JPH07102112A - Thermoplastic elastomer composition and resin composition - Google Patents

Thermoplastic elastomer composition and resin composition

Info

Publication number
JPH07102112A
JPH07102112A JP22604193A JP22604193A JPH07102112A JP H07102112 A JPH07102112 A JP H07102112A JP 22604193 A JP22604193 A JP 22604193A JP 22604193 A JP22604193 A JP 22604193A JP H07102112 A JPH07102112 A JP H07102112A
Authority
JP
Japan
Prior art keywords
resin
carbon
composition
thermoplastic elastomer
fibrils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22604193A
Other languages
Japanese (ja)
Inventor
Hiroharu Ikeda
弘治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyperion Catalysis International Inc
Original Assignee
Hyperion Catalysis International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyperion Catalysis International Inc filed Critical Hyperion Catalysis International Inc
Priority to JP22604193A priority Critical patent/JPH07102112A/en
Publication of JPH07102112A publication Critical patent/JPH07102112A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a thermoplastic elastomer composition containing carbonaceous fibrils and being excellent in conductivity, antistatic properties, surface smoothness, appearance, gloss and mechanical strength.
CONSTITUTION: The composition is obtained by mixing 99.5-50 pts.wt. thermoplastic elastomer or resin and 0.5-50 pts.wt. carbonaceous fibril material mainly comprising agglomerates which are composed of fine fibrous carbonaceous fibrils of an outside diameter of 3.5-75 nm, entangled among one another, and have a mean particle diameter of 0.1-50 μm.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性、表面外観、機
械的強度に優れた熱可塑性エラストマー組成物および樹
脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic elastomer composition and a resin composition which are excellent in conductivity, surface appearance and mechanical strength.

【0002】[0002]

【従来の技術】近年のエレクトロニクス技術の急速な発
展により、情報処理装置や、電子事務機器が急速に普及
している。この様な電子機器の急速な普及に伴い、電子
部品から発生するノイズが周辺機器に影響を与える電磁
波障害や、静電気による誤作動等のトラブルが増大し、
大きな問題となっている。これらの問題の解決のため
に、この分野では導電性や制電制に優れた材料が要求さ
れている。
2. Description of the Related Art Due to the rapid development of electronic technology in recent years, information processing devices and electronic office equipment are rapidly spreading. With the rapid spread of such electronic devices, troubles such as electromagnetic interference caused by noise generated from electronic parts affecting peripheral devices and malfunctions due to static electricity increase,
It's a big problem. In order to solve these problems, materials having excellent conductivity and antistatic property are required in this field.

【0003】従来より、導電性の乏しい高分子材料にお
いては、導電性フィラー等を配合する事により、導電性
機能を付与させた導電性高分子材料が広く利用されてい
る。導電性フィラーとしては、金属繊維及び金属粉末、
カーボンブラック、炭素繊維などが一般に用いられてい
るが、金属繊維及び金属粉末を導電性フィラーとして用
いた場合、優れた導電性付与効果を示すものの、耐蝕性
に劣り、また機械的強度が得にくいという欠点があっ
た。
Conventionally, in a polymer material having poor conductivity, a conductive polymer material having a conductive function by mixing a conductive filler or the like has been widely used. As the conductive filler, metal fibers and metal powder,
Carbon black, carbon fiber, etc. are generally used, but when metal fibers and metal powders are used as conductive fillers, they show an excellent effect of imparting conductivity, but have poor corrosion resistance and it is difficult to obtain mechanical strength. There was a drawback.

【0004】カーボンブラックを導電性フィラーとして
用いる場合には、一般のカーボンブラックに比べて少量
の添加で高い導電性が得られるケッチェンブラック、バ
ルカンXC72、アセチレンブラック等の特殊な導電性
カーボンブラックが一般に用いられている。だたし、こ
れら特殊な導電性カーボンブラックは、熱可塑性エラス
トマーや樹脂への分散が困難である。カーボンブラック
の分散性が樹脂組成物の導電性に大きく影響するため、
安定した導電性を得るには特殊な配合技術、混合技術が
必要とされるという問題を有している。また、高温等に
おける抵抗温度係数が大きいことも問題である。
When carbon black is used as a conductive filler, special conductive carbon blacks such as Ketjen black, Vulcan XC72, and acetylene black, which are highly conductive with a small amount of addition as compared with general carbon black, are used. It is commonly used. However, it is difficult to disperse these special conductive carbon blacks in thermoplastic elastomers and resins. Since the dispersibility of carbon black greatly affects the conductivity of the resin composition,
There is a problem in that special compounding and mixing techniques are required to obtain stable conductivity. Another problem is that the temperature coefficient of resistance at high temperatures is large.

【0005】炭素繊維を導電性フィラーとして使用する
場合、一般の補強用炭素繊維では、所望の強度、弾性率
を持たせることができるが、導電性を付与するには高充
填を必要とするため、元の熱可塑性エラストマーや樹脂
本来の物性を低下させてしまう。また、複雑な形状の成
形品を得ようとする場合、導電性フィラーの片寄りが生
じ、導電性にバラツキが発生するという問題があり、十
分満足しうるものではない。炭素繊維では、繊維径が細
い方が同量の繊維を添加した場合に母材樹脂と繊維との
間の接触面積が大きくなるため導電性付与効果に優れる
ことが期待される。
When carbon fibers are used as the conductive filler, general reinforcing carbon fibers can have desired strength and elastic modulus, but high filling is required to impart conductivity. , The original physical properties of the thermoplastic elastomer or resin are deteriorated. Further, when an attempt is made to obtain a molded article having a complicated shape, there is a problem that the conductive filler is biased and the conductivity varies, which is not sufficiently satisfactory. In the case of carbon fibers, the smaller the fiber diameter is, the more the contact area between the base resin and the fibers is increased when the same amount of fibers is added, so that it is expected that the carbon fibers are excellent in the conductivity imparting effect.

【0006】この微細形状を持つ炭素繊維として、特開
昭62−500943号公報において、優れた導電性を
有する極細炭素フィブリルが得られることが示されてい
る。しかしながら、樹脂と混合した場合、樹脂への分散
性に劣り、成形品表面外観が著しく損なわれるという問
題があり、十分満足できるまでに至っていない。
As carbon fibers having such a fine shape, Japanese Patent Application Laid-Open No. 62-500943 discloses that ultrafine carbon fibrils having excellent conductivity can be obtained. However, when it is mixed with a resin, there is a problem that the dispersibility in the resin is poor and the surface appearance of the molded product is remarkably impaired, which is not fully satisfied.

【0007】[0007]

【課題を解決するための手段】本発明者らは、特定の炭
素フィブリルを特定量、熱可塑性エラストマーまたは樹
脂に配合することにより、小量で著しい導電性付与効果
ならびに制電制付与効果が得られることを見い出し、組
成物の表面平滑性、外観、光沢に優れることをも見い出
した。
Means for Solving the Problems The present inventors have obtained a remarkable effect of imparting conductivity and antistatic effect in a small amount by blending a specific amount of a specific carbon fibril with a thermoplastic elastomer or resin. It was also found that the composition has excellent surface smoothness, appearance and gloss.

【0008】すなわち、本発明の要旨は、直径3.5〜
75nmの微細糸状の炭素フィブリルが互いに絡み合っ
た、平均粒径0.1〜50μmの凝集体から主としてな
る炭素フィブリル材料0.5〜50重量部、および熱可
塑性エラストマーまたは樹脂99.5〜50重量部とを
混合してなる組成物にある。
That is, the gist of the present invention is that the diameter is 3.5 to
0.5 to 50 parts by weight of a carbon fibril material mainly composed of aggregates having an average particle size of 0.1 to 50 μm, in which 75 mm fine carbon fibrils are entangled with each other, and 99.5 to 50 parts by weight of a thermoplastic elastomer or resin And a composition obtained by mixing and.

【0009】本発明の説明において用いる平均粒径dm
ならびに90%径d90の語句は、次のように定義される
ものである。
Average particle size dm used in the description of the present invention
And the term 90% diameter d 90 is defined as follows.

【0010】粒径をdとし、その粒径における体積分率
Vdを確率変数とする分布を粒度分布Dとよぶ。この粒
度分布Dにおいて最小の粒径をdmin、最大の粒径を
dmaxとするとき、平均粒径dmは次の数式1を満足
するものである。
A distribution in which the particle size is d and the volume fraction Vd in the particle size is a random variable is called a particle size distribution D. In this particle size distribution D, when the minimum particle size is dmin and the maximum particle size is dmax, the average particle size dm satisfies the following formula 1.

【数1】 [Equation 1]

【数2】 [Equation 2]

【0011】本発明で使用する炭素フィブリル材料は、
外径3.5〜75nm、好ましくは3.5〜40nmの
微細糸状の炭素フィブリルが互いに絡み合った平均粒径
0.1〜50μmの凝集体からなる。凝集体の平均粒径
は、好ましくは0.2〜30μmであり、さらに好まし
くは0.5〜20μmである。
The carbon fibril material used in the present invention is
It is composed of aggregates having an average diameter of 0.1 to 50 μm in which fine filamentous carbon fibrils having an outer diameter of 3.5 to 75 nm, preferably 3.5 to 40 nm are entwined with each other. The average particle size of the aggregate is preferably 0.2 to 30 μm, more preferably 0.5 to 20 μm.

【0012】本発明における凝集体の粒径分布は、次の
通りである。すなわち、先に定義した90%径は、通常
100μm以下、好ましくは80μm以下、さらに好ま
しくは50μm以下である。また、この90%径が、平
均粒径の7.5倍以下でもある。
The particle size distribution of the aggregate in the present invention is as follows. That is, the 90% diameter defined above is usually 100 μm or less, preferably 80 μm or less, and more preferably 50 μm or less. Further, the 90% diameter is also 7.5 times or less of the average particle diameter.

【0013】本発明において用いる炭素フィブリルの凝
集体において、その粒径が50μmを超えるものが多量
に存在すると、熱可塑性エラストマーまたは樹脂組成物
を製造するための混練工程において、熱可塑性エラスト
マーまたは樹脂組成物中の炭素フィブリル材料が分散不
良となり、機械的強度が低下したり、成形品表面に粒子
が突出して、表面の平滑性外観が損なわれる。また、最
長径が50μm以下の凝集体であっても、平均粒径が5
0μm以上であると、同様に、特に表面外観上良好な結
果は得られない。また、平均粒径が0.1μm未満のも
のは、製造が難しい。
When a large amount of carbon fibril aggregates having a particle size of more than 50 μm are present in the carbon fibril aggregate used in the present invention, the thermoplastic elastomer or resin composition is used in the kneading step for producing the thermoplastic elastomer or resin composition. The carbon fibril material in the product becomes poorly dispersed, and the mechanical strength is lowered, or particles are projected on the surface of the molded product to impair the smooth appearance of the surface. Even if the longest diameter is 50 μm or less, the average particle size is 5
If it is 0 μm or more, similarly, particularly good results cannot be obtained in terms of surface appearance. Further, if the average particle size is less than 0.1 μm, it is difficult to manufacture.

【0014】炭素フィブリル材料中の凝集体の割合は、
好ましくは30%以上、さらに好ましくは50%以上で
ある。
The proportion of aggregates in the carbon fibril material is
It is preferably 30% or more, more preferably 50% or more.

【0015】炭素フィブリル凝集体を構成する炭素フィ
ブリルは、アスペクト比が通常5以上、好ましくは10
0以上、さらに好ましくは1000以上の糸状であり、
かつ、通常、その芯部が中空であるチューブ状ものであ
る。
The carbon fibrils constituting the carbon fibril aggregate have an aspect ratio of usually 5 or more, preferably 10
0 or more, more preferably 1000 or more,
In addition, it is usually a tubular shape whose core is hollow.

