスラー構造、ハーフホイスラー構造およびクラスレート構造のうちいずれか1つ又はそれらの混相であることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 The crystal structure of the main phase of the p-type semiconductor and the n-type semiconductor is any one of a skutterudite structure, a filled skutterudite structure, a Heusler structure, a half-Heusler structure, and a clathrate structure, or a mixed phase thereof. The thermal-electrical direct conversion device according to claim 1 or 2, characterized in that. 前記p型半導体および前記n型半導体を形成する物質は、
(イ)酸化銅、炭素、ホウ素、ナトリウムおよびカルシウムの中から選択される1つの物質とコバルトとの層状複合酸化物、
(ロ)窒化アルミニウム、(ハ)窒化ウラン、(ニ)窒化珪素、(ホ)二硫化モリブデン、
(ヘ)スクッテルダイト型結晶構造を有するコバルトアンチモナイド化合物を主相とする熱電変換材料、
(ト)クラスレート化合物を主相とする熱電変換材料および
(チ)ハーフホイスラー化合物を主相とする熱電変換材料、
の各物質から選択される1つの物質、2種以上の前記各物質からなる化合物、2種以上の前記各物質からなる混合物又は2種以上の前記各物質からなる固溶体であることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。
The material forming the p-type semiconductor and the n-type semiconductor is:
(A) A layered composite oxide of cobalt and one substance selected from copper oxide, carbon, boron, sodium and calcium,
(B) aluminum nitride, (c) uranium nitride, (d) silicon nitride, (e) molybdenum disulfide,
(F) a thermoelectric conversion material whose main phase is a cobalt antimonide compound having a skutterudite-type crystal structure;
(G) a thermoelectric conversion material having a clathrate compound as a main phase; and (h) a thermoelectric conversion material having a half-Heusler compound as a main phase;
One substance selected from each of the above substances, a compound composed of two or more kinds of the respective substances, a mixture composed of two or more kinds of the respective substances, or a solid solution composed of two or more kinds of the respective substances. The direct thermal-electric conversion device according to claim 1 or 2.
前記ハーフホイスラー化合物は、チタン、ジルコニウム、ハフニウム、ニッケル、錫、コバルト、アンチモン、バナジウム、クロム、ニオブ、タンタル、モリブデン、パラジウムおよび希土類元素のうち、少なくとも1つを含む熱−電気直接変換半導体物質であることを特徴とする請求項11に記載の熱−電気直接変換装置。 The half-Heusler compound is a direct thermal-electric conversion semiconductor material containing at least one of titanium, zirconium, hafnium, nickel, tin, cobalt, antimony, vanadium, chromium, niobium, tantalum, molybdenum, palladium, and rare earth elements. The thermal-electrical direct conversion device according to claim 11, wherein the thermal-electrical direct conversion device is provided. 前記高温側絶縁板は、その高温側の表面に高熱伝導率を有する材料からなる箔を備え、その低温側の表面には前記カバー部材と接触する位置にのみ前記箔を備えることを特徴とする請求項1又は2に記載の熱−電気直接変換装置。 The high temperature side insulating plate is provided with a foil made of a material having high thermal conductivity on the surface on the high temperature side, and the foil is provided on the surface on the low temperature side only at a position in contact with the cover member. The direct thermal-electric conversion device according to claim 1 or 2. 前記金属蓋および前記金属枠は、ニッケル、ニッケル基合金、炭素鋼、ステンレス鋼、クロムを含む鉄基合金、シリコンを含む鉄基合金、コバルトを含有する合金又はニッケル若しくは銅を含有する合金より形成されることを特徴とする請求項2に記載の熱−電気直接変換装置。 The metal lid and the metal frame are formed of nickel, nickel-base alloy, carbon steel, stainless steel, iron-base alloy containing chromium, iron-base alloy containing silicon, alloy containing cobalt, or alloy containing nickel or copper. The thermal-electrical direct conversion device according to claim 2, wherein: 前記不活性ガスは、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンのうち少なくとも1種のガスからなり、常温においては大気圧よりも低圧であることを特徴とする請求項2に記載の熱−電気直接変換装置。 3. The heat − according to claim 2, wherein the inert gas includes at least one gas selected from nitrogen, helium, neon, argon, krypton, and xenon, and has a pressure lower than atmospheric pressure at room temperature. Electric direct conversion device.
JP2005154926A 2005-05-27 2005-05-27 Thermal-electrical direct conversion device Expired - Fee Related JP5105718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154926A JP5105718B2 (en) 2005-05-27 2005-05-27 Thermal-electrical direct conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154926A JP5105718B2 (en) 2005-05-27 2005-05-27 Thermal-electrical direct conversion device

Publications (2)

Publication Number Publication Date
JP2006332398A true JP2006332398A (en) 2006-12-07
JP5105718B2 JP5105718B2 (en) 2012-12-26

Family

ID=37553762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154926A Expired - Fee Related JP5105718B2 (en) 2005-05-27 2005-05-27 Thermal-electrical direct conversion device

Country Status (1)

