JP2006282842A - Manufacturing method of fine carbon fiber-containing resin composition - Google Patents

Manufacturing method of fine carbon fiber-containing resin composition Download PDF

Info

Publication number
JP2006282842A
JP2006282842A JP2005104456A JP2005104456A JP2006282842A JP 2006282842 A JP2006282842 A JP 2006282842A JP 2005104456 A JP2005104456 A JP 2005104456A JP 2005104456 A JP2005104456 A JP 2005104456A JP 2006282842 A JP2006282842 A JP 2006282842A
Authority
JP
Japan
Prior art keywords
resin
fine carbon
carbon fiber
resin composition
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104456A
Other languages
Japanese (ja)
Other versions
JP4869615B2 (en
Inventor
Koichi Handa
浩一 半田
Subiantoro
スビアントロ
Yoshihisa Goto
善久 後藤
Akira Fukami
明 深見
Yoshiyuki Naito
良之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK KOGYO KK
TSUBAKURO KAGAKU KOGYO KK
Bussan Nanotech Research Institute Inc
Original Assignee
SK KOGYO KK
TSUBAKURO KAGAKU KOGYO KK
Bussan Nanotech Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK KOGYO KK, TSUBAKURO KAGAKU KOGYO KK, Bussan Nanotech Research Institute Inc filed Critical SK KOGYO KK
Priority to JP2005104456A priority Critical patent/JP4869615B2/en
Priority to PCT/JP2006/306333 priority patent/WO2006106687A1/en
Publication of JP2006282842A publication Critical patent/JP2006282842A/en
Application granted granted Critical
Publication of JP4869615B2 publication Critical patent/JP4869615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a fine carbon fiber-containing resin composition exhibiting excellent properties such as electric conductivity or the like by uniformly dispersing a fine carbon fiber in a thermoplastic resin at a stable compounding ratio. <P>SOLUTION: The manufacturing method of the fine carbon fiber-containing resin composition comprising the fine carbon fiber dispersed and compounded in the thermoplastic resin comprises feeding the fine carbon fiber and the thermoplastic resin into a kneading extruder and kneading them, where the kneading extruder is set under the conditions that the cylinder temperature of the kneading extruder is such that the melt flow index of the thermoplastic resin is 10-30 under a load of 2.16 kg prescribed in JIS K 7210; that the residence time of the fine-carbon fiber-containing resin composition in the kneading extruder is 25-100 sec; and that the shear rate of a screw segment of the kneading extruder on the fine carbon fiber-containing resin composition is 10,000-30,000/sec. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱可塑性樹脂へ微細炭素繊維を安定した配合比で均一に分散させ、優れた電気伝導性等の物性を発揮する微細炭素繊維含有樹脂組成物を製造する方法に関するものである。   The present invention relates to a method for producing a fine carbon fiber-containing resin composition that uniformly disperses fine carbon fibers in a thermoplastic resin at a stable blending ratio and exhibits physical properties such as excellent electrical conductivity.

熱可塑性樹脂は、優れた成形加工特性を有し、機械的強度、熱的特性も比較的良好なものであるので、種々の用途に広く用いられている。   Thermoplastic resins are widely used in various applications because they have excellent molding properties and relatively good mechanical strength and thermal properties.

一方で、一般に、熱可塑性樹脂は、その電気伝導性は低く、これを改良するため、あるいは、機械的強度、熱的強度をより高いものとするために、充填材を配合し、複合材料とすることも従来行われている。   On the other hand, in general, a thermoplastic resin has low electrical conductivity, and in order to improve this, or in order to increase mechanical strength and thermal strength, a filler is blended, It has also been done conventionally.

例えば、熱可塑性樹脂に配合される導電性充填材としては、カーボンブラック、炭素繊維、金属繊維、金属粉末等が用いられている。   For example, carbon black, carbon fiber, metal fiber, metal powder, etc. are used as the conductive filler blended in the thermoplastic resin.

しかしながら、上記導電性充填材を熱可塑性樹脂に充填し、高い電気伝導性を付与するためには、例えば、樹脂に対し20質量%程度といった高い充填量が必要であり、この場合熱可塑性樹脂が本来有する機械的特性や成形加工特性が損なわれることとなっていた。   However, in order to fill a thermoplastic resin with the conductive filler and impart high electrical conductivity, for example, a high filling amount of about 20% by mass with respect to the resin is required. The mechanical properties and molding characteristics inherent to it have been impaired.

近年、カーボンナノチューブに代表される繊維径が0.5〜100nmに細められた微細炭素繊維が開発されており、これら微細炭素繊維は、電気伝導性が高いこと、アスペクト比が大きいこと、単位重量当たりの本数が多いことなどの特性を有することから、従来の導電性充填材に比べて、比較的少ない添加量においても、優れた電気伝導性を付与できることが期待されている。   In recent years, fine carbon fibers with a fiber diameter typified by carbon nanotubes of 0.5 to 100 nm have been developed. These fine carbon fibers have high electrical conductivity, large aspect ratio, unit weight. Since it has characteristics such as a large number of hits, it is expected that excellent electrical conductivity can be imparted even with a relatively small amount of addition compared to conventional conductive fillers.

しかしながら、微細炭素繊維は、非常に軽微であり、熱可塑性樹脂に配合、充填することが困難であった。さらに、微細炭素繊維は、凝集しやすいため、熱可塑性樹脂中に均一に分散させるには、高いせん断速度となる押出し条件が必要となる。このため微細炭素繊維が混練時に加わるせん断力により切断されてしまい、所定の電気伝導性が発現しないことがあった。   However, the fine carbon fiber is very light and it is difficult to blend and fill the thermoplastic resin. Furthermore, since the fine carbon fibers are likely to aggregate, in order to uniformly disperse them in the thermoplastic resin, an extrusion condition that provides a high shear rate is required. For this reason, the fine carbon fiber is cut by a shearing force applied during kneading, and predetermined electrical conductivity may not be exhibited.

また、特許文献1には、上述したような微細炭素繊維の熱可塑性樹脂中への分散配合の困難性を解決するために、直径3.5〜75nmの微細炭素繊維が互いに絡み合った、平均粒径0.1〜50μmの凝集体を熱可塑性樹脂中へ配合することが開示してある。   Patent Document 1 discloses an average particle in which fine carbon fibers having a diameter of 3.5 to 75 nm are intertwined with each other in order to solve the difficulty in dispersing and blending the fine carbon fibers in the thermoplastic resin as described above. It is disclosed that an aggregate having a diameter of 0.1 to 50 μm is blended in a thermoplastic resin.

しかしながら、特許文献1には、このような凝集体の熱可塑性樹脂中への配合、混練条件等としては、特段示されておらず、上述したような混練時に加わるせん断力による微細炭素繊維の切断の問題が残り、また、熱可塑性樹脂中には微細炭素繊維は前記凝集体の状態で分散したものとなるために、微細炭素繊維が本来有する電気的特性等を生かすことができず、部位特異的な電気抵抗の変化や、粗分散領域が弱点となった機械的強度の低下などが生じる虞れが残るものであった。
特開平7−102112号公報
However, Patent Document 1 does not specifically describe such agglomerates blended into a thermoplastic resin, kneading conditions, and the like, and the cutting of fine carbon fibers by shearing force applied during kneading as described above. In addition, the fine carbon fibers in the thermoplastic resin are dispersed in the state of the aggregates, so that the electrical characteristics inherent to the fine carbon fibers cannot be utilized, and the site-specific There remains a possibility that a change in electrical resistance or a decrease in mechanical strength in which the coarse dispersion region becomes a weak point will occur.
JP-A-7-102112

従って、本発明は、微細炭素繊維をその特性を損なうことなく熱可塑性樹脂中に均一に分散させることのできる炭素繊維含有熱可塑性樹脂組成物の製造方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a method for producing a carbon fiber-containing thermoplastic resin composition capable of uniformly dispersing fine carbon fibers in a thermoplastic resin without impairing the properties thereof.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、微細炭素繊維と熱可塑性樹脂を、混練押出機に投入して混練して炭素繊維含有熱可塑性樹脂組成物を製造するにおいて、押出温度をJIS K 7210に規定される2.16kg荷重下での前記熱可塑性樹脂のメルトフローインデックスが特定範囲内となる温度条件に設定し、かつ前記混練押出機内における前記微細炭素繊維含有樹脂組成物の滞留時間、および前記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成物に対するせん断速度を適当なものに調整することで、微細炭素繊維がその形状を保持しつつ均一に分散され、電気伝導性等の特性に優れた微細炭素繊維含有樹脂組成物を提供できることを見出し、本発明に到達したものである。   As a result of intensive studies to solve the above problems, the present inventor puts fine carbon fibers and a thermoplastic resin into a kneading extruder and kneads them to produce a carbon fiber-containing thermoplastic resin composition. The extrusion temperature is set to a temperature condition in which the melt flow index of the thermoplastic resin under a 2.16 kg load specified in JIS K 7210 is within a specific range, and the fine carbon fiber-containing resin in the kneading extruder By adjusting the residence time of the composition and the shear rate for the fine carbon fiber-containing resin composition of the screw segment of the kneading extruder, the fine carbon fibers are uniformly dispersed while maintaining the shape thereof, The inventors have found that a fine carbon fiber-containing resin composition excellent in properties such as electrical conductivity can be provided, and have reached the present invention.

すなわち、上記課題を解決する本発明は、微細炭素繊維と熱可塑性樹脂とを、混練押出機に投入して混錬することにより、熱可塑性樹脂中に微細炭素繊維が分散配合されてなる微細炭素含有樹脂組成物を製造する方法において、前記混練押出機のシリンダー温度が、JIS K 7210に規定される2.16kg荷重下での前記熱可塑性樹脂のメルトフローインデックスが10〜30となる温度であり、かつ前記混練押出機内における前記微細炭素繊維含有樹脂組成物の滞留時間が25〜100秒であり、また、前記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成物に対するせん断速度が、10000〜30000/秒であることを特徴とするものである。   That is, the present invention that solves the above-mentioned problems is a method in which fine carbon fibers and a thermoplastic resin are put into a kneading extruder and kneaded to finely mix the fine carbon fibers in the thermoplastic resin. In the method for producing the resin composition, the cylinder temperature of the kneading extruder is a temperature at which the melt flow index of the thermoplastic resin under a load of 2.16 kg as defined in JIS K 7210 is 10-30. The residence time of the fine carbon fiber-containing resin composition in the kneading extruder is 25 to 100 seconds, and the shear rate of the screw segment of the kneading extruder to the fine carbon fiber-containing resin composition is 10,000 to 10,000. It is characterized by 30000 / second.

本発明はさらに、微細炭素繊維と熱可塑性樹脂とを、単軸又は二軸の攪拌機を用いて予め混合して、予備混合体とした後に、前記混練押出機に投入するものである微細炭素含有樹脂組成物の製造方法を示すものである。   The present invention further includes a fine carbon fiber and a thermoplastic resin, which are premixed using a uniaxial or biaxial stirrer to form a premix, and then charged into the kneading extruder. The manufacturing method of a resin composition is shown.

本発明はまた、使用される熱可塑性樹脂が、ペレット状またはフレーク状である場合に、予め当該ペレットまたはフレークを粉砕機にて粉砕してから予備混合体を調製するものである微細炭素含有樹脂組成物の製造方法を示すものである。   The present invention also provides a fine carbon-containing resin for preparing a premix after the pellet or flake is pulverized in advance by a pulverizer when the thermoplastic resin used is in the form of pellet or flake. The manufacturing method of a composition is shown.

本発明はまた、使用される微細炭素繊維の嵩密度が0.0001〜0.05g/cmであることを特徴とする微細炭素含有樹脂組成物の製造方法を示すものである。 This invention also shows the manufacturing method of the fine carbon containing resin composition characterized by the bulk density of the fine carbon fiber used being 0.0001-0.05 g / cm < 3 >.

本発明はさらに、熱可塑性樹脂が、ポリ塩化ビニル樹脂、ポリオレフィン樹脂、ポリ乳酸樹脂、ポリスチレン樹脂、アクリルニトリル−ブタジエン−スチレン(ABS)樹脂、アクリルニトリル−スチレン(AS)樹脂、ポリ(メタ)アクリル樹脂、ポリアクリロニトリル樹脂、飽和ポリエステル樹脂、アイオノマー樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアミドイミド樹脂、熱可塑性ポリイミド樹脂、液晶ポリエステル樹脂、熱可塑性エラストマーおよびそれらのポリマーアロイからなる群より選ばれてなる少なくとも1種である微細炭素含有樹脂組成物の製造方法を示すものである。   In the present invention, the thermoplastic resin may be polyvinyl chloride resin, polyolefin resin, polylactic acid resin, polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, poly (meth) acrylic. Resin, polyacrylonitrile resin, saturated polyester resin, ionomer resin, polycarbonate resin, polyamide resin, polyacetal resin, polyphenylene ether resin, modified polyphenylene ether resin, polyarylate resin, polysulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene Sulfide resin, polyetheretherketone resin, polyetherketone resin, polyamideimide resin, thermoplastic polyimide resin, liquid crystal polyester resin, thermoplastic elastomer Shows a method for manufacturing the over and fine carbon-containing resin composition is at least one comprising selected from the group consisting of a polymer alloy.

本発明はさらに、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボンブラック、炭素繊維、ガラス繊維およびこれらの2種以上の混合物からなる群から選ばれてなるいずれか1つの充填材をさらに配合するものである微細炭素繊維含有樹脂組成物の製造方法を示すものである。   The present invention further includes any one filler selected from the group consisting of fine metal particles, silica, calcium carbonate, magnesium carbonate, carbon black, carbon fiber, glass fiber, and a mixture of two or more thereof. The manufacturing method of the fine carbon fiber containing resin composition which is what is shown is shown.

本発明に係る微細炭素繊維含有樹脂組成物の製造方法においては、微細炭素繊維をその特性を損なうことなく熱可塑性樹脂中に均一に分散させることのできるため、微細炭素繊維の含有量を少量に抑えながら、優れた導電性を有する樹脂組成物を提供することができ、また所期の導電性を得る上での微細炭素繊維の含有量を低く抑えることができるために、熱可塑性樹脂の本来有する物性を損なうこともない。   In the method for producing a fine carbon fiber-containing resin composition according to the present invention, the fine carbon fibers can be uniformly dispersed in the thermoplastic resin without impairing the properties thereof, so that the content of the fine carbon fibers is reduced to a small amount. It is possible to provide a resin composition having excellent conductivity while suppressing the content of the fine carbon fiber in order to obtain the desired conductivity. There is no loss of physical properties.

以下、本発明を実施形態に基づき、詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明に係る微細炭素繊維含有樹脂組成物の製造方法においては、微細炭素繊維と熱可塑性樹脂を、混練押出機に投入し、混練して炭素繊維含有熱可塑性樹脂組成物を調製する。   In the method for producing a fine carbon fiber-containing resin composition according to the present invention, fine carbon fibers and a thermoplastic resin are charged into a kneading extruder and kneaded to prepare a carbon fiber-containing thermoplastic resin composition.

本発明において使用される混練押出機としては、装置内に単軸もしくは多軸のスクリューセグメントを有してなるものであればよいが、好ましくはスクリューセグメントを2本並列に配置した2軸押出機が望ましい。さらに2軸押出機としては、スクリューセグメントが同方向に回転するもの、異方向に回転するものがありいずれも用いることができるが、同方向に回転するものがより好ましく用いることができる。   The kneading extruder used in the present invention is not limited as long as it has a single-axis or multi-axis screw segment in the apparatus, but preferably a twin-screw extruder in which two screw segments are arranged in parallel. Is desirable. Further, as the twin screw extruder, there are those in which the screw segments rotate in the same direction and those in which the screw segments rotate in different directions, and both can be used, but those which rotate in the same direction can be more preferably used.

図1は、本発明の製造方法において用いら得る混練押出機の一実施形態の構造を模式的に示す図面である。図1に示す混練押出機1は、2本のスクリューセグメント2が、スクリューバレル3内に並列して配置された2軸押出機であり、スクリューバレル3の一端部側(スクリュー駆動源6側)には、外部より原料をスクリューバレル内へと供給する原料供給口4が設けられ、一方、スクリューバレル3の他端部側には、スクリューバレル内で混練された製品を外部へと吐出する吐出口5が設けられている。なお、この実施形態においては、前記原料供給口4の上部に、予備混合室7を有しており、予備混合室7には、攪拌機8が備えられており、混練押出機1へと供給される熱可塑性樹脂および微細炭素繊維を予備混合して、スクリュー部へと圧送することができるようになっている。   FIG. 1 is a drawing schematically showing the structure of an embodiment of a kneading extruder that can be used in the production method of the present invention. A kneading extruder 1 shown in FIG. 1 is a twin-screw extruder in which two screw segments 2 are arranged in parallel in a screw barrel 3, and one end side of the screw barrel 3 (screw drive source 6 side). Is provided with a raw material supply port 4 for supplying the raw material from the outside into the screw barrel. On the other hand, the other end side of the screw barrel 3 is a discharge for discharging the product kneaded in the screw barrel to the outside. An outlet 5 is provided. In this embodiment, a premixing chamber 7 is provided above the raw material supply port 4, and the premixing chamber 7 is provided with a stirrer 8, which is supplied to the kneading extruder 1. The thermoplastic resin and fine carbon fiber are premixed and can be pumped to the screw part.

しかして、本発明においては、このような混練押出機に、微細炭素繊維と熱可塑性樹脂を投入し、混練するにおいて、前記混練押出機のシリンダー(スクリューバレル)温度を、JIS K 7210に規定される2.16kg荷重下での前記熱可塑性樹脂のメルトフローインデックス(MFI)が10〜30となる温度、より好ましくは15〜25となる温度に設定して、混練押出を行う。なお、上記MFIは、微細炭素繊維を配合していない、熱可塑性樹脂原料単独(使用される熱可塑性樹脂原料が、例えば、熱可塑性樹脂に加えて、可塑剤、安定化剤等の添加剤を含む樹脂組成物である場合には、当該樹脂組成物)としての値である。   Accordingly, in the present invention, when the fine carbon fiber and the thermoplastic resin are charged into such a kneading extruder and kneaded, the cylinder (screw barrel) temperature of the kneading extruder is defined by JIS K 7210. The kneading extrusion is performed at a temperature at which the melt flow index (MFI) of the thermoplastic resin under a load of 2.16 kg is 10 to 30, more preferably 15 to 25. The above MFI is a thermoplastic resin raw material alone that does not contain fine carbon fibers (the thermoplastic resin raw material used is, for example, an additive such as a plasticizer and a stabilizer in addition to the thermoplastic resin. When it is a resin composition containing, it is the value as the said resin composition).

これは、MFIが30を超える押出温度領域では、熱可塑性樹脂の溶融粘度が低くなりすぎ微細炭素繊維の熱可塑性樹脂への分散が不均一となり好ましくなく、一方、MFIが10未満となる押出温度領域では、熱可塑性樹脂の溶融粘度が高くなりすぎ微細炭素繊維が混練押出工程中に切断され易くなり好ましくないためである。なお、MFIが10〜30となる実際の温度範囲は、使用する熱可塑性樹脂の種類によって異なってくるが、当該所定範囲のMFI値を得ることのできる温度範囲に設定される限り、熱可塑性樹脂の種類にかかわらず、微細炭素繊維との良好な混練操作が行えるものである。   This is not preferable because, in an extrusion temperature range where MFI exceeds 30, the melt viscosity of the thermoplastic resin becomes too low and the dispersion of the fine carbon fibers into the thermoplastic resin becomes non-uniform, while the extrusion temperature at which MFI is less than 10. This is because, in the region, the melt viscosity of the thermoplastic resin becomes too high, and the fine carbon fibers are not easily cut during the kneading extrusion process. The actual temperature range in which the MFI is 10 to 30 varies depending on the type of the thermoplastic resin to be used. However, as long as the temperature range can obtain the MFI value within the predetermined range, the thermoplastic resin is used. Regardless of the type, good kneading operation with fine carbon fibers can be performed.

なお、このように押出温度を熱可塑性樹脂の所定のMFIとなる温度に維持するためは、以下に述べるように、押出機のスクリューセグメントの回転速度を適度なものに制御する他、必要に応じて、スクリューバレルの外周に水冷ジャケット等の冷却ジャケット、その他の冷却装置を設けることも可能である。   In addition, in order to maintain the extrusion temperature at a temperature at which the thermoplastic resin becomes a predetermined MFI as described above, the rotational speed of the screw segment of the extruder is controlled to an appropriate one as described below. It is also possible to provide a cooling jacket such as a water cooling jacket or other cooling device on the outer periphery of the screw barrel.

さらに、本発明においては、上記した押出温度条件に加え、前記混練押出機内における前記微細炭素繊維含有樹脂組成物の滞留時間を25〜100秒とし、また、前記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成物に対するせん断速度を、10000〜30000/秒に設定する。   Furthermore, in the present invention, in addition to the above-described extrusion temperature conditions, the residence time of the fine carbon fiber-containing resin composition in the kneading extruder is 25 to 100 seconds, and the fine carbon of the screw segment of the kneading extruder is The shear rate for the fiber-containing resin composition is set to 10,000 to 30000 / sec.

ここで滞留時間を25〜100秒とするのは、滞留時間が25秒未満では、熱可塑性樹脂中での微細炭素繊維の分布が不均一となり好ましくなく、一方、100秒を超える滞留時間をかけても、熱可塑性樹脂中での微細炭素繊維のより一層の分散向上が図られず、生産効率を低下させるのみならず、滞留時間の増加による微細炭素繊維の損傷の虞れが高まるゆえに、好ましくないためである。   Here, the residence time is set to 25 to 100 seconds. If the residence time is less than 25 seconds, the distribution of the fine carbon fibers in the thermoplastic resin is not preferable, and on the other hand, it takes more than 100 seconds. However, the dispersion of the fine carbon fibers in the thermoplastic resin cannot be further improved and the production efficiency is lowered, and the possibility of damage to the fine carbon fibers due to an increase in residence time is increased. This is because there is not.

さらにせん断速度を、10000〜30000/秒とするのは、10000/秒未満のせん断速度では、熱可塑性樹脂中での微細炭素繊維の分散が不均一となり、好ましくなく、一方30000/秒を超えるせん断速度では、微細炭素繊維が混練押出工程中において切断等の損傷を受けやすくなり、好ましくないためである。   Further, the shear rate of 10,000 to 30,000 / second is not preferable because the dispersion of fine carbon fibers in the thermoplastic resin becomes non-uniform at a shear rate of less than 10,000 / second, whereas the shear rate exceeds 30000 / second. This is because the speed is not preferable because the fine carbon fibers are easily damaged such as cutting during the kneading extrusion process.

本発明に係る製造方法においては、複合化される微細炭素繊維と熱可塑性樹脂とを、混練押出機1の原料供給口4へと投入し、上記所定条件において、混練処理を行うことで、所期の微細炭素繊維含有熱可塑性樹脂組成物を調製することができるが、望ましくは、微細炭素繊維と熱可塑性樹脂とを混練押出機へと投入するに先立ち、これらを攪拌機において予め混合し、予備混合体としておくことが、混練押出機における分散処理をより良好なものとする上で好ましい。   In the production method according to the present invention, the fine carbon fiber to be compounded and the thermoplastic resin are charged into the raw material supply port 4 of the kneading extruder 1 and subjected to a kneading process under the predetermined conditions. The fine carbon fiber-containing thermoplastic resin composition can be prepared, but desirably, the fine carbon fiber and the thermoplastic resin are premixed in a stirrer before being added to the kneading extruder, It is preferable to use a mixture in order to improve the dispersion treatment in the kneading extruder.

このような予備混合体とする上での、攪拌処理としては、例えば、図1に示すような、混練押出機1の原料供給口4の上部に配置された予備混合室7内において攪拌機8により混合処理し、そのまま混練押出機1のスクリューバレル内へと供給するような連続的な処理であっても、あるいは、別途、攪拌機において予め混合処理して得られた予備混合体を、混練押出機1のスクリューバレル内へと供給するような段階的な処理であってもよく、さらに、これらの両者を併用するようなものであってもよい。   For example, as shown in FIG. 1, the agitation process in the preparation of such a premix is performed by a stirrer 8 in a premixing chamber 7 disposed at the top of the raw material supply port 4 of the kneading extruder 1. Even if it is a continuous process that is mixed and supplied as it is into the screw barrel of the kneading extruder 1, or alternatively, a preliminary mixture obtained by mixing in advance in a stirrer is used as a kneading extruder. It may be a stepwise process such as feeding into one screw barrel, or a combination of these two.

また、予備混合体を調製する上での攪拌機としては、過度のせん断力が負荷されない条件にて攪拌混合を行えるものであれば特に限定されず、スクリューないしプロペラ、パドル、リボン等の各種攪拌子を備えた単軸ないしは多軸の回転軸を有する各種の攪拌機を用いることができる。好ましくは、攪拌時に撹拌槽内において静的領域を設けることなく系全体で均一な撹拌を行う上から多軸、代表的には2軸の攪拌機を用いることが望ましい。   Further, the stirrer for preparing the premix is not particularly limited as long as it can perform stirring and mixing under the condition that excessive shear force is not applied, and various stirring bars such as a screw, a propeller, a paddle, and a ribbon. Various stirrers having a single-axis or multi-axis rotating shaft provided with the above can be used. Preferably, it is desirable to use a multiaxial, typically a biaxial agitator from the viewpoint of performing uniform agitation in the entire system without providing a static region in the agitation tank during agitation.

なお、原料としての熱可塑性樹脂は、粉体としてのみではなく、ペレット状またはフレーク状等といった形状で提供される場合があるが、このような形態の熱可塑性樹脂をそのまま微細炭素繊維と混合ないし混練すると、微細炭素繊維を均一に分散配合することが困難となるので、このような形態、特に、その粒子寸法が3mm角以上である場合には、予め当該ペレットまたはフレークを適当な粉砕機にて、十分に微細、例えば、1mm角未満まで、粉砕してから予備混合体を調製することが望ましい。   Note that the thermoplastic resin as a raw material may be provided not only as a powder but also in the form of pellets or flakes. However, such a form of thermoplastic resin may not be mixed with fine carbon fibers as it is. When kneaded, it becomes difficult to uniformly disperse and blend the fine carbon fibers. Therefore, in such a form, particularly when the particle size is 3 mm square or more, the pellets or flakes are previously put in a suitable pulverizer. Thus, it is desirable to prepare a premix after pulverization to a sufficiently fine size, for example, less than 1 mm square.

次に、本発明のカーボンナノ構造体含有熱硬化性樹脂組成物の製造方法において用いられる原料について説明する。   Next, the raw material used in the manufacturing method of the carbon nanostructure containing thermosetting resin composition of this invention is demonstrated.

本発明において用いられる微細炭素繊維とは、例えば、一枚のグラフェンシートが筒状に丸まってできる直径数nm程度の単層カーボンナノチューブや、筒状のグラフェンシートが軸直角方向に積層した多層カーボンナノチューブ、単層カーボンナノチューブの端部が円錐状で閉じたカーボンナノホーンなどが例示され、これらの微細炭素繊維は、上記したような種類の単独体とすることも、あるいは、2種以上の混合体とすることも可能である。   The fine carbon fiber used in the present invention is, for example, a single-walled carbon nanotube having a diameter of about several nanometers formed by rounding a graphene sheet into a cylindrical shape, or a multilayer carbon in which cylindrical graphene sheets are stacked in a direction perpendicular to the axis Examples include nanotubes, carbon nanohorns with single-walled carbon nanotubes having a conical closed end, and these fine carbon fibers may be a single type of the above-mentioned type or a mixture of two or more types. It is also possible.

これらの微細炭素繊維のうち、特に、筒状のグラフェンシートが軸直交断面が多角形状であるカーボンナノチューブを用いることが、本発明の製造方法により得られる微細炭素繊維含有熱可塑性樹脂組成物において、微細炭素繊維の熱可塑性樹脂中における分散性を高める上から好ましいものである。カーボンナノチューブの軸直交断面が多角形状であることは、微細炭素繊維を製造後に、例えば、2400℃以上の温度にて高温熱処理を施すことに起因するものであるが、この熱処理により、カーボンナノチューブを繊維方向および積層方向の両方において緻密で欠陥の少ないものとし、曲げ剛性を著しく向上させることができる。この結果、曲がりにくく、弾性、すなわち変形後も元の形状に戻ろうとする性質を付与することができるので、絡み合った構造をとり難く熱硬化性樹脂に容易に分散させることができるためである。なお、カーボンナノチューブは単層でもよいが、グラフェンシートが軸直角方向に積層したものの方が、曲げ剛性を向上させる上で好ましいものである。   Among these fine carbon fibers, in particular, in the thermoplastic resin composition containing fine carbon fibers obtained by the production method of the present invention, the cylindrical graphene sheet uses carbon nanotubes whose axial orthogonal cross section is a polygonal shape. This is preferable from the viewpoint of improving the dispersibility of the fine carbon fibers in the thermoplastic resin. The fact that the carbon nanotube has a polygonal axial cross-section is caused by, for example, performing high-temperature heat treatment at a temperature of 2400 ° C. or higher after producing fine carbon fibers. The bending rigidity can be remarkably improved by being dense and having few defects in both the fiber direction and the lamination direction. As a result, it is difficult to bend and elasticity, that is, a property of returning to the original shape even after deformation can be imparted, so that it is difficult to form an entangled structure and it can be easily dispersed in a thermosetting resin. Carbon nanotubes may be single-walled, but a graphene sheet laminated in the direction perpendicular to the axis is preferable for improving bending rigidity.

また、微細炭素繊維の外径は、軸方向に沿って変化するものであることが、本発明の製造方法により得られる微細炭素繊維含有熱可塑性樹脂組成物において、微細炭素繊維の熱可塑性樹脂中における軸方向への移動を防止し、分散の安定性を向上させる上から好ましいものである。   Further, in the thermoplastic resin composition containing fine carbon fibers obtained by the production method of the present invention, the outer diameter of the fine carbon fibers varies along the axial direction. This is preferable from the viewpoint of preventing movement in the axial direction and improving the stability of dispersion.

また、微細炭素繊維は、ラマン分光分析で測定されるI/I比が0.2以下、より好ましくは0.1以下であるもの、つまりグラフェンシート内の欠陥が少ないカーボンナノチューブを用いることが、本発明の製造方法により得られる微細炭素繊維含有熱可塑性樹脂組成物において、微細炭素繊維の熱可塑性樹脂組成物中における導電性を向上させる上から好ましいものである。 The fine carbon fiber should have an I D / IG ratio measured by Raman spectroscopy of 0.2 or less, more preferably 0.1 or less, that is, use carbon nanotubes with few defects in the graphene sheet. However, the fine carbon fiber-containing thermoplastic resin composition obtained by the production method of the present invention is preferable from the viewpoint of improving the conductivity of the fine carbon fiber in the thermoplastic resin composition.

なお、使用時における微細炭素繊維の嵩密度としては、特に限定されるものではないが、0.0001〜0.05g/cm、より好ましくは0.001〜0.02g/cm程度のものを用いることが、熱可塑性樹脂と混練された際に高い分散性を発揮できる上から望ましい。 As the bulk density of the carbon fibers in use, but are not particularly limited, 0.0001~0.05g / cm 3, more preferably of about 0.001~0.02g / cm 3 It is desirable to use a material because it can exhibit high dispersibility when kneaded with a thermoplastic resin.

また、本発明の微細炭素繊維含有熱可塑性樹脂組成物の製造方法において、熱可塑性樹脂組成物における微細炭素繊維の配合割合としては、特に限定されるものではなく、また用いる熱可塑性樹脂の種類等によっても左右されるが、組成物全体の0.1〜50質量%より好ましくは0.3〜30質量%であることが望ましい。含有割合が50質量%を超えると得られる樹脂組成物の成形加工性、機械的強度等が低下する虞れがあり、一方、0.1質量%未満では、微細炭素繊維を配合したことにより得られる導電性付与効果が、十分なものとならない虞れがあり、いずれも好ましくないためである。   In the method for producing a fine carbon fiber-containing thermoplastic resin composition of the present invention, the blending ratio of the fine carbon fibers in the thermoplastic resin composition is not particularly limited, and the kind of the thermoplastic resin to be used, etc. Depending on the temperature, it is desirable that the total composition is 0.1 to 50% by mass, more preferably 0.3 to 30% by mass. If the content exceeds 50% by mass, the molding processability and mechanical strength of the resulting resin composition may be reduced. On the other hand, if it is less than 0.1% by mass, it is obtained by blending fine carbon fibers. This is because the resulting conductivity imparting effect may not be sufficient, and both are not preferable.

一方、本発明において用いられる熱可塑性樹脂としては、特に限定されるものではないが、例えば、ポリ塩化ビニル樹脂;ポリエチレン、ポリプロピレン、ポリエチレン−プロピレンコポリマー、環状ポリオレフィン等のポリオレフィン樹脂;ポリ乳酸樹脂、ポリスチレン樹脂;アクリルニトリル−ブタジエン−スチレン(ABS)樹脂;アクリルニトリル−スチレン(AS)樹脂;ポリメチルアクリレート、ポリメチルメタクリレート、ポリエチルアクリレート、ポリエチルメタクリレート、ポリアクリル酸、ポリメタクリル酸等のポリ(メタ)アクリル樹脂;ポリアクリロニトリル樹脂;ポリブチレンテレフタレート、ポリエチレンテレフタレート等の飽和ポリエステル樹脂;アイオノマー樹脂;ポリカーボネート樹脂;各種ナイロン等のポリアミド樹脂;ポリアセタール樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアリレート樹脂;ポリサルホン樹脂、ポリエーテルイミド樹脂;ポリエーテルサルホン樹脂;ポリフェニレンスルフィド樹脂;ポリエーテルエーテルケトン樹脂;ポリエーテルケトン樹脂;ポリアミドイミド樹脂;熱可塑性ポリイミド樹脂;液晶ポリエステル樹脂;および各種熱可塑性エラストマー、並びにそれらのポリマーアロイなどが挙げられる。本発明においては、これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。   On the other hand, the thermoplastic resin used in the present invention is not particularly limited. For example, polyvinyl chloride resin; polyolefin resin such as polyethylene, polypropylene, polyethylene-propylene copolymer, cyclic polyolefin; polylactic acid resin, polystyrene Resin; Acrylonitrile-butadiene-styrene (ABS) resin; Acrylonitrile-styrene (AS) resin; Poly (meth) acrylate such as polymethyl acrylate, polymethyl methacrylate, polyethyl acrylate, polyethyl methacrylate, polyacrylic acid, polymethacrylic acid ) Acrylic resin; Polyacrylonitrile resin; Saturated polyester resin such as polybutylene terephthalate and polyethylene terephthalate; Ionomer resin; Polycarbonate resin; Polyacetal resin; Polyphenylene ether resin; Modified polyphenylene ether resin; Polyarylate resin; Polysulfone resin, Polyetherimide resin; Polyethersulfone resin; Polyphenylene sulfide resin; Polyetheretherketone resin; Resin; Thermoplastic polyimide resin; Liquid crystal polyester resin; and various thermoplastic elastomers, and polymer alloys thereof. In the present invention, these thermoplastic resins can be used alone or in combination of two or more.

本発明の微細炭素繊維含有熱可塑性樹脂組成物の製造方法においては、熱可塑性樹脂および微細炭素繊維以外に、必要に応じて、例えば、酸化防止剤、熱安定化剤、耐候剤、離型剤及び滑材、顔料、染料といった着色剤、可塑剤、帯電防止剤、難燃化剤等の通常の熱可塑性樹脂組成物中に配合され得る各種添加剤を含むことができる。これらの添加剤は、微細炭素繊維と混練処理される熱可塑性樹脂原料中に予め配合しておくことも、また、微細炭素繊維との混練処理時において熱可塑性樹脂に添加するものであってもよい。   In the method for producing a fine carbon fiber-containing thermoplastic resin composition of the present invention, in addition to the thermoplastic resin and the fine carbon fiber, if necessary, for example, an antioxidant, a heat stabilizer, a weathering agent, a release agent. And various additives that can be blended in a normal thermoplastic resin composition such as a colorant such as a lubricant, a pigment, and a dye, a plasticizer, an antistatic agent, and a flame retardant. These additives may be added in advance to the thermoplastic resin raw material kneaded with the fine carbon fiber, or may be added to the thermoplastic resin during the kneading treatment with the fine carbon fiber. Good.

さらに、本発明の微細炭素繊維含有熱可塑性樹脂組成物には、上述した微細炭素繊維に加えて、その特性を大きく損なわない限度において、他の充填剤を含んでいてもよく、そのような充填剤としては例えば、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボンブラック、炭素繊維、ガラス繊維などが挙げられ、これらを一種または二種以上組み合わせて用いることができる。   Furthermore, the fine carbon fiber-containing thermoplastic resin composition of the present invention may contain other fillers in addition to the fine carbon fibers described above, as long as the properties thereof are not significantly impaired. Examples of the agent include fine metal particles, silica, calcium carbonate, magnesium carbonate, carbon black, carbon fiber, and glass fiber, and these can be used alone or in combination of two or more.

本発明の製造方法により得られた微細炭素繊維含有熱可塑性樹脂組成物は、そのまま、あるいはさらに公知の方法で成形して用いることができる。成形方法としては、射出成形、押出成形、圧縮成形などが挙げられる。また、成形品としては、射出成形品、シート、未延伸フィルム、延伸フィルム、丸棒、異形押出品などの押出成形品などが例示できる。   The fine carbon fiber-containing thermoplastic resin composition obtained by the production method of the present invention can be used as it is or after further molding by a known method. Examples of the molding method include injection molding, extrusion molding, and compression molding. Examples of the molded product include injection molded products, sheets, unstretched films, stretched films, round bars, extruded products such as modified extruded products, and the like.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

[参考例1] 微細炭素繊維の合成
CVD法によって、トルエンを原料として微細炭素繊維を合成した。
[Reference Example 1] Synthesis of fine carbon fiber Fine carbon fiber was synthesized from toluene by a CVD method.

触媒としてフェロセン及びチオフェンの混合物を使用し、水素ガスの還元雰囲気で行った。トルエン、触媒を水素ガスとともに380℃に加熱し、生成炉に供給し、1250℃で熱分解して、微細炭素繊維を得た。さらに、合成された微細炭素繊維を窒素中で900℃で焼成して、タールなどの炭化水素を分離し、さらにその後、アルゴン中で2600℃で高温熱処理した。   A mixture of ferrocene and thiophene was used as a catalyst, and the reaction was performed in a hydrogen gas reducing atmosphere. Toluene and the catalyst were heated to 380 ° C. together with hydrogen gas, supplied to the generating furnace, and thermally decomposed at 1250 ° C. to obtain fine carbon fibers. Further, the synthesized fine carbon fiber was baked at 900 ° C. in nitrogen to separate hydrocarbons such as tar, and then heat treated at 2600 ° C. in argon at a high temperature.

得られた微細炭素繊維は、繊維径15〜100nm、繊維長さ1〜40μmのものであり、また、その嵩密度は0.0032g/cm、ラマンI/I比値は0.090であった。 The obtained fine carbon fiber has a fiber diameter of 15 to 100 nm, a fiber length of 1 to 40 μm, a bulk density of 0.0032 g / cm 3 , and a Raman I D / I G ratio value of 0.090. Met.

なお、嵩密度およびラマン分光分析は以下のようにして行った。   The bulk density and Raman spectroscopic analysis were performed as follows.

<嵩密度の測定>
内径70mmで分散板付透明円筒に1g粉体を充填し、圧力0.1Mpa、容量1.3リットルの空気を分散板下部から送り粉体を吹出し、自然沈降させる。5回吹出した時点で沈降後の粉体層の高さを測定する。このとき測定箇所は6箇所とることとし、6箇所の平均を求めた後、嵩密度を算出した。
<Measurement of bulk density>
A transparent cylinder with an inner diameter of 70 mm is filled with 1 g of powder, and air with a pressure of 0.1 Mpa and a capacity of 1.3 liters is sent from the lower part of the dispersion plate to blow out the powder and let it settle naturally. At the time of blowing out 5 times, the height of the powder layer after settling is measured. At this time, the number of measurement points was six, and after calculating the average of the six points, the bulk density was calculated.

<ラマン分光分析>
堀場ジョバンイボン製LabRam800を用い、アルゴンレーザーの514nmの波長を用いて測定した。
<Raman spectroscopy>
Using a LabRam800 manufactured by Horiba Jobin Yvon, measurement was performed using a wavelength of 514 nm of an argon laser.

[実施例1〜6]
熱可塑性樹脂として、ポリカーボネート樹脂粉砕パウダー(日本ジーイープラスチックス株式会社製、レキサンHF1110)と、参考例1で得られた微細炭素繊維とを、(三井鉱山株式会社製、ヘンシェルミキサー)を用いて、表1に示す組成比にて予備混合した。そして、この予備混合物を、スクリュー径35mm、L/D=35の2軸押出機に投入し、表1に示す押出温度、滞留時間、せん断速度にて溶融混練し、樹脂組成物ペレットを得た。
[Examples 1 to 6]
As thermoplastic resin, polycarbonate resin pulverized powder (manufactured by GE Plastics, Lexan HF1110) and fine carbon fiber obtained in Reference Example 1 (Mitsui Mining Co., Ltd., Henschel mixer) are used. Premixing was performed at the composition ratio shown in Table 1. Then, this preliminary mixture was put into a twin screw extruder having a screw diameter of 35 mm and L / D = 35, and melt kneaded at the extrusion temperature, residence time and shear rate shown in Table 1 to obtain resin composition pellets. .

なお、使用したポリカーボネート樹脂粉砕パウダーのJIS K 7210に規定される2.16kg荷重下での前記熱可塑性樹脂のメルトフローインデックスは、それぞれ表1に示す通りであった。   In addition, the melt flow index of the said thermoplastic resin under the 2.16kg load prescribed | regulated to JISK7210 of the used polycarbonate resin grinding | pulverization powder was as showing in Table 1, respectively.

このようにして調製された樹脂組成物ペレットを、型締力28Tの射出成形機に供給し、成形温度300℃、射出圧力1000kg/cm、金型温度100℃の成形条件にて、50mm×90mm×3mmの平板状成形品を得た。 The resin composition pellets thus prepared are supplied to an injection molding machine having a clamping force of 28 T, and are 50 mm × under molding conditions of a molding temperature of 300 ° C., an injection pressure of 1000 kg / cm 2 , and a mold temperature of 100 ° C. A flat molded product of 90 mm × 3 mm was obtained.

得られた、平板状成形品について、表面抵抗測定器(三菱化学(株)製Hiresta-UP及びLoresta-GP)を用いて、表面抵抗値を測定した。得られた結果を表1に示す。   About the obtained flat molded article, the surface resistance value was measured using a surface resistance measuring device (Hiresta-UP and Loresta-GP manufactured by Mitsubishi Chemical Corporation). The obtained results are shown in Table 1.

[比較例1〜6]
表2に示す組成比にて混合する以外は、実施例1〜6と同様にして、ポリカーボネート樹脂粉砕パウダー(日本ジーイープラスチックス株式会社製、レキサンHF1110)と、参考例1で得られた微細炭素繊維とを、予備混合した後、表2に示す条件を用いる以外は、実施例1〜6と同様にして樹脂組成物を調製し、さらに平板状成形品を作成して、表面抵抗値を測定した。得られた結果を表2に示す。
[Comparative Examples 1-6]
Except mixing at the composition ratio shown in Table 2, polycarbonate resin pulverized powder (manufactured by GE Plastics, Lexan HF1110) and fine carbon obtained in Reference Example 1 were used in the same manner as in Examples 1-6. After preliminarily mixing the fibers, a resin composition was prepared in the same manner as in Examples 1 to 6 except that the conditions shown in Table 2 were used, and a plate-shaped molded product was prepared to measure the surface resistance value. did. The obtained results are shown in Table 2.

Figure 2006282842
Figure 2006282842

Figure 2006282842
[実施例7]
熱可塑性樹脂として、ポリカーボネートに代えて、ポリアミド樹脂(東レ株式会社製、アミランCM3007)(実施例7)を用いる以外は、実施例2と同様にして樹脂組成物を調製し、さらに平板状成形品を作成して、表面抵抗値を測定した。得られた結果を表3に示す。
Figure 2006282842
[Example 7]
A resin composition was prepared in the same manner as in Example 2 except that a polyamide resin (Amilan CM3007, manufactured by Toray Industries, Inc.) (Example 7) was used as the thermoplastic resin instead of polycarbonate. And the surface resistance value was measured. The obtained results are shown in Table 3.

Figure 2006282842
Figure 2006282842

は、本発明の微細炭素繊維含有樹脂組成物の製造方法において用いられ得る混練押出機の構成を模式的に示す図面である。These are drawings which show typically the structure of the kneading extruder which can be used in the manufacturing method of the fine carbon fiber containing resin composition of this invention.

符号の説明Explanation of symbols

1 混練押出機
2 スクリューセグメント
3 スクリューバレル
4 原料供給口
5 吐出口
6 スクリュー駆動源
7 予備混合室
8 攪拌機
DESCRIPTION OF SYMBOLS 1 Kneading extruder 2 Screw segment 3 Screw barrel 4 Raw material supply port 5 Discharge port 6 Screw drive source 7 Preliminary mixing chamber 8 Stirrer

Claims (6)

微細炭素繊維と熱可塑性樹脂とを、混練押出機に投入して混錬することにより、熱可塑性樹脂中に微細炭素繊維が分散配合されてなる微細炭素含有樹脂組成物を製造する方法において、前記混練押出機のシリンダー温度が、JIS K 7210に規定される2.16kg荷重下での前記熱可塑性樹脂のメルトフローインデックスが10〜30となる温度であり、かつ前記混練押出機内における前記微細炭素繊維含有樹脂組成物の滞留時間が25〜100秒であり、また、前記混練押出機のスクリューセグメントの微細炭素繊維含有樹脂組成物に対するせん断速度が、10000〜30000/秒であることを特徴とする微細炭素含有樹脂組成物の製造方法。   In the method for producing a fine carbon-containing resin composition in which fine carbon fibers are dispersed and blended in a thermoplastic resin by adding and kneading fine carbon fibers and a thermoplastic resin into a kneading extruder, The cylinder temperature of the kneading extruder is a temperature at which the melt flow index of the thermoplastic resin under the load of 2.16 kg specified in JIS K 7210 is 10 to 30, and the fine carbon fiber in the kneading extruder The residence time of the containing resin composition is 25 to 100 seconds, and the shear rate for the fine carbon fiber-containing resin composition of the screw segment of the kneading extruder is 10,000 to 30000 / sec. A method for producing a carbon-containing resin composition. 微細炭素繊維と熱可塑性樹脂とを、単軸又は二軸の攪拌機を用いて予め混合して、予備混合体とした後に、前記混練押出機に投入するものである請求項1に記載の微細炭素含有樹脂組成物の製造方法。   The fine carbon according to claim 1, wherein the fine carbon fiber and the thermoplastic resin are mixed in advance using a uniaxial or biaxial stirrer to form a premixed mixture, and then charged into the kneading extruder. A method for producing a resin composition. 使用される熱可塑性樹脂が、ペレット状またはフレーク状である場合に、予め当該ペレットまたはフレークを粉砕機にて粉砕してから予備混合体を調製するものである請求項2に記載の微細炭素含有樹脂組成物の製造方法。   3. The fine carbon-containing composition according to claim 2, wherein when the thermoplastic resin used is in the form of pellets or flakes, the pellets or flakes are preliminarily pulverized by a pulverizer to prepare a premix. A method for producing a resin composition. 使用される微細炭素繊維の嵩密度が0.0001〜0.05g/cmであることを特徴とする請求項1〜3のいずれか1つに記載の微細炭素含有樹脂組成物の製造方法。 The method for producing a fine carbon-containing resin composition according to any one of claims 1 to 3 , wherein the fine carbon fibers used have a bulk density of 0.0001 to 0.05 g / cm 3 . 熱可塑性樹脂が、ポリ塩化ビニル樹脂、ポリオレフィン樹脂、ポリ乳酸樹脂、ポリスチレン樹脂、アクリルニトリル−ブタジエン−スチレン(ABS)樹脂、アクリルニトリル−スチレン(AS)樹脂、ポリ(メタ)アクリル樹脂、ポリアクリロニトリル樹脂、飽和ポリエステル樹脂、アイオノマー樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアミドイミド樹脂、熱可塑性ポリイミド樹脂、液晶ポリエステル樹脂、熱可塑性エラストマーおよびそれらのポリマーアロイからなる群より選ばれてなる少なくとも1種である、請求項1〜4のいずれか1つに記載の微細炭素含有樹脂組成物の製造方法。   The thermoplastic resin is polyvinyl chloride resin, polyolefin resin, polylactic acid resin, polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, poly (meth) acrylic resin, polyacrylonitrile resin. , Saturated polyester resin, ionomer resin, polycarbonate resin, polyamide resin, polyacetal resin, polyphenylene ether resin, modified polyphenylene ether resin, polyarylate resin, polysulfone resin, polyetherimide resin, polyethersulfone resin, polyphenylene sulfide resin, polyether Ether ketone resins, polyether ketone resins, polyamideimide resins, thermoplastic polyimide resins, liquid crystal polyester resins, thermoplastic elastomers, and the like It is at least one comprising selected from the group consisting of a polymer alloy, a manufacturing method of the fine carbon-containing resin composition according to any one of claims 1 to 4. 金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボンブラック、炭素繊維、ガラス繊維およびこれらの2種以上の混合物からなる群から選ばれてなるいずれか1つの充填材をさらに配合するものである請求項1〜5のいずれか1つに記載の微細炭素繊維含有樹脂組成物の製造方法。
A compound further comprising any one filler selected from the group consisting of metal fine particles, silica, calcium carbonate, magnesium carbonate, carbon black, carbon fiber, glass fiber, and a mixture of two or more thereof. The manufacturing method of the fine carbon fiber containing resin composition as described in any one of 1-5.
JP2005104456A 2005-03-31 2005-03-31 Method for producing fine carbon fiber-containing resin composition Active JP4869615B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005104456A JP4869615B2 (en) 2005-03-31 2005-03-31 Method for producing fine carbon fiber-containing resin composition
PCT/JP2006/306333 WO2006106687A1 (en) 2005-03-31 2006-03-28 Process for production of resin composition containing fine carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104456A JP4869615B2 (en) 2005-03-31 2005-03-31 Method for producing fine carbon fiber-containing resin composition

Publications (2)

Publication Number Publication Date
JP2006282842A true JP2006282842A (en) 2006-10-19
JP4869615B2 JP4869615B2 (en) 2012-02-08

Family

ID=37073253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104456A Active JP4869615B2 (en) 2005-03-31 2005-03-31 Method for producing fine carbon fiber-containing resin composition

Country Status (2)

Country Link
JP (1) JP4869615B2 (en)
WO (1) WO2006106687A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266577A (en) * 2007-03-23 2008-11-06 National Institute Of Advanced Industrial & Technology Molten kneaded material, resin molding and manufacturing method of the same
JP2012161965A (en) * 2011-02-04 2012-08-30 Vision Development Co Ltd Method for manufacturing diamond-resin composite material that includes diamond microparticles
JP2013256578A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition
JP2013256579A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201689A (en) * 2011-03-23 2012-10-22 Sumitomo Chemical Co Ltd Method for producing liquid crystal polyester composition, and method for producing molding
JP7124822B2 (en) * 2017-05-24 2022-08-24 三菱瓦斯化学株式会社 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
JP2019199003A (en) * 2018-05-15 2019-11-21 東芝機械株式会社 Method for producing conductive composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154811A (en) * 1984-12-18 1986-07-14 オクシデンタル・ケミカル・コーポレイシヨン Manufacture of thermoplastic material
JPH07102112A (en) * 1993-09-10 1995-04-18 Hyperion Catalysis Internatl Inc Thermoplastic elastomer composition and resin composition
JP2005035134A (en) * 2003-07-18 2005-02-10 Toray Ind Inc Manufacturing method of resin composition
JP2005264134A (en) * 2003-09-02 2005-09-29 Showa Denko Kk Conductive polymer, its preparation process and its application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154811A (en) * 1984-12-18 1986-07-14 オクシデンタル・ケミカル・コーポレイシヨン Manufacture of thermoplastic material
JPH07102112A (en) * 1993-09-10 1995-04-18 Hyperion Catalysis Internatl Inc Thermoplastic elastomer composition and resin composition
JP2005035134A (en) * 2003-07-18 2005-02-10 Toray Ind Inc Manufacturing method of resin composition
JP2005264134A (en) * 2003-09-02 2005-09-29 Showa Denko Kk Conductive polymer, its preparation process and its application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266577A (en) * 2007-03-23 2008-11-06 National Institute Of Advanced Industrial & Technology Molten kneaded material, resin molding and manufacturing method of the same
US8415423B2 (en) 2007-03-23 2013-04-09 National Institute Of Advanced Industrial Science And Technology Melt-kneaded products and molded resin products
JP2012161965A (en) * 2011-02-04 2012-08-30 Vision Development Co Ltd Method for manufacturing diamond-resin composite material that includes diamond microparticles
JP2013256578A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition
JP2013256579A (en) * 2012-06-12 2013-12-26 Teijin Ltd Heat conductive polycarbonate resin composition

Also Published As

Publication number Publication date
WO2006106687A1 (en) 2006-10-12
JP4869615B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4896422B2 (en) Method for producing fine carbon fiber-containing resin composition
CA2658970C (en) Ultrasound assisted continuous process for dispersion of nanofibers and nanotubes in polymers
JP4869615B2 (en) Method for producing fine carbon fiber-containing resin composition
KR101183016B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
WO2013111862A1 (en) Method for producing master batch for conductive resin, and master batch
US9576706B2 (en) Method for preparing carbon nano material/polymer composites
CN1813314A (en) Electrically conductive compositions comprising carbon nanotubes and method of manufacture thereof
KR101164287B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
KR102034670B1 (en) Electrically conductive resin composition and method of preparing the same
WO2013157621A1 (en) Masterbatch for electrically conductive resin, and electrically conductive resin
Ab Ghani et al. The evaluation of mechanical properties graphene nanoplatelets reinforced polylactic acid nanocomposites
JP4404702B2 (en) Method for producing carbon nanowire-dispersed resin composition
KR20170112929A (en) Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same
JP5132899B2 (en) Liquid crystalline resin composition
JP6310736B2 (en) Method for producing thermoplastic resin composition and thermoplastic resin composition
CN111601770A (en) Agglomerated solid materials prepared from bulk carbon nanotubes
KR20120078469A (en) Pomymer/carbon nanotube composites improved in electrical conductivity and preparation method thereof
Will et al. Effects of polymer properties on solid-state shear pulverization: thermoplastic processability and nanofiller dispersibility
Lee et al. Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites
KR102084641B1 (en) An electrically conductive resin composition and a method for preparing the same
KR20140073866A (en) Carbon nano-material solids and a method for solidifying the powder of carbon nano-material
JP4399525B2 (en) Method for producing carbon nanowire-dispersed resin composition
Sorrentino et al. Poly (ethylene terephthalate)—PET and Poly (ethylene naphthalate)—PEN
KR101568330B1 (en) - Carbonnanotube-polymer nanocomplex with fluidizing bed multi-walled carbon nanotube and preparation method thereof
JP2017186440A (en) Conductive resin composition and production method of molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4869615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250