【0016】さらに、この炭素フィブリルは、フィブリ
ル軸に平行な複数の黒鉛質層を有し、好ましくは連続的
な熱炭素被覆を持たないものである。この熱炭素被覆で
覆われた表面積の割合は、通常50%以下、好ましくは
25%以下、さらに好ましくは5%以下である。
In addition, the carbon fibrils have a plurality of graphitic layers parallel to the fibril axis and preferably have no continuous thermal carbon coating. The proportion of the surface area covered with this thermal carbon coating is usually 50% or less, preferably 25% or less, more preferably 5% or less.

【0017】炭素フィブリルはその表面を変性したもの
も使用できる。例えば、酸化などの化学反応や、エポキ
シ樹脂などのポリマーによるコーティングなどの手段に
より変性することができる。
Carbon fibrils whose surface is modified can also be used. For example, it can be modified by means of chemical reaction such as oxidation or coating with a polymer such as an epoxy resin.

【0018】本発明の組成物中における炭素フィブリル
材料の割合は、0.5〜50重量%、好ましくは1〜3
0重量%、特に好ましくは2〜20重量%である。0.
1%重量未満では炭素フィブリル材料による効果が表れ
ない。50重量%を越えると組成物の加工性が著しく悪
くなり、組成物の加硫物の硬度が大きくなりすぎる欠点
が生じる。
The proportion of carbon fibril material in the composition of the present invention is 0.5-50% by weight, preferably 1-3.
It is 0% by weight, particularly preferably 2 to 20% by weight. 0.
If it is less than 1% by weight, the effect of the carbon fibril material is not exhibited. If it exceeds 50% by weight, the processability of the composition will be remarkably deteriorated, and the vulcanized product of the composition will have an excessively high hardness.

【0019】本発明で使用する炭素フィブリルは、例え
ば、特許出願公表平2−503334号公報にその製造
方法が記載されているが、具体例を次に記す。
The carbon fibrils used in the present invention are described, for example, in Japanese Patent Application Laid-Open No. 2-503334, and a specific example will be described below.

【0020】垂直式管状反応器において、自重または不
活性ガスなどのガス噴射により金属含有触媒粒子を炭素
含有ガス流に導入することによって炭素フィブリルを製
造する。反応温度は550〜1200℃である。触媒粒
子は、前駆的化合物、例えばフェロセンの分解によって
反応器中で形成されてよい。反応器には、触媒粒子を受
けとる石英ウールの内部プラグと反応器の温度をモニタ
ーする熱電対とを備えた石英管を備える。さらに、触
媒、反応ガス及びアルゴンといったパージガスを夫々導
入する入口ポート及び反応器のガス抜き用出口ポートを
備える。
Carbon fibrils are produced in a vertical tubular reactor by introducing metal-containing catalyst particles into the carbon-containing gas stream by gravity or by gas injection of an inert gas or the like. The reaction temperature is 550 to 1200 ° C. Catalyst particles may be formed in the reactor by decomposition of precursor compounds such as ferrocene. The reactor is equipped with a quartz tube with an internal plug of quartz wool that receives the catalyst particles and a thermocouple that monitors the temperature of the reactor. Further, an inlet port for introducing a catalyst, a reaction gas and a purge gas such as argon, and an outlet port for degassing the reactor are provided.

【0021】適当な炭素含有ガスは、飽和炭化水素類、
例えばメタン、エタン、プロパン、ブタン、ヘキサン及
びシクロヘキサン、不飽和炭化水素類、例えばエチレ
ン、プロピレン、ベンゼン及びトルエン、酸素含有炭化
水素類、例えばアセトン、メタノール及びテトラヒドロ
フラン、並びに一酸化炭素である。好ましいガスは、エ
チレン及びプロパンである。好ましくは水素ガスを添加
する。典型的には、炭素含有ガス対水素ガスの比は、
1:20〜20:1の範囲である。好ましい触媒は、蒸
着アルミナに付着させた鉄、モリブデン−鉄、クローム
−鉄、セリウム−鉄、及びマンガン−鉄粒子である。
Suitable carbon containing gases are saturated hydrocarbons,
Examples are methane, ethane, propane, butane, hexane and cyclohexane, unsaturated hydrocarbons such as ethylene, propylene, benzene and toluene, oxygen-containing hydrocarbons such as acetone, methanol and tetrahydrofuran, and carbon monoxide. Preferred gases are ethylene and propane. Hydrogen gas is preferably added. Typically, the ratio of carbon-containing gas to hydrogen gas is
It is in the range of 1:20 to 20: 1. Preferred catalysts are iron, molybdenum-iron, chrome-iron, cerium-iron, and manganese-iron particles deposited on evaporated alumina.

【0022】フィブリルを成長させるために、反応管を
550〜1200℃に加熱し、同時に例えばアルゴンで
パージする。反応管が所定温度に達すると、水素流及び
炭素含有ガス流の導入を開始する。1インチの長さの反
応管について、約100ミリリットル/分の水素流量及
び約200ミリリットル/分の炭素含有ガス流量が適当
である。反応管を上記流量の反応ガスで5分間以上パー
ジした後、触媒を石英ウールプラグに落とす。次に反応
ガスを反応器内全体において、触媒と(典型的には0.
5〜1時間)反応させる。反応時間が終了すると、反応
ガス流を停止し、炭素非含有ガス、例えばアルゴンをパ
ージして反応器を室温まで冷却し、反応管からフィブリ
ルを回収する。フィブリルの収率は触媒の鉄含量の30
倍以上である。
To grow the fibrils, the reaction tube is heated to 550 to 1200 ° C. and simultaneously purged with, for example, argon. When the reaction tube reaches a predetermined temperature, the introduction of the hydrogen stream and the carbon-containing gas stream is started. For a 1 inch long reaction tube, a hydrogen flow rate of about 100 milliliters / minute and a carbon-containing gas flow rate of about 200 milliliters / minute are suitable. After purging the reaction tube with the reaction gas at the above flow rate for 5 minutes or more, the catalyst is dropped on a quartz wool plug. The reaction gas is then fed throughout the reactor with the catalyst (typically 0.
Allow to react for 5 to 1 hour. At the end of the reaction time, the reaction gas flow is stopped, a carbon-free gas, eg, argon, is purged to cool the reactor to room temperature and fibrils are recovered from the reaction tube. The yield of fibrils is 30% of the iron content of the catalyst.
More than double.

【0023】本発明で用いる炭素フィブリル材料は、前
記のようにして製造した炭素フィブリルをそのまま、あ
るいは多くの場合、粉砕して所定のサイズに調製して得
る。粉砕の手段としては、例えば、気流式粉砕機(ジェ
ットミル)または、衝撃式粉砕機がある。これらの粉砕
機は、連続運転が可能であり、ボールミル、振動ミルな
どと比較して単位時間あたりの処理量も大きいため、粉
砕コストを低く抑えることができる。さらに、分級機構
を粉砕機内に設けたり、サイクロンなどの分級機をライ
ン中に設けることにより粒度分布の狭い均一な炭素フィ
ブリル凝集体を得ることができるので好ましい。
The carbon fibril material used in the present invention can be obtained by preparing the carbon fibrils produced as described above as they are or, in many cases, crushing them to a predetermined size. Examples of the crushing means include an airflow crusher (jet mill) and an impact crusher. These crushers are capable of continuous operation and have a large throughput per unit time as compared with ball mills, vibration mills, etc., so that the crushing cost can be kept low. Furthermore, it is preferable to provide a classifying mechanism in the crusher or to provide a classifier such as a cyclone in the line because a uniform carbon fibril aggregate having a narrow particle size distribution can be obtained.

【0024】図1に、本発明で用いる炭素フィブリル材
料の一例を示す。黒い影となっている部分が上述のよう
にして得た炭素フィブリル凝集体であり、線状に見える
のが炭素フィブリル自体である。
FIG. 1 shows an example of the carbon fibril material used in the present invention. The black shadowed portions are the carbon fibril aggregates obtained as described above, and the carbon fibrils themselves appear to be linear.

【0025】本発明において、導電性、制電性に優れた
熱可塑性エラストマーを得る場合、用いることができる
熱可塑性エラストマーとしては、スチレン−ブタジエン
−スチレン(SBS)エラストマー、スチレン−イソプ
レン−スチレン(SIS)エラストマーなどのスチレン
系エラストマー及び、これらの水添加物、塩化ビニル系
エラストマー、ウレタン系エラストマー、ポリエステル
系エラストマー、ポリアミド系エラストマー、1,2−
ポリブタジエン、1,4−トランスポリブタジエンなど
のブタジエン系エラストマー、1,4−トランスポリイ
ソプレン系エラストマー、金属カルボキシレート−ポリ
エチレン、エチレン−酢酸ビニル共重合体、エチレン−
エチルアクリレート共重合体、塩素化ポリエチレンなど
のエチレン系エラストマー、フッ素系熱可塑性エラスト
マーなどを挙げることができる。
In the present invention, when a thermoplastic elastomer having excellent conductivity and antistatic property is obtained, the thermoplastic elastomer that can be used is styrene-butadiene-styrene (SBS) elastomer, styrene-isoprene-styrene (SIS). ) Styrene-based elastomers such as elastomers and their water additives, vinyl chloride-based elastomers, urethane-based elastomers, polyester-based elastomers, polyamide-based elastomers, 1,2-
Butadiene-based elastomers such as polybutadiene and 1,4-trans polybutadiene, 1,4-trans polyisoprene-based elastomer, metal carboxylate-polyethylene, ethylene-vinyl acetate copolymer, ethylene-
Examples thereof include ethyl acrylate copolymer, ethylene-based elastomer such as chlorinated polyethylene, and fluorine-based thermoplastic elastomer.

【0026】また、本発明で用いられる合成樹脂として
は、熱可塑性樹脂及び熱硬化性樹脂のいずれをも使用す
ることができる。熱可塑性樹脂としては、例えばアクリ
ロニトリル−ブタジエン−スチレン樹脂(ABS樹
脂)、アクリロニトリル−エチレン/プロピレン−スチ
レン樹脂(AES樹脂)、メタクリル酸メチル−ブタジ
エン−スチレン樹脂(MBS樹脂)、アクリロニトリル
−ブタジエン−メタクリル酸メチル−スチレン樹脂(A
BMS樹脂)、アクリロニトリル−n−ブチルアクリレ
ート−スチレン樹脂(AAS樹脂)、ゴム変性ポリスチ
レン(ハイインパクトポリスチレン)、ポリエチレン樹
脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合樹
脂、ポリスチレン樹脂、ポリメチルメタクリレート樹
脂、ポリ塩化ビニル樹脂、酢酸セルロース樹脂、ポリア
ミド樹脂、ポリエステル樹脂、ポリアクリロニトリル樹
脂、ポリカーボネート樹脂、ポリフェニレンオキサイド
樹脂、ポリケトン樹脂、ポリスルホン樹脂、ポリフェニ
レンスルフィド樹脂、フッ素樹脂、ケイ素樹脂、ポリイ
ミド樹脂、ポリベンズイミダゾール樹脂、ポリアミド樹
脂等が挙げられる。
As the synthetic resin used in the present invention, both a thermoplastic resin and a thermosetting resin can be used. Examples of the thermoplastic resin include acrylonitrile-butadiene-styrene resin (ABS resin), acrylonitrile-ethylene / propylene-styrene resin (AES resin), methyl methacrylate-butadiene-styrene resin (MBS resin), acrylonitrile-butadiene-methacrylic acid. Methyl-styrene resin (A
BMS resin), acrylonitrile-n-butyl acrylate-styrene resin (AAS resin), rubber modified polystyrene (high impact polystyrene), polyethylene resin, polypropylene resin, ethylene vinyl acetate copolymer resin, polystyrene resin, polymethylmethacrylate resin, polychlorination. Vinyl resin, cellulose acetate resin, polyamide resin, polyester resin, polyacrylonitrile resin, polycarbonate resin, polyphenylene oxide resin, polyketone resin, polysulfone resin, polyphenylene sulfide resin, fluororesin, silicon resin, polyimide resin, polybenzimidazole resin, polyamide resin Etc.

【0027】また、熱硬化性樹脂としては、フェノール
樹脂、ユリア樹脂、メラミン樹脂、キシレン樹脂、ジア
リルフタレート樹脂、エポキシ樹脂、アニリン樹脂、フ
ラン樹脂、ポリウレタン樹脂等が挙げられる。
Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, xylene resin, diallyl phthalate resin, epoxy resin, aniline resin, furan resin and polyurethane resin.

【0028】本発明の組成物を製造するには、公知の方
法例えば樹脂のペレット状物又はパウダー状物と所定量
の炭素フィブリル材料とをドライブレンドあるいはウェ
ットブレンドした後、ロール式のニーダーに供給し加熱
下に混練したり、またはこれらを押出機に投入し、ロー
プ状に押出したものをペレット状にカットする等の方
法、あるいは樹脂等の溶液や分散体と炭素フィブリル材
料を液状媒体中でブレンドする方法などを用いることが
できる。また、ウェットマスターバッチ法での混合も可
能である。熱硬化性樹脂の場合には、その前駆体に炭素
フィブリル材料を混入してもよく、各種樹脂に適した公
知の方法を用いることができる。さらに所望の形に成形
する方法としては、例えば成形機を用いて押出成形、射
出成形、プレス成形等、いかなる方法を用いても良い。
In order to produce the composition of the present invention, a known method, for example, a pellet or powder of resin and a predetermined amount of carbon fibril material are dry blended or wet blended, and then fed to a roll type kneader. Then, kneading under heating, or charging them into an extruder and extruding them into a rope and cutting them into pellets, or a solution or dispersion of a resin or the like and a carbon fibril material in a liquid medium. A method of blending can be used. Also, mixing by a wet masterbatch method is possible. In the case of a thermosetting resin, a carbon fibril material may be mixed in its precursor, and a known method suitable for various resins can be used. Further, as a method of molding into a desired shape, any method such as extrusion molding, injection molding, press molding using a molding machine may be used.

【0029】また本発明の組成物は、発泡剤を用いるこ
とにより発泡させ発泡体とすることができ、導電性およ
び/または漆黒性を有する熱可塑性エラストマー発泡体
および樹脂発泡体を得ることができる。かかる発泡体に
は前記種々の樹脂やエラストマーが使用できるが、中で
もポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポ
リスチレン、ポリブタジエン、ポリウレタン、エチレン
−酢酸ビニル共重合体などの熱可塑性樹脂や熱可塑性エ
ラストマーを好ましい重合体としてあげることができ
る。発泡剤としては、各種の樹脂用発泡剤の他、有機溶
剤、ブタンなどのガス類が使用できる。
The composition of the present invention can be expanded into a foam by using a foaming agent, and a thermoplastic elastomer foam and a resin foam having electroconductivity and / or jet blackness can be obtained. . The above-mentioned various resins and elastomers can be used in such a foam, and among them, thermoplastic resins and thermoplastic elastomers such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutadiene, polyurethane, ethylene-vinyl acetate copolymer are preferable. It can be given as a united body. As the foaming agent, in addition to various resin foaming agents, organic solvents and gases such as butane can be used.

【0030】このような発泡体は公知の方法を用いて製
造することができる。例えば、熱可塑性樹脂を用いる場
合には、押出機にて樹脂と所定量の炭素フィブリル材料
とを溶融混合し、これにブタン等のガスを圧入混合した
のち、押出機出口にて発泡させる方法などがある。この
場合、炭素フィブリル材料と熱可塑性エラストマーまた
は樹脂とをあらかじめ押出機等で混合し、一旦マスター
バッチを製造した後、改めて発泡させることも可能であ
る。また、ガスのかわりに、化学発泡剤も使用できる。
本発明にてウレタンフォームを製造する場合には、主剤
または硬化剤、発泡剤を混合する際に炭素フィブリル材
料を加えてもよいが、あらかじめ主剤、または硬化剤中
にブレンダーを用いて炭素フィブリル材料を分散させて
おくと、より効果的である。
Such a foam can be produced by a known method. For example, when a thermoplastic resin is used, a resin and a predetermined amount of carbon fibril material are melt-mixed in an extruder, and a gas such as butane is press-mixed therein, and then foamed at the extruder outlet. There is. In this case, it is possible to mix the carbon fibril material and the thermoplastic elastomer or resin in advance with an extruder or the like to once produce a masterbatch, and then foam again. Also, instead of gas, a chemical foaming agent can be used.
In the case of producing a urethane foam according to the present invention, a main agent or a curing agent, a carbon fibril material may be added when mixing a foaming agent, but a carbon fibril material may be added in advance to the main agent or the curing agent using a blender. It is more effective to disperse.

【0031】また、本発明の組成物においては、必要に
応じてゴム用添加剤や樹脂用添加剤を使用できる。たと
えば、他の炭素フィブリル、カーボンブラック、シリ
カ、ケイ藻土、粉砕石英、タルク、クレー、マイカ、ケ
イ酸カルシウム、ケイ酸マグネシウム、ガラス粉末、炭
酸カルシウム、硫酸バリウム、炭酸亜鉛、酸化チタン、
アルミナ、ガラス繊維、他のカーボン繊維、有機繊維な
どの充填剤、軟化剤、可塑剤、加工助剤、滑剤、老化防
止剤、紫外線吸収剤、架橋剤など公知の添加剤を添加す
ることもできる。
Further, in the composition of the present invention, an additive for rubber or an additive for resin can be used if necessary. For example, other carbon fibrils, carbon black, silica, diatomaceous earth, ground quartz, talc, clay, mica, calcium silicate, magnesium silicate, glass powder, calcium carbonate, barium sulfate, zinc carbonate, titanium oxide,
It is also possible to add known additives such as fillers such as alumina, glass fibers, other carbon fibers, organic fibers, softeners, plasticizers, processing aids, lubricants, antiaging agents, ultraviolet absorbers and crosslinking agents. .

【0032】[0032]

【実施例】本発明を実施例によってさらに具体的に説明
するが、いかなる意味においても、実施例によって特許
請求の範囲に記載された発明が限定されるものではな
い。
EXAMPLES The present invention will be described in more detail by way of examples, but the present invention is not limited by the examples in any sense.

【0033】なお、原料として使用する炭素フィブリル
材料の凝集体の径は、炭素フィブリルを、界面活性剤を
添加した水中にて超音波ホモジナイザーを用いて分散さ
せ、その炭素フィブリル分散液をレーザー回折散乱式粒
度分布計を用いて分析し、測定した。
The diameter of the aggregate of the carbon fibril material used as the raw material is determined by dispersing the carbon fibrils in water containing a surfactant using an ultrasonic homogenizer, and dispersing the carbon fibril dispersion by laser diffraction scattering. It analyzed and measured using the type particle size distribution meter.

【0034】〔実施例1、2、比較例1〕平均直径13
nmの炭素フィブリルが絡み合ってなる表1記載の平均
粒径をもつ凝集体よりなる炭素フィブリル材料各150
gを、エチレン酢酸ビニル共重合樹脂(日本ユニカー製
No.3145)1kg及びステアリン酸(花王)1
0gと供に、バンバリーミキサー、ついでロールを用い
て混練し、シートにした。シートカッタを用いてペレッ
ト化した後、単軸押出機を用いて、100℃にて断面2
8mm×2mmのベルト状に押し出し、試験片を得た。
30cmを切出し、10cmおきに3ヶ所10mm×1
0mmの正方形をえがき、その中に含まれる50μm以
上の突起物の数を光学顕微鏡(10倍)を用いて計数
し、3ヶ所の平均から1cm2 中に含まれる50μm以
上の突起物の数を求めた。
[Examples 1 and 2, Comparative Example 1] Average diameter 13
150 carbon fibril materials each consisting of an aggregate having an average particle size shown in Table 1 in which carbon fibrils of nm are intertwined
g is ethylene vinyl acetate copolymer resin (Nippon Unicar No. 3145) 1 kg and stearic acid (Kao) 1
Along with 0 g, the mixture was kneaded using a Banbury mixer and then a roll to form a sheet. After pelletizing using a sheet cutter, cross section 2 at 100 ° C using a single screw extruder.
A test piece was obtained by extruding into a belt shape of 8 mm × 2 mm.
Cut out 30 cm, and every 10 cm, 3 places 10 mm x 1
A 0 mm square was scooped out, and the number of protrusions of 50 μm or more contained therein was counted using an optical microscope (10 times), and the number of protrusions of 50 μm or more contained in 1 cm 2 was calculated from the average of three places.

【表1】 [Table 1]

【0035】表1に示す通り、平均粒径80μm、90
%径240μmの比較例1では、50μm以上の突起物
が観察されるが、実施例1、2では観察されず、表面の
平滑性に優れていた。
As shown in Table 1, average particle diameters of 80 μm and 90
In Comparative Example 1 having a% diameter of 240 μm, protrusions having a diameter of 50 μm or more were observed, but not observed in Examples 1 and 2, and the surface smoothness was excellent.

【0036】〔実施例3〜6、比較例2〜6〕樹脂とし
てABS樹脂(日本合成ゴム株式会社製 JSR AB
S35)を使用した。炭素フィブリル材料としては、次
のものを使用した。 炭素フィブリル材料(A) 平均粒径 3μm 90%径 11μm 炭素フィブリル材料(B) 平均粒径 80μm 90%径 240μm
Examples 3 to 6 and Comparative Examples 2 to 6 ABS resin (JSR AB manufactured by Japan Synthetic Rubber Co., Ltd.)
S35) was used. The following was used as the carbon fibril material. Carbon fibril material (A) Average particle diameter 3 μm 90% diameter 11 μm Carbon fibril material (B) Average particle diameter 80 μm 90% diameter 240 μm

【0037】炭素フィブリル材料(A)、(B)、又は
ケッチェンブラックEC DJ−500(ライオン・ア
クゾ社販売)を表2および表3に示す処方でドライブレ
ンドした後、押出機に投入し、押出温度230〜240
℃で押出しペレット状にしたものを、同様な温度で射出
成形を行ない、体積固有抵抗及び成形品表面外観測定用
として、長さ80mm、幅55mm、厚み2mmの試験
片を得た。また、衝撃強度測定用として、長さ63.5
mm、幅12.7mm、厚み6.35mmの試験片を得
た。
The carbon fibril material (A), (B) or Ketjenblack EC DJ-500 (sold by Lion Akzo Co.) was dry blended according to the formulations shown in Tables 2 and 3 and then charged into an extruder, Extrusion temperature 230-240
The extruded pellets at 0 ° C. were injection-molded at the same temperature to obtain a test piece having a length of 80 mm, a width of 55 mm and a thickness of 2 mm for measuring the volume resistivity and the surface appearance of the molded product. Also, for impact strength measurement, a length of 63.5
mm, a width of 12.7 mm, and a thickness of 6.35 mm were obtained.

【0038】得られた試験片について衝撃強度、体積固
有抵抗、成形品表面外観、また、ペレットを用いて流動
性をそれぞれ測定した。結果を表2および表3に示す。
The impact strength, volume resistivity, surface appearance of the molded product, and fluidity of the obtained test pieces were measured using pellets. The results are shown in Tables 2 and 3.

【表2】 [Table 2]

【表3】 [Table 3]

【0039】実施例3〜6に示すように、本発明の炭素
フィブリル材料(A)を所定量含有する組成物は、比較
例3、4に示す導電性カーボンブラックであるケッチェ
ンブラックECに比べ、優れた導電性を示すことがわか
る。
As shown in Examples 3 to 6, the composition containing the carbon fibril material (A) of the present invention in a predetermined amount was compared with the conductive carbon black Ketjen Black EC shown in Comparative Examples 3 and 4. It can be seen that it exhibits excellent conductivity.

【0040】また、得られた組成物の成形品の外観も良
好であり、かつ、機械的強度、加工性を低下させる傾向
も少ないことがわかる。
Further, it can be seen that the molded product of the obtained composition has a good appearance, and there is little tendency to reduce the mechanical strength and the processability.

【0041】比較例2は、炭素フィブリル材料(A)を
大量に配合した場合であるが、高い導電性は得られる
が、加工性に劣り、成形が困難となる。成形品が得られ
たとしても、表面外観が大幅に劣る。
Comparative Example 2 is a case where a large amount of the carbon fibril material (A) was blended, and although high conductivity was obtained, the workability was poor and the molding was difficult. Even if a molded product is obtained, the surface appearance is significantly inferior.

【0042】比較例5、6は、炭素フィブリル材料
(B)を用いた場合であるが、導電性、外観、成形性に
ついて、炭素フィブリル材料(A)を用いたものより劣
る。
In Comparative Examples 5 and 6, the carbon fibril material (B) was used, but the conductivity, appearance and moldability were inferior to those using the carbon fibril material (A).

【0043】[0043]

【発明の効果】上述のように、本発明の熱可塑性エラス
トマー組成物ならびに樹脂組成物は、組成物中に含まれ
る炭素フィブリル材料をより均質に分散させることがで
き、導電性、制電性に優れている。
INDUSTRIAL APPLICABILITY As described above, the thermoplastic elastomer composition and the resin composition of the present invention can disperse the carbon fibril material contained in the composition in a more uniform manner, and have excellent conductivity and antistatic property. Are better.

【0044】また、本発明の組成物は、その表面の平滑
性、外観、光沢、さらには機械的強度においても優れて
いる。
The composition of the present invention is also excellent in surface smoothness, appearance, gloss, and mechanical strength.

【0045】従って、本発明の組成物は、エレクトロニ
クス、情報処理装置、電子事務機器等の分野で広く応用
できるものである。
Therefore, the composition of the present invention can be widely applied in the fields of electronics, information processing equipment, electronic office equipment and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は繊維の形状であり、本発明のゴム組成物
の製造に用いられる炭素フィブリル材料のTEM(Tr
ansmission Electron Micro
scope)像の一例である。
FIG. 1 is a TEM of a carbon fibril material used in the production of a rubber composition of the present invention (Tr (Tr)
enmission Electron Micro
It is an example of a (scope) image.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直径3.5〜75nmの微細糸状の炭素
フィブリルが互いに絡み合った、平均粒径0.1〜50
μmの凝集体から主としてなる炭素フィブリル材料0.
5〜50重量部、および熱可塑性エラストマー99.5
〜50重量部とを混合してなる熱可塑性エラストマー組
成物。
1. An average particle size of 0.1 to 50 in which fine thread-like carbon fibrils having a diameter of 3.5 to 75 nm are intertwined with each other.
Carbon fibril material consisting mainly of agglomerates of μm.
5 to 50 parts by weight, and thermoplastic elastomer 99.5
A thermoplastic elastomer composition obtained by mixing 50 to 50 parts by weight.
【請求項2】 直径3.5〜75nmの微細糸状の炭素
フィブリルが互いに絡み合った、平均粒径0.1〜50
μmの凝集体から主としてなる炭素フィブリル材料0.
5〜50重量部、および樹脂99.5〜50重量部とを
混合してなる樹脂組成物。
2. An average particle size of 0.1 to 50 in which fine thread-like carbon fibrils having a diameter of 3.5 to 75 nm are intertwined with each other.
Carbon fibril material consisting mainly of agglomerates of μm.
A resin composition obtained by mixing 5 to 50 parts by weight and 99.5 to 50 parts by weight of a resin.
JP22604193A 1993-09-10 1993-09-10 Thermoplastic elastomer composition and resin composition Pending JPH07102112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22604193A JPH07102112A (en) 1993-09-10 1993-09-10 Thermoplastic elastomer composition and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22604193A JPH07102112A (en) 1993-09-10 1993-09-10 Thermoplastic elastomer composition and resin composition

Publications (1)

Publication Number Publication Date
JPH07102112A true JPH07102112A (en) 1995-04-18

Family

ID=16838858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22604193A Pending JPH07102112A (en) 1993-09-10 1993-09-10 Thermoplastic elastomer composition and resin composition

Country Status (1)

Country Link
JP (1) JPH07102112A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212434A (en) * 2001-01-12 2002-07-31 Yuka Denshi Co Ltd Highly electroconductive molded product
JP2003534955A (en) * 1999-12-07 2003-11-25 ウィリアム・マーシュ・ライス・ユニバーシティ Oriented nanofibers embedded in a polymer matrix
JP2004181633A (en) * 2002-11-29 2004-07-02 Nissei Plastics Ind Co Conductive resin molded object with insulating surface layer and its molding method
EP1553604A1 (en) * 2002-06-24 2005-07-13 Mitsubishi Plastics Inc. Conductive resin film, collector and production methods therefore
EP1630135A2 (en) 2004-08-26 2006-03-01 Nissan Motor Company, Ltd. Alumina particle, alumina particle manufacturing method, resin composition, and resin composition manufacturing method
JP2006249546A (en) * 2005-03-14 2006-09-21 Oita Univ Composite material containing expanded carbon fiber, and its manufacturing method
WO2006106691A1 (en) * 2005-03-31 2006-10-12 Bussan Nanotech Research Institute Inc. Method of producing carbon microfiber-containing resin composition
WO2006106687A1 (en) * 2005-03-31 2006-10-12 Bussan Nanotech Research Institute Inc. Process for production of resin composition containing fine carbon fiber
US7695769B2 (en) 2003-10-09 2010-04-13 Fuji Xerox Co., Ltd. Composite and method of manufacturing the same
JP2010215964A (en) * 2009-03-17 2010-09-30 Toyo Aluminium Kk Conductive substance coated aluminum material and method for manufacturing the same
JP2011032322A (en) * 2009-07-30 2011-02-17 Kitagawa Ind Co Ltd Pressure-sensitive conductive material
US7935417B2 (en) 2007-03-23 2011-05-03 National Institute Of Advanced Industrial Science And Technology Melt-kneaded products, molded resin products, and production method thereof
US8722765B2 (en) 2004-09-07 2014-05-13 Nissan Motor Co., Ltd. Alumina particle composite, method of manufacturing the alumina particle composite, resin composition and method of manufacturing the resin composition
KR101893353B1 (en) * 2017-10-13 2018-09-03 이국성 Resin composition fabricated by carbon fiber and thermoplastic polymer and resin composition manufactured by the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003534955A (en) * 1999-12-07 2003-11-25 ウィリアム・マーシュ・ライス・ユニバーシティ Oriented nanofibers embedded in a polymer matrix
JP2002212434A (en) * 2001-01-12 2002-07-31 Yuka Denshi Co Ltd Highly electroconductive molded product
EP2367176A2 (en) 2002-06-24 2011-09-21 Mitsubishi Plastics, Inc. Conductive resin film, collector and manufacturing process therefor
EP1553604A1 (en) * 2002-06-24 2005-07-13 Mitsubishi Plastics Inc. Conductive resin film, collector and production methods therefore
EP2367176A3 (en) * 2002-06-24 2011-11-02 Mitsubishi Plastics, Inc. Conductive resin film, collector and manufacturing process therefor
EP1553604A4 (en) * 2002-06-24 2008-08-27 Mitsubishi Plastics Inc Conductive resin film, collector and production methods therefore
US7514021B2 (en) 2002-06-24 2009-04-07 Mitsubishi Plastics, Inc. Conductive resin film, collector and production methods therefore
JP2004181633A (en) * 2002-11-29 2004-07-02 Nissei Plastics Ind Co Conductive resin molded object with insulating surface layer and its molding method
US7462388B2 (en) 2002-11-29 2008-12-09 Nissei Plastic Industrial Co., Ltd. Conductive resin molded product having insulating skin and method for forming the same
US8052952B2 (en) 2003-10-09 2011-11-08 Fuji Xerox Co., Ltd. Composite and method of manufacturing the same
US7695769B2 (en) 2003-10-09 2010-04-13 Fuji Xerox Co., Ltd. Composite and method of manufacturing the same
EP1630135A2 (en) 2004-08-26 2006-03-01 Nissan Motor Company, Ltd. Alumina particle, alumina particle manufacturing method, resin composition, and resin composition manufacturing method
USRE43468E1 (en) 2004-08-26 2012-06-12 Nissan Motor Co., Ltd. Alumina particles of high aspect ratio, alumina particle manufacturing method, resin composition, and resin composition manufacturing method
US7476440B2 (en) 2004-08-26 2009-01-13 Nissan Motor Co., Ltd. Alumina particle, alumina particle manufacturing method, resin composition, and resin composition manufacturing method
US8722765B2 (en) 2004-09-07 2014-05-13 Nissan Motor Co., Ltd. Alumina particle composite, method of manufacturing the alumina particle composite, resin composition and method of manufacturing the resin composition
JP4719875B2 (en) * 2005-03-14 2011-07-06 国立大学法人 大分大学 Expanded carbon fiber-containing composite material and method for producing the same
JP2006249546A (en) * 2005-03-14 2006-09-21 Oita Univ Composite material containing expanded carbon fiber, and its manufacturing method
JP2006282842A (en) * 2005-03-31 2006-10-19 Bussan Nanotech Research Institute Inc Manufacturing method of fine carbon fiber-containing resin composition
JP2006282843A (en) * 2005-03-31 2006-10-19 Bussan Nanotech Research Institute Inc Manufacturing method of fine carbon fiber-containing resin composition
WO2006106687A1 (en) * 2005-03-31 2006-10-12 Bussan Nanotech Research Institute Inc. Process for production of resin composition containing fine carbon fiber
WO2006106691A1 (en) * 2005-03-31 2006-10-12 Bussan Nanotech Research Institute Inc. Method of producing carbon microfiber-containing resin composition
US7935417B2 (en) 2007-03-23 2011-05-03 National Institute Of Advanced Industrial Science And Technology Melt-kneaded products, molded resin products, and production method thereof
US8415423B2 (en) 2007-03-23 2013-04-09 National Institute Of Advanced Industrial Science And Technology Melt-kneaded products and molded resin products
JP2010215964A (en) * 2009-03-17 2010-09-30 Toyo Aluminium Kk Conductive substance coated aluminum material and method for manufacturing the same
JP2011032322A (en) * 2009-07-30 2011-02-17 Kitagawa Ind Co Ltd Pressure-sensitive conductive material
KR101893353B1 (en) * 2017-10-13 2018-09-03 이국성 Resin composition fabricated by carbon fiber and thermoplastic polymer and resin composition manufactured by the same

Similar Documents

Publication Publication Date Title
JP2862578B2 (en) Resin composition
JPH07102112A (en) Thermoplastic elastomer composition and resin composition
JP2863192B2 (en) Thermoplastic elastomer composition
US5591382A (en) High strength conductive polymers
JP2007112885A (en) Thermoplastic elastomer composition
WO2007063984A1 (en) Conductive member containing fiber nanocarbon and contact device using such conductive member
JP2009167369A (en) Resin composition containing carbon nanotube, cured substance, molded body, and method for producing resin composition containing carbon nanotube
JP2015061891A (en) Production method of conductive resin composition master batch and master batch
EP0156390A2 (en) Electrically conductive composition
JP2016108524A (en) Conductive resin composition, conductive master batch, molded body, and production method of the same
EP2474572A1 (en) Electrically conductive thermoplastic resin composition
JP4775887B2 (en) Resin composition
JP4869615B2 (en) Method for producing fine carbon fiber-containing resin composition
JP2009127038A (en) Resin composition, method for producing the same and use of the same
JP2015117253A (en) Conductive resin composition master batch
JP3037021B2 (en) Manufacturing method of conductive resin material
JP4599211B2 (en) Thermoplastic resin composition, process for producing the same, and molded article thereof
JPH0158227B2 (en)
JP6035201B2 (en) Conductive resin composition
JPH0277442A (en) Electrically conductive thermoplastic resin composition
JP2009126985A (en) Molded article, method for producing the same and use of the same
JP2005133002A (en) Fluororesin composition
JP6095761B1 (en) Granular composition with carbon-based conductive material and method for producing the same
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
TWI822573B (en) Carbon material granules, method for producing carbon material granules, and conductive resin composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040531

A521 Written amendment

Effective date: 20040811

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040831

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A521 Written amendment

Effective date: 20041126

Free format text: JAPANESE INTERMEDIATE CODE: A821

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050106

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050128