Country Link
JP (1) JP5105718B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200520A (en) * 2009-02-26 2010-09-09 Toshiba Corp Thermoelectric power generator
WO2013155181A1 (en) * 2012-04-10 2013-10-17 Ud Holdings, Llc Superlattice quantum well thermoelectric generator via radiation exchange and/or conduction/convection
US8970986B2 (en) 2012-12-06 2015-03-03 Kabushiki Kaisha Toshiba Magnetic head and magnetic head assembly having a spin torque oscillator
JP2017529693A (en) * 2014-08-12 2017-10-05 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric device and method for manufacturing and using thermoelectric device
JP2018107424A (en) * 2016-12-26 2018-07-05 三菱マテリアル株式会社 Thermoelectric conversion module with case
US10439119B2 (en) 2013-11-13 2019-10-08 Ud Holdings, Llc Thermoelectric generator with minimal thermal shunting
JP7431759B2 (en) 2018-06-26 2024-02-15 エルジー イノテック カンパニー リミテッド thermoelectric element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111344A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JP2000188429A (en) * 1998-10-13 2000-07-04 Nhk Spring Co Ltd Thermo-electric conversion module
JP2001308397A (en) * 2000-04-25 2001-11-02 Matsushita Electric Works Ltd Peltier module
JP2002076448A (en) * 2000-09-04 2002-03-15 Shin Etsu Handotai Co Ltd Thermoelectric element
JP2002158379A (en) * 2000-11-21 2002-05-31 National Institute Of Advanced Industrial & Technology Aggregation of thermoelectric conversion elements, method of manufacturing the same and thermoelectric module
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2005136032A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Thermoelectric conversion element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111344A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JP2000188429A (en) * 1998-10-13 2000-07-04 Nhk Spring Co Ltd Thermo-electric conversion module
JP2001308397A (en) * 2000-04-25 2001-11-02 Matsushita Electric Works Ltd Peltier module
JP2002076448A (en) * 2000-09-04 2002-03-15 Shin Etsu Handotai Co Ltd Thermoelectric element
JP2002158379A (en) * 2000-11-21 2002-05-31 National Institute Of Advanced Industrial & Technology Aggregation of thermoelectric conversion elements, method of manufacturing the same and thermoelectric module
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2005136032A (en) * 2003-10-29 2005-05-26 Toyota Motor Corp Thermoelectric conversion element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200520A (en) * 2009-02-26 2010-09-09 Toshiba Corp Thermoelectric power generator
WO2013155181A1 (en) * 2012-04-10 2013-10-17 Ud Holdings, Llc Superlattice quantum well thermoelectric generator via radiation exchange and/or conduction/convection
CN104205385A (en) * 2012-04-10 2014-12-10 Ud控股有限责任公司 Superlattice quantum well thermoelectric generator via radiation exchange and/or conduction/convection
US9954154B2 (en) 2012-04-10 2018-04-24 Ud Holdings, Llc Superlattice quantum well thermoelectric generator via radiation exchange and/or conduction/convection
US8970986B2 (en) 2012-12-06 2015-03-03 Kabushiki Kaisha Toshiba Magnetic head and magnetic head assembly having a spin torque oscillator
US10439119B2 (en) 2013-11-13 2019-10-08 Ud Holdings, Llc Thermoelectric generator with minimal thermal shunting
JP2017529693A (en) * 2014-08-12 2017-10-05 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Thermoelectric device and method for manufacturing and using thermoelectric device
JP2018107424A (en) * 2016-12-26 2018-07-05 三菱マテリアル株式会社 Thermoelectric conversion module with case
JP7151068B2 (en) 2016-12-26 2022-10-12 三菱マテリアル株式会社 Thermoelectric conversion module with case
JP7431759B2 (en) 2018-06-26 2024-02-15 エルジー イノテック カンパニー リミテッド thermoelectric element

Also Published As

Publication number Publication date
JP5105718B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4686171B2 (en) Thermal-electrical direct conversion device
JP5105718B2 (en) Thermal-electrical direct conversion device
US20080163916A1 (en) Thermoelectric conversion module and thermoelectric conversion apparatus
EP1835551B1 (en) Thermoelectric conversion module, heat exchanger using same, and thermoelectric power generating system
JP5443947B2 (en) Thermoelectric generator
JP2004350479A (en) Thermoelectric conversion power generating unit and tunnel type furnace equipped with same
JP4969793B2 (en) Thermal-electrical direct conversion device
JP2007110082A (en) Thermoelectric converter and method for manufacturing same
JP2009194299A (en) Thermoelectric generator
JP2010245265A (en) Thermoelectric module
JP5159264B2 (en) Thermoelectric device and thermoelectric module
JP4490765B2 (en) Direct heat-electric converter
JP2005277206A (en) Thermoelectric converter
JP4528571B2 (en) Direct heat-electric converter
JP5970222B2 (en) Thermoelectric generator
JP2009081178A (en) Method of manufacturing thermoelectric conversion module
JP6115047B2 (en) Thermoelectric conversion module and manufacturing method thereof
JPWO2012091048A1 (en) Thermoelectric conversion member
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
JP4287262B2 (en) Thermoelectric converter
JP5049533B2 (en) Thermoelectric converter
JP5075707B2 (en) Thermoelectric device and thermoelectric module
TW201511371A (en) Thermoelectric module and method of making same
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP5761123B2 (en) Thermoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R151 Written notification of patent or utility model registration

Ref document number: 5105718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees