JP2016108524A - Conductive resin composition, conductive master batch, molded body, and production method of the same - Google Patents

Conductive resin composition, conductive master batch, molded body, and production method of the same Download PDF

Info

Publication number
JP2016108524A
JP2016108524A JP2015070691A JP2015070691A JP2016108524A JP 2016108524 A JP2016108524 A JP 2016108524A JP 2015070691 A JP2015070691 A JP 2015070691A JP 2015070691 A JP2015070691 A JP 2015070691A JP 2016108524 A JP2016108524 A JP 2016108524A
Authority
JP
Japan
Prior art keywords
mass
parts
conductive
resin composition
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015070691A
Other languages
Japanese (ja)
Other versions
JP2016108524A5 (en
Inventor
誠 柳澤
Makoto Yanagisawa
誠 柳澤
高橋 淳
Atsushi Takahashi
淳 高橋
弘一朗 福原
Koichiro Fukuhara
弘一朗 福原
正也 佐々木
Masaya Sasaki
正也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Publication of JP2016108524A publication Critical patent/JP2016108524A/en
Publication of JP2016108524A5 publication Critical patent/JP2016108524A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive resin composition from which a molded body having high conductivity and a good appearance can be molded, and a molded body.SOLUTION: The conductive resin composition comprises a thermoplastic resin (A), carbon nanotube (B) and carbon black (C), and the composition contains, with respect to 100 parts by mass of the thermoplastic resin (A), 0.1 to 8 parts by mass of the carbon nanotube (B) and 2 to 10 parts by mass of the carbon black (C). Preferably, the composition contains 50 to 400 parts by mass of the carbon black (C) with respect to 100 parts by mass of the carbon nanotube (B). A molded body is obtained by molding the above resin composition.SELECTED DRAWING: None

Description

本発明は、成形後も高い導電性を示す導電性樹脂組成物、導電性マスターバッチ、成形体及びその製造方法に関する。   The present invention relates to a conductive resin composition, a conductive masterbatch, a molded product, and a method for producing the same, which exhibit high conductivity even after molding.

ICやLSIを用いた電子機器部品の包装材として、ポリエステルなどの熱可塑性樹脂を成形したトレイ、エンボスキャリアテープなどが知られている。トレイやエンボスキャリアテープの基材は、一般的に樹脂シート等の樹脂成形品が使用されている。樹脂成形品は、導電性が無いため表面抵抗値や体積抵抗率が高いため、帯電による電子部品の絶縁破壊やゴミの付着による電子部品の機能低下などの問題を引き起こすことがある。そのため、樹脂成形品自体にカーボンブラックのような導電性粒子を練り混むことで、帯電防止能や静電気拡散能を付与している。
さらに、自動車分野や電子部品分野では金属部分の代替として、樹脂成形品が使用されつつあり、カーボンブラックでは達成できない程度の導電性が求められている。
As packaging materials for electronic equipment parts using ICs and LSIs, trays molded with thermoplastic resins such as polyester, embossed carrier tapes, and the like are known. As a base material for a tray or an embossed carrier tape, a resin molded product such as a resin sheet is generally used. Since the resin molded product has no electrical conductivity and has a high surface resistance value and volume resistivity, it may cause problems such as dielectric breakdown of the electronic component due to charging and functional deterioration of the electronic component due to adhesion of dust. Therefore, antistatic ability and electrostatic diffusion ability are imparted by kneading and mixing conductive particles such as carbon black in the resin molded product itself.
Furthermore, resin molded products are being used as substitutes for metal parts in the automotive field and electronic parts field, and there is a demand for conductivity that cannot be achieved with carbon black.

カーボンナノチューブは、その特性からエレクトロニクス(トランジスター素子、配線など)、エネルギー(燃料電池用電極材料、太陽光発電装置、ガス貯蔵など)、電子放出(フラットパネル装置など)、化学(吸着剤、触媒、センサーなど)、複合材料(導電性プラスチック、強化材料、難燃ナノコンポジットなど)など様々な分野での応用が期待されており、その中でも特に導電性用途への応用が特に期待されており、カーボンブラックでは達成できない、高導電な成型体が実現できる可能性を秘めている。しかし、カーボンナノチューブはアスペクト比が非常に大きく、複雑に絡み合った二次粒子の状態のものが多い。そのため樹脂成形品中に分散する難易度は非常に高い。   Carbon nanotubes are characterized by their electronics (transistor elements, wiring, etc.), energy (electrode materials for fuel cells, solar power generation devices, gas storage, etc.), electron emission (flat panel devices, etc.), chemistry (adsorbents, catalysts, Sensors, etc.), composite materials (conductive plastics, reinforced materials, flame retardant nanocomposites, etc.) are expected to be used in various fields. It has the potential to realize a highly conductive molding that cannot be achieved with black. However, carbon nanotubes have a very large aspect ratio and are often in the form of complex intertwined secondary particles. Therefore, the degree of difficulty of dispersion in the resin molded product is very high.

カーボンナノチューブを樹脂中に分散させる技術としては、カーボンナノチューブをプラズマで処理することにより絡まりをほぐし樹脂へ分散させる方法が開示されている(特許文献1参照)。また、イオン性液体とカーボンナノチューブを主成分とし、導電性を発現させる技術(特許文献2参照)や、マトリックスポリマーと電子導電性繊維状充填剤とイオン性液体を成分とし、電子導電性繊維状充填剤の分散性に優れ、かつ、電気抵抗のばらつきが小さくする技術が開示されている(特許文献3参照)。   As a technique for dispersing carbon nanotubes in a resin, a method is disclosed in which carbon nanotubes are treated with plasma to disentangle the carbon nanotubes and disperse them in the resin (see Patent Document 1). In addition, a technique (see Patent Document 2) that has an ionic liquid and carbon nanotubes as main components to develop conductivity, and a matrix polymer, an electronic conductive fibrous filler, and an ionic liquid are used as components. A technique is disclosed that is excellent in dispersibility of fillers and reduces variation in electrical resistance (see Patent Document 3).

一方、カーボンナノチューブを配合した樹脂組成物は射出成形をした場合、樹脂中に十分にカーボンナノチューブが分散した場合でも、十分な導電性が発現し難いという問題がある。その理由として、特に射出成形等のような成形方法においては、成形体表面に樹脂の存在比率が高い層(スキン層)が形成されてしまうことが主な要因の一つと考えられている。スキン層の形成を低減するためには、成形体中のカーボンナノチューブ濃度を高める方法があるが、コストアップや加工難度が増大するという懸念があり、成形条件(金型温度の高温化、成形温度の高温化、射出速度の低速度化等)による問題解決が試みられているものの、成形サイクルの長期化、成形体表面光沢の消失、成形体の物性が劣化するなどの問題点が挙げられる。一方、2種の樹脂を含むポリマーアロイを海島構造もしくは共連続状態の連続層へカーボンナノチューブを選択的に配合することで、カーボンナノチューブが低濃度でも導電性を発現する技術が開示されている(特許文献4、5)。しかし、これらの方法ではポリマーアロイを形成する2種以上の樹脂が非相溶である必要性があるため成形体の物性低下が著しいという問題があった。   On the other hand, a resin composition containing carbon nanotubes has a problem that, when injection molding is performed, even when the carbon nanotubes are sufficiently dispersed in the resin, sufficient conductivity is hardly exhibited. The reason for this is considered to be one of the main factors, particularly in a molding method such as injection molding, in which a layer (skin layer) having a high resin content is formed on the surface of the molded body. In order to reduce the formation of the skin layer, there is a method to increase the concentration of carbon nanotubes in the molded body, but there is concern that the cost will increase and the processing difficulty will increase, so molding conditions (higher mold temperature, molding temperature) Although attempts have been made to solve the problem by increasing the temperature of the resin, reducing the injection speed, etc., there are problems such as prolonged molding cycle, loss of surface gloss of the molded body, and deterioration of physical properties of the molded body. On the other hand, a technique has been disclosed in which carbon nanotubes are selectively blended into a continuous layer of a sea-island structure or a co-continuous state with a polymer alloy containing two types of resins, so that the carbon nanotubes exhibit conductivity even at a low concentration ( Patent Documents 4 and 5). However, in these methods, there is a problem that the physical properties of the molded product are significantly lowered because it is necessary that two or more kinds of resins forming the polymer alloy are incompatible.

特開2003−306607号公報JP 2003-306607 A 特開2004−255481号公報JP 2004-255481 A 特開2005−220316号公報JP 2005-220316 A 特開2005−187811号公報JP 2005-187811 A 特開2010−024261号公報JP 2010-024261 A

本発明は、高い導電性および良好な外観の成形体を成形できる導電性樹脂組成物、ならびに成形体の提供を目的とする。   An object of this invention is to provide the conductive resin composition which can shape | mold the molded object of high electroconductivity and a favorable external appearance, and a molded object.

本発明の導電性樹脂組成物は、熱可塑性樹脂(A)と、カーボンナノチューブ(B)と、カーボンブラック(C)とを含み、熱可塑性樹脂(A)100質量部に対して、カーボンナノチューブ(B)0.1〜8質量部およびカーボンブラック(C)2〜15質量部を含む。   The conductive resin composition of the present invention includes a thermoplastic resin (A), a carbon nanotube (B), and carbon black (C), and carbon nanotubes (100) by mass with respect to 100 parts by mass of the thermoplastic resin (A). B) 0.1 to 8 parts by mass and 2 to 15 parts by mass of carbon black (C) are included.

上記本発明によるとカーボンナノチューブとカーボンブラックをそれぞれ適量配合することで、一般に二次凝集しているカーボンナノチューブの表面を覆い、カーボンナノチューブ間に導電パスを形成する。これにより成形体は高い導電性が得られた上、良好な外観という予想外の効果が得られた。   According to the present invention, carbon nanotubes and carbon black are blended in appropriate amounts to cover the surface of carbon nanotubes that are generally secondary agglomerated to form a conductive path between the carbon nanotubes. As a result, the molded product had high conductivity and an unexpected effect of good appearance.

本発明により高い導電性および良好な外観の成形体を成形できる導電性樹脂組成物、ならびに成形体を提供できる。   According to the present invention, it is possible to provide a conductive resin composition that can form a molded article having high conductivity and good appearance, and a molded article.

<導電性樹脂組成物>
本発明の導電性樹脂組成物は、熱可塑性樹脂(A)と、カーボンナノチューブ(B)と、カーボンブラック(C)とを含み、熱可塑性樹脂(A)100質量部に対して、カーボンナノチューブ(B)0.1〜8質量部およびカーボンブラック(C)2〜15質量部とを含む。
<Conductive resin composition>
The conductive resin composition of the present invention includes a thermoplastic resin (A), a carbon nanotube (B), and carbon black (C), and carbon nanotubes (100) by mass with respect to 100 parts by mass of the thermoplastic resin (A). B) 0.1 to 8 parts by mass and 2 to 15 parts by mass of carbon black (C).

<熱可塑性樹脂(A)>
本発明に用いられる熱可塑性樹脂(A)は、加熱溶融により成形可能な樹脂であれば特に制限されるものではない。熱可塑性樹脂(A)は、例えば、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂などのポリオレフィン系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、ポリエチレンテレフタレート(PET)樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエステル系樹脂、ポリ塩化ビニル樹脂、アクリル樹脂、ポリエーテルイミド樹脂等が挙げられる。熱可塑性樹脂(A)は、単独または2種類以上を併用できる。
<Thermoplastic resin (A)>
The thermoplastic resin (A) used in the present invention is not particularly limited as long as it is a resin that can be molded by heating and melting. The thermoplastic resin (A) is, for example, a polyolefin resin such as polyethylene (PE) resin or polypropylene (PP) resin, polystyrene resin, polyphenylene ether resin, polyethylene terephthalate (PET) resin, acrylonitrile-butadiene-styrene copolymer. Examples include coalesced resins, polycarbonate resins, polyamide resins, polyacetal resins, polyester resins, polyvinyl chloride resins, acrylic resins, polyetherimide resins, and the like. The thermoplastic resin (A) can be used alone or in combination of two or more.

<カーボンナノチューブ(B)>
本発明に用いられるカーボンナノチューブは、グラフェンシートを丸めて円筒状にしたような構造をしており、それが単層の場合は単層カーボンナノチューブ(SWCNT)、多層の場合は多層カーボンナノチューブ(MWCNT)と呼ばれ、電子顕微鏡等で1本1本のカーボンナノチューブを確認することができる。カーボンナノチューブは、カーボンナノチューブ繊維同士で一次凝集して、絡み合ったり、バンドル状の一次凝集体を形成するが、一次凝集体が凝集して二次以上の凝集体を形成することもある。
<Carbon nanotube (B)>
The carbon nanotubes used in the present invention have a structure such that a graphene sheet is rolled into a cylindrical shape. When the carbon nanotubes are single-walled, they are single-walled carbon nanotubes (SWCNT). Each carbon nanotube can be confirmed with an electron microscope or the like. The carbon nanotubes are primarily aggregated between the carbon nanotube fibers to be entangled or form a bundle-like primary aggregate, but the primary aggregate may aggregate to form a secondary or higher aggregate.

カーボンナノチューブ(B)は、熱可塑性樹脂(A)100質量部に対して、0.1〜8質量部含有することが重要であり、1〜8質量部がより好ましい。0.1質量部以上含有することにより、十分な導電性を発現することができ、また8質量部以下含有することにより、カーボンナノチューブの分散不良が生じ難くなり、押出時やフィルム成形時にカーボンナノチューブの未分散凝集塊による目詰まりの発生を低下させることができ、さらに成形体の外観を向上させる。   It is important that the carbon nanotube (B) is contained in an amount of 0.1 to 8 parts by mass, more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A). By containing 0.1 part by mass or more, sufficient conductivity can be exhibited, and by containing 8 parts by mass or less, it becomes difficult for carbon nanotubes to be poorly dispersed, and carbon nanotubes during extrusion or film forming The occurrence of clogging due to the undispersed agglomerates can be reduced, and the appearance of the molded body is further improved.

カーボンナノチューブ(B)は、平均直径は5〜30nm、かつ平均アスペクト比が100〜1000であることが好ましい。このような物性を持ったカーボンナノチューブは、成形体の導電性をより高いレベルにできる。
なお、ここでいう平均直径とは、電子顕微鏡観察より求めた個々のカーボンナノチューブの短軸長の数平均値を意味し、ここでいう平均アスペクト比とは、電子顕微鏡観察より求めた個々のカーボンナノチューブの短軸長と長軸長の数平均値の比であり、下記の式(1)により算出された値である。
式(1) 平均アスペクト比=長軸長の数平均値÷平均直径
The carbon nanotube (B) preferably has an average diameter of 5 to 30 nm and an average aspect ratio of 100 to 1000. Carbon nanotubes having such physical properties can increase the electrical conductivity of the molded body to a higher level.
The average diameter here means the number average value of the short axis lengths of individual carbon nanotubes obtained by observation with an electron microscope, and the average aspect ratio here means individual carbons obtained by observation with an electron microscope. It is the ratio of the number average value of the short axis length and the long axis length of the nanotube, and is a value calculated by the following equation (1).
Formula (1) Average aspect ratio = number average value of major axis length ÷ average diameter

カーボンナノチューブ(B)の嵩密度は、0.005〜0.05g/mLであることが好ましく、0.01〜0.03g/mLの範囲であることがより好ましい。上記範囲の嵩密度を有するカーボンナノチューブを使用した場合、熱可塑性樹脂(A)に対する分散性が良好となり、混練時の生産性に優れる。   The bulk density of the carbon nanotube (B) is preferably 0.005 to 0.05 g / mL, and more preferably 0.01 to 0.03 g / mL. When carbon nanotubes having a bulk density in the above range are used, the dispersibility with respect to the thermoplastic resin (A) is good, and the productivity during kneading is excellent.

カーボンナノチューブ(B)は、適度なバンドル構造を有するものが好ましい。ここで、バンドル構造とは、個々のカーボンナノチューブ繊維が一定方向に配向している構造を意味する。カーボンナノチューブは二次粒子で存在するのが一般的であり、例えば一般的な一次粒子であるカーボンナノチューブが複雑に絡み合っている状態でもよく、ほぐれ易くカーボンナノチューブを直線状にしたバンドル構造を有するものもある。バンドル構造を有するカーボンナノチューブは、カーボンナノチューブ一本一本が絡み合ったものではなく、束状になっているものである。このため、絡み合った一次凝集体と比較して、カーボンナノチューブ繊維が一次凝集体から解れ易く、熱可塑性樹脂(A)への分散が容易である。   The carbon nanotube (B) preferably has an appropriate bundle structure. Here, the bundle structure means a structure in which individual carbon nanotube fibers are oriented in a certain direction. Carbon nanotubes generally exist as secondary particles. For example, carbon nanotubes, which are general primary particles, may be in a complex intertwined state, and have a bundle structure in which carbon nanotubes are easily loosened and linearized. There is also. The carbon nanotubes having a bundle structure are not intertwined with each other, but in a bundle shape. For this reason, compared with the entangled primary aggregate, the carbon nanotube fiber is easily separated from the primary aggregate, and is easily dispersed in the thermoplastic resin (A).

カーボンナノチューブ(B)は、単層カーボンナノチューブ、2層またはそれ以上で巻いた多層カーボンナノチューブでも、これらが混在するものであっても良いが、コスト面および強度面から多層カーボンナノチューブであることが好ましい。また、カーボンナノチューブの側壁がグラファイト構造ではなく、アモルファス構造をもったカーボンナノチューブを用いても構わない。   The carbon nanotube (B) may be a single-walled carbon nanotube, a multi-walled carbon nanotube wound with two or more layers, or a mixture of these, but it may be a multi-walled carbon nanotube in terms of cost and strength. preferable. Also, carbon nanotubes having an amorphous structure instead of a graphite structure on the side wall of the carbon nanotube may be used.

カーボンナノチューブ(B)は、一般にレーザーアブレーション法、アーク放電法、化学気相成長法(CVD)、燃焼法などで製造できるが、どのような方法で製造したカーボンナノチューブでも構わない。特にCVD法は、通常、400〜1000℃の高温下において、シリカ、アルミナ、酸化マグネシウム、酸化チタン、珪酸塩、珪藻土、アルミナシリカ、シリカチタニア、およびゼオライトなどの担体に鉄やニッケルなどの金属触媒を担持した触媒微粒子と、原料の炭素含有ガスとを接触させることにより、カーボンナノチューブを安価に、かつ大量に生産することができる方法であり、本発明に使用するカーボンナノチューブとしても好ましい。   The carbon nanotube (B) can be generally produced by a laser ablation method, an arc discharge method, a chemical vapor deposition method (CVD), a combustion method, or the like, but the carbon nanotube produced by any method may be used. In particular, the CVD method is usually a metal catalyst such as iron or nickel on a support such as silica, alumina, magnesium oxide, titanium oxide, silicate, diatomaceous earth, alumina silica, silica titania, and zeolite at a high temperature of 400 to 1000 ° C. This is a method by which carbon nanotubes can be produced at low cost and in large quantities by contacting the catalyst fine particles carrying the catalyst with the raw material carbon-containing gas, and is also preferred as the carbon nanotube used in the present invention.

<カーボンブラック(C)>
本発明に用いられるカーボンブラック(C)は、導電性を有する無定形炭素であり、油やガスを不完全燃焼させたり、 炭化水素を熱分解したりして、製造できる。本発明におけるカーボンブラック(C)の役割は、射出成形や押出成形後、成形体内部に取り込まれたカーボンナノチューブ(B)と表面との間に導電パスを形成することである。
カーボンナノチューブ(B)を配合した樹脂組成物は射出成形をした場合、樹脂中に十分にカーボンナノチューブ(B)が分散した場合でも、導電性が出にくいという問題があり、成形体表面に樹脂の存在比率が高い層(スキン層)が形成されてしまうことが要因と考えられている。樹脂が多い部分とカーボンナノチューブ(B)が比較的高濃度に存在する部分とでは、溶融時の粘度が異なるため、流動性の高い樹脂成分が成型時に先に押し出されることとなり、導電層が成形体表面の樹脂成分、すなわちスキン層に覆われて、成型物に絶縁体の被膜ができてしまう。
一方、カーボンブラック(C)は、カーボンナノチューブ(B)と比較して、一般的に比表面積や吸油量が低いため、カーボンナノチューブ(B)ほど溶融粘度が高くなりにくく、成形時にスキン層が形成されにくい。また、カーボンナノチューブ(B)との親和性も悪くないため、カーボンナノチューブ(B)が内部に取り込まれても、比較的表面に残っているカーボンブラック(C)と導電パスを形成できるため、本発明の導電性樹脂組成物を成形すると、その成形体は高い導電性を維持することができる。
<Carbon black (C)>
Carbon black (C) used in the present invention is amorphous carbon having conductivity, and can be produced by incompletely burning oil or gas or pyrolyzing hydrocarbons. The role of carbon black (C) in the present invention is to form a conductive path between the carbon nanotubes (B) taken into the molded body and the surface after injection molding or extrusion molding.
When the resin composition containing the carbon nanotube (B) is injection-molded, there is a problem that even when the carbon nanotube (B) is sufficiently dispersed in the resin, it is difficult to obtain electrical conductivity. It is considered that a layer having a high abundance ratio (skin layer) is formed. Since the viscosity at the time of melting is different between the resin-rich portion and the carbon nanotube (B) at a relatively high concentration, the resin component with high fluidity is extruded first during molding, and the conductive layer is molded. It is covered with a resin component on the body surface, that is, a skin layer, and an insulating film is formed on the molded product.
On the other hand, carbon black (C) generally has a lower specific surface area and oil absorption than carbon nanotubes (B), so the melt viscosity is less likely to be higher with carbon nanotubes (B), and a skin layer is formed during molding. It is hard to be done. In addition, since the affinity with the carbon nanotube (B) is not bad, a conductive path can be formed with the carbon black (C) relatively remaining on the surface even if the carbon nanotube (B) is taken into the interior. When the conductive resin composition of the invention is molded, the molded body can maintain high conductivity.

カーボンブラック(C)としては、気体若しくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、及び、特にアセチレンガスを原料とするアセチレンブラック等の各種のものを単独で、若しくは2種類以上併せて使用することができる。又、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。   Carbon black (C) is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reaction furnace, particularly ketjen black using ethylene heavy oil as a raw material. Various types such as channel black rapidly cooled and deposited on the bottom of the channel steel, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as raw material, and acetylene black using acetylene gas as raw material in particular It can be used alone or in combination of two or more. Ordinarily oxidized carbon black, hollow carbon and the like can also be used.

本発明の導電性樹脂組成物において、熱可塑性樹脂(A)100質量部に対して、カーボンブラック(C)が2〜15質量部であることが重要であり、更には、3〜10質量部含有されていることが好ましい。
2質量部以上含有することで、カーボンナノチューブ(B)と表面との間に十分な導電パスを形成することができ、成形時の導電性を向上させることができ、15質量部以下の含有量にすることで、分散状態がより良好となり、押出時やフィルム成形時にカーボンナノチューブの未分散凝集塊による目詰まりの発生をより抑制できる。
In the conductive resin composition of the present invention, it is important that the carbon black (C) is 2 to 15 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A), and further 3 to 10 parts by mass. It is preferably contained.
By containing 2 parts by mass or more, a sufficient conductive path can be formed between the carbon nanotube (B) and the surface, the conductivity during molding can be improved, and the content is 15 parts by mass or less. By doing so, the dispersion state becomes better, and the occurrence of clogging due to the undispersed agglomerates of carbon nanotubes during extrusion or film forming can be further suppressed.

また、インフレーション成形の様な延伸倍率が、特に高い成形方法に本発明の導電性樹脂組成物を用いる場合、他の成形方法と比較して、カーボンブラック(C)の含有量を高くすることが好ましい。すなわち、延伸の過程で、溶融時の粘度が高いカーボンナノチューブ(B)が比較的高濃度に存在する部分は成形体内部に閉じ込められてしまい、成形体内におけるスキン層の割合が大きくなってしまう。この場合、カーボンブラック(C)の含有量は5〜15質量部であることが好ましい。   In addition, when the conductive resin composition of the present invention is used in a molding method having a particularly high stretch ratio such as inflation molding, the content of carbon black (C) may be increased as compared with other molding methods. preferable. That is, in the stretching process, the portion where the carbon nanotube (B) having a high viscosity at the time of melting is present in a relatively high concentration is confined inside the molded body, and the ratio of the skin layer in the molded body increases. In this case, the carbon black (C) content is preferably 5 to 15 parts by mass.

カーボンブラック(C)のDBP吸油量は、100mL/100g〜400mL/100gであることが好ましく、100mL/100g〜200mL/100gであることがより好ましい。DBP吸油量が、100mL/100g〜400mL/100gの範囲内であることで、カーボンブラック(C)の熱可塑性樹脂(A)に対する分散性をより向上できる。なおDBP吸油量とは、空隙容積を測定することでカーボンブラックのストラクチャーを間接的に定量化するもので、JIS K 6217−4に準拠して測定した数値である。尚、「DBP」とは、Dibutylphthalateの略称である。   The DBP oil absorption of carbon black (C) is preferably 100 mL / 100 g to 400 mL / 100 g, and more preferably 100 mL / 100 g to 200 mL / 100 g. The dispersibility with respect to the thermoplastic resin (A) of carbon black (C) can be improved more because DBP oil absorption amount exists in the range of 100mL / 100g-400mL / 100g. The DBP oil absorption amount is a numerical value measured based on JIS K 6217-4, which indirectly quantifies the structure of carbon black by measuring the void volume. “DBP” is an abbreviation for “Dibutylphthalate”.

又、用いるカーボンブラックの粒径は、一次粒子径で0.005〜1μmが好ましく、特に、0.01〜0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡等で測定された粒子20個を平均したものである。   Moreover, the particle size of the carbon black to be used is preferably 0.005 to 1 μm, and particularly preferably 0.01 to 0.2 μm in terms of primary particle size. However, the primary particle diameter here is an average of 20 particles measured by an electron microscope or the like.

市販のカーボンブラックとしては、例えば、ニテロン#10、#200及び#300等の新日化カーボン社製ファーネスブラック;
トーカブラック#4300、#4400、#4500、及び#5500等の東海カーボン社製ファーネスブラック;
プリンテックスL等のデグサ社製ファーネスブラック;
Raven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、975 ULTRA、PUER BLACK100、115、及び205等のコロンビヤン社製ファーネスブラック;
#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、及び#5400B等の三菱化学社製ファーネスブラック;
MONARCH1400、1300、900、VulcanXC−72R、及びBlackPearls2000等のキャボット社製ファーネスブラック;
Ensaco250G、Ensaco260G、Ensaco350G、及びSuperP−Li等のTIMCAL社製ファーネスブラック;
ケッチェンブラックEC−300J、及びEC−600JD等のアクゾ社製ケッチェンブラック、並びに、デンカブラックHS−100、FX−35等の電気化学工業社製アセチレンブラック等が挙げられるが、これらに限定されるものではない。
Examples of commercially available carbon blacks include furnace black manufactured by Nippon Nihon Carbon Co., Ltd. such as Niteron # 10, # 200 and # 300;
Furnace blacks manufactured by Tokai Carbon, such as Toka Black # 4300, # 4400, # 4500, and # 5500;
Furnace Black made by Degussa such as Printex L;
Furnace black manufactured by Colombian, such as Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, Conductex SC ULTRA, 975 ULTRA, PUER BLACK100, 115, and 205;
# 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3230B, # 3350B, # 3400B, and # 5400B furnace black manufactured by Mitsubishi Chemical Corporation;
Furnace black from Cabot, such as MONARCH 1400, 1300, 900, Vulcan XC-72R, and Black Pearls 2000;
Furnace black manufactured by TIMCAL, such as Ensaco 250G, Ensaco 260G, Ensaco 350G, and SuperP-Li;
Examples include, but are not limited to, Ketjen Black EC-300J, EC-600JD, and other Akzo Ketjen Black, Denka Black HS-100, FX-35, and other acetylene blacks. It is not something.

本発明の導電性樹脂組成物において、カーボンナノチューブ(B)100質量部に対して前記カーボンブラック(C)を50〜400質量部含むことが好ましく、更には、50〜200質量部含むことが好ましい。上記の範囲であればカーボンナノチューブの濃度に関わらず、カーボンブラックとの適切な導電パスを形成することができ、本発明の効果を適切に発現することができる。   In the conductive resin composition of the present invention, the carbon black (C) is preferably contained in an amount of 50 to 400 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the carbon nanotube (B). . Within the above range, an appropriate conductive path with carbon black can be formed regardless of the concentration of carbon nanotubes, and the effects of the present invention can be appropriately expressed.

本発明の導電性樹脂組成物には、必要に応じて耐酸化安定剤、耐候安定剤、帯電防止剤、染料、顔料、分散剤、カップリング剤、結晶造核剤、樹脂充填材等を用いることができる。   In the conductive resin composition of the present invention, an oxidation resistance stabilizer, a weather resistance stabilizer, an antistatic agent, a dye, a pigment, a dispersant, a coupling agent, a crystal nucleating agent, a resin filler, and the like are used as necessary. be able to.

本発明の導電性樹脂組成物の製造は、特に限定されるものではない。例えば、熱可塑性樹脂(A)と、カーボンナノチューブ(B)と、カーボンブラック(C)、更に必要に応じて各種添加剤や着色剤等を加え、ヘンシェルミキサーやタンブラー、ディスパー等で混合しニーダー,ロールミル,スーパーミキサー,ヘンシェルミキサー,シュギミキサー,バーティカルグラニュレーター,ハイスピードミキサー,ファーマトリックス,ボールミル,スチールミル,サンドミル,振動ミル,アトライター,バンバリーミキサーのような回分式混練機、二軸押出機、単軸押出機、ローター型二軸混練機等で混合や溶融混練分散し、ペレット状、粉体状、顆粒状あるいはビーズ状等の形状の樹脂組成物を得ることができる。
本発明では、溶融混錬に二軸押出機を用いるのが好ましい。
The production of the conductive resin composition of the present invention is not particularly limited. For example, a thermoplastic resin (A), carbon nanotubes (B), carbon black (C), and various additives and colorants as necessary are added and mixed with a Henschel mixer, tumbler, disper, etc. Roll mill, Super mixer, Henschel mixer, Shugi mixer, Vertical granulator, High speed mixer, Fur matrix, Ball mill, Steel mill, Sand mill, Vibration mill, Attritor, Banbury mixer, Batch kneader, Twin screw extruder, A resin composition in the form of pellets, powders, granules, beads, or the like can be obtained by mixing or melt-kneading and dispersing with a single screw extruder, a rotor type twin screw kneader or the like.
In the present invention, it is preferable to use a twin screw extruder for melt kneading.

<導電性マスターバッチ>
本発明の導電性マスターバッチは、熱可塑性樹脂(A)100質量部に対して、カーボンナノチューブ(B)0.1〜8質量部、およびカーボンブラック(C)2〜15質量部とを含む成形体を作成するための導電性マスターバッチであって、熱可塑性樹脂(A)100質量部と、カーボンナノチューブ(B)1〜16質量部と、カーボンブラック(C)3〜30質量部とを含む。
<Conductive masterbatch>
The conductive masterbatch of the present invention is a molding containing 0.1 to 8 parts by mass of carbon nanotubes (B) and 2 to 15 parts by mass of carbon black (C) with respect to 100 parts by mass of the thermoplastic resin (A). A conductive masterbatch for producing a body, comprising 100 parts by mass of a thermoplastic resin (A), 1 to 16 parts by mass of carbon nanotubes (B), and 3 to 30 parts by mass of carbon black (C) .

本発明の導電性樹脂組成物を形成するにあたって、カーボンナノチューブ(B)およびカーボンブラック(C)を比較的高濃度に含有し、成形時に熱可塑性樹脂(A)で希釈されるマスターバッチであっても良いし、カーボンナノチューブ(B)およびカーボンブラック(C)の濃度が比較的低く、熱可塑性樹脂(A)で希釈せずにそのままの組成で成形に供されるコンパウンドであっても良いが、添加コストや在庫コスト等を考えた時、高濃度化できる導電性マスターバッチが好ましい。また、導電性マスターバッチは、取り扱いが容易なペレット状が好ましい。   In forming the conductive resin composition of the present invention, a masterbatch containing carbon nanotubes (B) and carbon black (C) at a relatively high concentration and diluted with a thermoplastic resin (A) during molding, The carbon nanotubes (B) and carbon black (C) are relatively low in concentration, and may be a compound that is used for molding with the same composition without being diluted with the thermoplastic resin (A). When considering the addition cost, inventory cost, etc., a conductive master batch capable of increasing the concentration is preferable. The conductive master batch is preferably in the form of a pellet that is easy to handle.

<成形体>
本発明の成形体は、導電性樹脂組成物、または導電性マスターバッチと、必要に応じてさらに希釈樹脂(熱可塑性樹脂(A))を配合し、通常50℃〜350℃に設定した成形機にて溶融混合後に成形体の形状を形成し冷却することで得ることができる。成形体の形状は、板状、棒状、繊維、チューブ、パイプ、ボトル、フィルムなどを得ることができる。
<Molded body>
The molded body of the present invention is a molding machine in which a conductive resin composition or a conductive masterbatch and a dilution resin (thermoplastic resin (A)) are further blended as necessary, and are usually set at 50 ° C to 350 ° C. It can be obtained by forming the shape of the molded body after cooling and mixing and cooling. The shape of the molded body can be a plate, rod, fiber, tube, pipe, bottle, film or the like.

また、成形方法は、例えば、押出成形、射出成形、ブロー成形、圧縮成形、トランスファー成形、T−ダイ成形やインフレーション成形のようなフィルム成形、カレンダー成形、紡糸等を用いることができる。   As the molding method, for example, extrusion molding, injection molding, blow molding, compression molding, transfer molding, film molding such as T-die molding or inflation molding, calendar molding, spinning, or the like can be used.

特に、本発明の成形体は、射出成形やブロー成形、T−ダイ成形やインフレーション成形、またはフィルム成形後の延伸工程といった、高速度での成形工程を行い作製すると、スキン層を軽減できるため、さらに高い導電性を発現することができる。   In particular, the molded body of the present invention can reduce the skin layer when produced by performing a molding process at a high speed, such as injection molding, blow molding, T-die molding, inflation molding, or stretching process after film molding, Furthermore, high electrical conductivity can be expressed.

本発明の成形体を作製には、熱可塑性樹脂(A)100質量部と、カーボンナノチューブ(B)0.1〜8質量部と、カーボンブラック(C)0.1〜15質量部とを溶融混錬し、射出成形機を使用して射出成形することで、射出成形体を得ることができ、また、Tダイ成形またはインフレーション成形法によりフィルム状に成形することで、フィルム状の成形体を得ることができる。   For producing the molded article of the present invention, 100 parts by mass of the thermoplastic resin (A), 0.1 to 8 parts by mass of the carbon nanotube (B), and 0.1 to 15 parts by mass of the carbon black (C) are melted. By kneading and injection molding using an injection molding machine, an injection molded body can be obtained, and by molding into a film by T-die molding or inflation molding, a film-shaped molded body can be obtained. Can be obtained.

本発明の成形体の用途としては、特に限定されるものではないが、半導体を搬送するトレーや半導体を梱包するのに用いられる保護材や袋、パーソナルコンピューター本体や内蔵される電子部品、外付けハードディスク、家電製品等等にも使用できる。   The use of the molded product of the present invention is not particularly limited, but includes a tray for transporting semiconductors, protective materials and bags used for packing semiconductors, personal computer bodies, built-in electronic components, external attachments, etc. It can also be used for hard disks, home appliances, etc.

以下に、実施例により、本発明をさらに詳細に説明するが、以下の実施例は本発明を何ら制限するものではない。なお、実施例中の「部」は「質量部」を、「%」は「質量%」を表す。以下に、カーボンナノチューブの製造例について説明する。   The present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the present invention. In the examples, “part” represents “part by mass” and “%” represents “mass%”. Below, the manufacture example of a carbon nanotube is demonstrated.

(カーボンナノチューブ(B1)の製造例1)
酢酸コバルト・四水和物200g、酢酸マグネシウム・四水和物172g、アスコルビン酸125gをビーカーに秤取り、精製水を1000g加えて、完全に溶解するまで撹拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度170±5℃の温度で120分乾燥させ水分を蒸発させた後、乳鉢で粉砕して触媒(a)の前駆体を得た。得られた触媒(a)前駆体400gを耐熱容器に秤取り、マッフル炉にて、空気中500℃±5℃雰囲気下で30分焼成した後、乳鉢で粉砕して触媒(a)を得た。次いで、加圧可能で、外部ヒーターで加熱可能な、内容積が10リットルの横型反応管の中央部に、触媒(a)1.0gを散布した石英ガラス製耐熱皿を設置した。アルゴンガスを注入しながら排気を行い、反応管内の空気をアルゴンガスで置換し、横型反応管中の酸素濃度を1体積%以下とした。外部ヒーターにて加熱し、横型反応管の中心部が750℃まで加熱した。引き続き、水素を毎分0.1リットルで1分導入し触媒を活性化処理し、その後、アセチレンガスを毎分1リットルの速度で注入し、4時間反応させてカーボンナノチューブを製造した。反応終了後、反応管内のガスをアルゴンガスで置換し、100℃以下の温度で取り出し、カーボンナノチューブ集合体を得た。得られたカーボンナノチューブ集合体を80メッシュの金網で粉砕ろ過して、多層のカーボンナノチューブ(B1)を得た。
(Production Example 1 of Carbon Nanotube (B1))
200 g of cobalt acetate tetrahydrate, 172 g of magnesium acetate tetrahydrate and 125 g of ascorbic acid were weighed in a beaker, 1000 g of purified water was added, and the mixture was stirred until completely dissolved. The mixture was transferred to a heat-resistant container, and dried using an electric oven at an atmospheric temperature of 170 ± 5 ° C. for 120 minutes to evaporate water, and then pulverized in a mortar to obtain a precursor of the catalyst (a). 400 g of the obtained catalyst (a) precursor was weighed in a heat-resistant container, calcined in a muffle furnace in an atmosphere of 500 ° C. ± 5 ° C. for 30 minutes, and then pulverized in a mortar to obtain catalyst (a). . Next, a quartz glass heat-resistant dish in which 1.0 g of the catalyst (a) was dispersed was installed in the center of a horizontal reaction tube that can be pressurized and heated with an external heater and has an internal volume of 10 liters. Exhaust was performed while injecting argon gas, the air in the reaction tube was replaced with argon gas, and the oxygen concentration in the horizontal reaction tube was adjusted to 1% by volume or less. It heated with the external heater and the center part of the horizontal reaction tube heated to 750 degreeC. Subsequently, hydrogen was introduced at 0.1 liter per minute for 1 minute to activate the catalyst, and then acetylene gas was injected at a rate of 1 liter per minute and reacted for 4 hours to produce carbon nanotubes. After completion of the reaction, the gas in the reaction tube was replaced with argon gas and taken out at a temperature of 100 ° C. or lower to obtain a carbon nanotube aggregate. The obtained carbon nanotube aggregate was pulverized and filtered with an 80-mesh wire mesh to obtain multi-walled carbon nanotubes (B1).

(カーボンナノチューブ(B2)の製造例2)
水酸化コバルト・四水和物72g、酢酸マグネシウム・四水和物172g、アスコルビン酸125gをビーカーに秤取り、精製水を1000g加えて、完全に溶解するまで撹拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度170±5℃の温度で120分乾燥させ水分を蒸発させた後、乳鉢で粉砕して触媒(c)の前駆体を得た。得られた触媒(c)前駆体400gを耐熱容器に秤取り、マッフル炉にて、空気中500℃±5℃雰囲気下で30分焼成した後、乳鉢で粉砕して触媒(c)を得た。次いで、加圧可能で、外部ヒーターで加熱可能な、内容積が10リットルの横型反応管の中央部に、触媒(c)1.0gを散布した石英ガラス製耐熱皿を設置した。アルゴンガスを注入しながら排気を行い、反応管内の空気をアルゴンガスで置換し、横型反応管中の酸素濃度を1体積%以下とした。外部ヒーターにて加熱し、横型反応管の中心部が750℃まで加熱した。引き続き、水素を導入し、毎分0.1リットルで1分導入し触媒を活性化処理し、その後アセチレンガスを毎分1リットルの速度で注入し、4時間反応させてカーボンナノチューブを製造した。反応終了後、反応管内のガスをアルゴンガスで置換し、100℃以下の温度で取り出し、カーボンナノチューブ集合体を得た。得られたカーボンナノチューブ集合体を80メッシュの金網で粉砕ろ過して、多層のカーボンナノチューブ(B2)を得た。
(Production example 2 of carbon nanotube (B2))
72 g of cobalt hydroxide tetrahydrate, 172 g of magnesium acetate tetrahydrate and 125 g of ascorbic acid were weighed in a beaker, 1000 g of purified water was added, and the mixture was stirred until completely dissolved. The mixture was transferred to a heat-resistant container, and dried using an electric oven at an atmospheric temperature of 170 ± 5 ° C. for 120 minutes to evaporate water, and then pulverized in a mortar to obtain a catalyst (c) precursor. 400 g of the obtained catalyst (c) precursor was weighed in a heat-resistant container, calcined in a muffle furnace in an atmosphere of 500 ° C. ± 5 ° C. for 30 minutes, and then pulverized in a mortar to obtain catalyst (c). . Next, a quartz glass heat-resistant dish in which 1.0 g of the catalyst (c) was dispersed was installed in the center of a horizontal reaction tube that could be pressurized and heated with an external heater and had an internal volume of 10 liters. Exhaust was performed while injecting argon gas, the air in the reaction tube was replaced with argon gas, and the oxygen concentration in the horizontal reaction tube was adjusted to 1% by volume or less. It heated with the external heater and the center part of the horizontal reaction tube heated to 750 degreeC. Subsequently, hydrogen was introduced and the catalyst was activated by introducing it at 0.1 liter per minute for 1 minute, and then acetylene gas was injected at a rate of 1 liter per minute and reacted for 4 hours to produce carbon nanotubes. After completion of the reaction, the gas in the reaction tube was replaced with argon gas and taken out at a temperature of 100 ° C. or lower to obtain a carbon nanotube aggregate. The obtained carbon nanotube aggregate was pulverized and filtered with an 80-mesh wire mesh to obtain multi-walled carbon nanotubes (B2).

カーボンナノチューブ(B3)として、ナノシル社製の多層のカーボンナノチューブNC7000を用いた。以下に、カーボンナノチューブの体積抵抗率、嵩密度、構造、平均直径、平均アスペクト比の測定方法を示す。   As the carbon nanotube (B3), a multi-layer carbon nanotube NC7000 manufactured by Nanosil Corporation was used. Below, the measuring method of the volume resistivity of a carbon nanotube, a bulk density, a structure, an average diameter, and an average aspect ratio is shown.

(体積抵抗率)
粉体抵抗システムMCP−PD51(三菱化学アナリティック社製)を用いて体積抵抗率(Ω・cm)を測定した。具体的にはカーボンナノチューブ粉末を1.2g量り取り、20kNの荷重時の値を体積抵抗率とした。
(Volume resistivity)
Volume resistivity (Ω · cm) was measured using a powder resistance system MCP-PD51 (manufactured by Mitsubishi Chemical Analytic Co., Ltd.). Specifically, 1.2 g of carbon nanotube powder was weighed and a value at a load of 20 kN was defined as a volume resistivity.

(嵩密度)
測定装置としてスコットボリュームメータ(筒井理化学器機社製)を用いて嵩密度を測定した。カーボンナノチューブ粉末を測定装置上部より直円筒容器に流し入れ、山盛りになったところですり切った一定容積の試料質量を測定した。この質量と容器容積の比から下記の式(3)に基づいて算出した。
式(3) 嵩密度(g/mL)=
(すり切った一定容積のカーボンナノチューブの質量(g))÷(容器容積(mL))
(The bulk density)
The bulk density was measured using a Scott volume meter (manufactured by Tsutsui Rikenki Co., Ltd.) as a measuring device. The carbon nanotube powder was poured into a straight cylindrical container from the upper part of the measuring apparatus, and the mass of a sample of a fixed volume that had been scraped off when it was piled up was measured. It calculated based on the following formula (3) from the ratio of the mass and the container volume.
Formula (3) Bulk density (g / mL) =
(Mass of grit of carbon nanotubes with a fixed volume (g)) ÷ (Container volume (mL))

(平均直径)
走査型電子顕微鏡(日本電子(JEOL)社製、JSM−6700M))を用いて加速電圧5kVにてカーボンナノチューブを観察し、5万倍の画像(画素数1024×1280)を撮影した(図1a等)。次いで、撮影された画像にて任意のカーボンナノチューブ20個について、各々の短軸長を測定し、それら短軸長の数平均値をカーボンナノチューブの平均直径とした。
(Average diameter)
A carbon nanotube was observed at an acceleration voltage of 5 kV using a scanning electron microscope (manufactured by JEOL (JEOL), JSM-6700M), and a 50,000-fold image (1024 × 1280 pixels) was taken (FIG. 1a). etc). Next, the short axis length of each of 20 arbitrary carbon nanotubes in the photographed image was measured, and the number average value of the short axis lengths was taken as the average diameter of the carbon nanotubes.

(平均アスペクト比)
上述した平均直径と同様にしてカーボンナノチューブの画像を撮影した。次いで、撮影された画像にて任意のカーボンナノチューブ20個について、各々の長軸長を測定し、それら長軸長の数平均値をカーボンナノチューブの平均長さとした。下記の式(4)により平均アスペクト比を算出した。
式(4) 平均アスペクト比=長軸長の数平均値÷平均直径
(Average aspect ratio)
Images of carbon nanotubes were taken in the same manner as the above average diameter. Next, for each of 20 arbitrary carbon nanotubes in the photographed image, the major axis length of each was measured, and the number average value of the major axis lengths was taken as the average length of the carbon nanotubes. The average aspect ratio was calculated by the following formula (4).
Formula (4) Average aspect ratio = number average value of major axis length ÷ average diameter

表1に、カーボンナノチューブ(B1)〜(B3)の体積抵抗率、嵩密度、構造、平均直径、平均アスペクト比を示す。   Table 1 shows the volume resistivity, bulk density, structure, average diameter, and average aspect ratio of the carbon nanotubes (B1) to (B3).

Figure 2016108524
Figure 2016108524

実施例で使用した原料は、以下の通りである。   The raw materials used in the examples are as follows.

<熱可塑性樹脂(A)>
(A1)PET樹脂(エチレングリコール−テレフタル酸共重合体、MA−2101、ユニチカ社製)
(A2)PP樹脂(ポリプロピレン、F−704NT、プライムポリマー社製)
(A3)PE樹脂(低密度ポリエチレン、M2270、旭化成ケミカルズ社製)
<カーボンナノチューブ(B)>
(B1)製造例1のカーボンナノチューブ
(B2)製造例2のカーボンナノチューブ
(B3)NC7000(ナノシル社製)
<カーボンブラック(C)>
(C1)デンカブラック(アセチレンブラック粉、平均粒径35nm、DBP吸油量 150mL/100g、電気化学工業社製)
(C2)ニテロン♯10(ファーネスブラック粉、平均粒径40nm、DBP吸油量 128mL/100g、新日化カーボン社製)
<Thermoplastic resin (A)>
(A1) PET resin (ethylene glycol-terephthalic acid copolymer, MA-2101, manufactured by Unitika)
(A2) PP resin (polypropylene, F-704NT, manufactured by Prime Polymer Co., Ltd.)
(A3) PE resin (low density polyethylene, M2270, manufactured by Asahi Kasei Chemicals Corporation)
<Carbon nanotube (B)>
(B1) Carbon nanotube of production example 1 (B2) Carbon nanotube of production example 2 (B3) NC7000 (manufactured by Nanosil)
<Carbon black (C)>
(C1) Denka black (acetylene black powder, average particle size 35 nm, DBP oil absorption 150 mL / 100 g, manufactured by Denki Kagaku Kogyo Co., Ltd.)
(C2) Niteron # 10 (furnace black powder, average particle size 40 nm, DBP oil absorption 128 mL / 100 g, manufactured by Nippon Nissha Carbon)

[実施例1]
(導電性樹脂組成物1の製造)
PET樹脂(A1)97.5部およびカーボンナノチューブ(B1)0.5部、カーボンブラック(C1)2部をスーパーミキサー(カワタ社製)に投入し、25℃にて3分間撹拌して混合物を得た。次いで前記混合物を二軸押出し機(日本プラコン社製)に投入し、260℃で押し出し、ペレタイザーでカットすることで導電性樹脂組成物1を得た。
[Example 1]
(Manufacture of conductive resin composition 1)
97.5 parts of PET resin (A1), 0.5 part of carbon nanotube (B1), and 2 parts of carbon black (C1) were put into a super mixer (manufactured by Kawata) and stirred at 25 ° C. for 3 minutes to obtain a mixture. Obtained. Subsequently, the said mixture was thrown into the twin-screw extruder (made by Nippon Placon Co., Ltd.), it extruded at 260 degreeC, and the conductive resin composition 1 was obtained by cutting with a pelletizer.

(成形体1の作成)
導電性樹脂組成物1を、射出成形機(東芝機械社製IS−100F型)を用いて射出成形を行い、縦30mm×横40mm×高さ3mmの直方体の成形体1を作成した。
(Creation of molded body 1)
The conductive resin composition 1 was subjected to injection molding using an injection molding machine (IS-100F type manufactured by Toshiba Machine Co., Ltd.), and a rectangular parallelepiped molded body 1 having a length of 30 mm × width of 40 mm × height of 3 mm was produced.

<成形体の体積抵抗率>
抵抗率計「ロレスタGP」(ロレスタGP MCP−T610型抵抗率計、JIS−K7194準拠、4端子4探針法定電流印加方式、三菱化学アナリテック社製)(0.5cm間隔の4端子プローブ)を用い、成形体の体積抵抗率(Ω・cm)を測定した。
<Volume resistivity of molded body>
Resistivity meter "Loresta GP" (Loresta GP MCP-T610 type resistivity meter, JIS-K7194 compliant, 4-terminal 4-probe method, constant current application method, manufactured by Mitsubishi Chemical Analytech) (4-terminal probe with 0.5 cm spacing) The volume resistivity (Ω · cm) of the molded body was measured.

<成形体の外観評価>
成形体をビデオマイクロスコープ「VHX−900」(キーエンス社製)を用いて倍率500倍にて表面観察を行い、表面上の異物の数を計測し、下記の基準にて評価した。異物の数が少ないほど良好である。
○:5個未満(良好)
△:5個以上、10個未満(使用可能)
×:10個以上(使用不可)
<Appearance evaluation of molded body>
The molded body was observed on the surface at a magnification of 500 times using a video microscope “VHX-900” (manufactured by Keyence Corporation), and the number of foreign matters on the surface was measured and evaluated according to the following criteria. The smaller the number of foreign objects, the better.
○: Less than 5 (good)
Δ: 5 or more and less than 10 (can be used)
×: 10 or more (cannot be used)

[実施例2〜32][比較例1〜14]
(導電性樹脂組成物2〜46の製造)
導電性樹脂組成物1の熱可塑性樹脂、カーボンナノチューブ及びカーボンブラックを、表2および表3の原料と配合量に変更した以外は、導電性樹脂組成物1と同様な方法により、それぞれ導電性樹脂組成物2〜46を得た。尚、表2および表3中の数値は、質量部を表し、空欄は使用していないことを表す。
[Examples 2 to 32] [Comparative Examples 1 to 14]
(Production of conductive resin compositions 2 to 46)
Conductive resin, respectively, in the same manner as in conductive resin composition 1 except that the thermoplastic resin, carbon nanotube, and carbon black of conductive resin composition 1 were changed to the raw materials and blending amounts shown in Tables 2 and 3. Compositions 2-46 were obtained. In addition, the numerical value in Table 2 and Table 3 represents a mass part, and the blank represents that it is not using.

Figure 2016108524
Figure 2016108524

Figure 2016108524
Figure 2016108524

(成形体2〜46の製造)
導電性樹脂組成物1を導電性樹脂組成物2〜46にそれぞれ変更した以外は、実施例1と同様にして、成形体を作成し、体積抵抗率の測定と外観評価を行った。評価結果を表4、表5に示す。
(Manufacture of compacts 2-46)
Except having changed the conductive resin composition 1 into the conductive resin compositions 2-46, respectively, the molded object was created similarly to Example 1, and the volume resistivity measurement and external appearance evaluation were performed. The evaluation results are shown in Tables 4 and 5.

Figure 2016108524
Figure 2016108524

Figure 2016108524
Figure 2016108524

表4および表5の結果から実施例1〜32の成形体1〜32は、比較例1〜14の成形体33〜46よりも、低い体積抵抗率および良好な外観を示し、良好な結果が得られることが明らかとなった。   From the results of Table 4 and Table 5, the molded bodies 1 to 32 of Examples 1 to 32 show a lower volume resistivity and better appearance than the molded bodies 33 to 46 of Comparative Examples 1 to 14, and good results are obtained. It became clear that it was obtained.

[実施例33]
(導電性マスターバッチ1の製造)
PET樹脂(A1)95部およびカーボンナノチューブ(B1)1部、カーボンブラック(C1)4部をスーパーミキサー(カワタ社製)に投入し、25℃にて3分間撹拌して混合物を得た。次いで前記混合物を二軸押出し機(日本プラコン社製)に投入し、260℃で押し出し、ペレタイザーでカットすることでペレット状の導電性マスターバッチ1を得た。
[Example 33]
(Manufacture of conductive masterbatch 1)
95 parts of PET resin (A1), 1 part of carbon nanotube (B1) and 4 parts of carbon black (C1) were put into a super mixer (manufactured by Kawata) and stirred at 25 ° C. for 3 minutes to obtain a mixture. Next, the mixture was put into a twin screw extruder (manufactured by Nippon Placon Co., Ltd.), extruded at 260 ° C., and cut with a pelletizer to obtain a conductive master batch 1 in the form of pellets.

(成形体47の作成)
導電性マスターバッチ1 50部とPET樹脂(A1)50部をタンブリングした後、射出成形機(東芝機械社製IS−100F型)を用いて射出成形を行い、縦30mm×横40mm×高さ3mmの直方体の成形体47を作成した。その後、実施例1と同様に成形体の体積抵抗率と外観評価を行った。
(Creation of molded body 47)
After tumbling 50 parts of conductive masterbatch 1 and 50 parts of PET resin (A1), injection molding was performed using an injection molding machine (IS-100F type manufactured by Toshiba Machine Co., Ltd.), length 30 mm × width 40 mm × height 3 mm. A rectangular parallelepiped shaped body 47 was prepared. Thereafter, the volume resistivity and appearance of the molded body were evaluated in the same manner as in Example 1.

[実施例34〜48][比較例15〜22]
(導電性マスターバッチ2〜14の製造)
導電性マスターバッチの熱可塑性樹脂、カーボンナノチューブ及びカーボンブラックを、表6および表7の原料と配合量に変更した以外は、導電性樹脂組成物1と同様な方法により、それぞれペレット状の導電性マスターバッチ2〜14を得た。尚、表6および表7中の数値は、質量部を表し、空欄は使用していないことを表す。
[Examples 34 to 48] [Comparative Examples 15 to 22]
(Manufacture of conductive master batches 2-14)
Except for changing the thermoplastic resin, carbon nanotube, and carbon black of the conductive masterbatch to the raw materials and blending amounts shown in Tables 6 and 7, the conductive properties in the form of pellets are the same as in the conductive resin composition 1, respectively. Masterbatches 2-14 were obtained. In addition, the numerical value in Table 6 and Table 7 represents a mass part, and the blank represents that it is not using.

Figure 2016108524
Figure 2016108524

Figure 2016108524
Figure 2016108524

(成形体48〜70の製造)
導電性マスターバッチ1〜14と熱可塑性樹脂A1またはA2を表8〜表9の配合比の通りに変更した以外は、実施例33と同様にして、成形体を作成し、体積抵抗率の測定と外観評価を行った。評価結果を表8、表9に示す。
(Manufacture of molded bodies 48 to 70)
Except having changed electroconductive masterbatch 1-14 and thermoplastic resin A1 or A2 as the compounding ratio of Table 8-Table 9, it carried out similarly to Example 33, created a molded object, and measured volume resistivity. And the appearance was evaluated. The evaluation results are shown in Tables 8 and 9.

Figure 2016108524
Figure 2016108524

Figure 2016108524
Figure 2016108524

表8および表9の結果から実施例34〜48の成形体47〜62は、比較例15〜22の成形体63〜70よりも、低い体積抵抗率および良好な外観を示し、良好な結果が得られることが明らかとなった。   From the results of Table 8 and Table 9, the molded bodies 47 to 62 of Examples 34 to 48 showed lower volume resistivity and better appearance than the molded bodies 63 to 70 of Comparative Examples 15 to 22, and good results were obtained. It became clear that it was obtained.

[実施例49]
<導電性フィルムの作成>
導電性樹脂組成物21を、T−ダイ押出機で200℃にて押出成形し、厚さ100μmの導電性フィルム1を作製した。
[Example 49]
<Creation of conductive film>
The conductive resin composition 21 was extrusion molded at 200 ° C. with a T-die extruder to produce a conductive film 1 having a thickness of 100 μm.

<導電性フィルムの延伸試験>
引張試験機(AGS−X引張試験システム、島津製作所社製)を用いて、引張試験を行った。180℃の環境下、前期伸縮性導電体フィルム1の試験片を50mm/分の速度で、引張前の試験片の膜厚(100μm)に対して、膜厚が半分(50μm)になるまで、長さ方向に試験片を延伸させた。
<Stretching test of conductive film>
A tensile test was performed using a tensile tester (AGS-X tensile test system, manufactured by Shimadzu Corporation). Under an environment of 180 ° C., the test piece of the stretchable conductive film 1 at a rate of 50 mm / min until the film thickness becomes half (50 μm) with respect to the film thickness of the test piece before tension (100 μm), The test piece was stretched in the length direction.

<導電体フィルムの表面抵抗率>
抵抗率計「ロレスタGP」(0.5cm間隔の4端子プローブ)を用い、延伸前後の導電性フィルムの表面抵抗率(Ω/□)を測定した。
<Surface resistivity of conductor film>
The surface resistivity (Ω / □) of the conductive film before and after stretching was measured using a resistivity meter “Loresta GP” (4-terminal probe with a spacing of 0.5 cm).

[実施例50〜51]、[比較例23〜24]
導電性樹脂組成物を変更した以外は、実施例49と同様にして、導電性樹脂組成物22、26、40、44で導電性フィルム2〜5を作成し、延伸前後の表面抵抗率を測定した。評価結果を表10に示す。
[Examples 50 to 51], [Comparative Examples 23 to 24]
Except that the conductive resin composition was changed, conductive films 2 to 5 were prepared with the conductive resin compositions 22, 26, 40, and 44 in the same manner as in Example 49, and the surface resistivity before and after stretching was measured. did. Table 10 shows the evaluation results.

Figure 2016108524
Figure 2016108524

表10の結果から実施例49〜51の導電性フィルム1〜3は、比較例23〜24の導電性フィルム4〜5よりも、低い表面抵抗率を示し、延伸前後での表面抵抗値の変化率も小さく、良好な結果が得られることが明らかとなった。   From the results of Table 10, the conductive films 1 to 3 of Examples 49 to 51 show a lower surface resistivity than the conductive films 4 to 5 of Comparative Examples 23 to 24, and the change in the surface resistance value before and after stretching. The rate was small and it was clear that good results were obtained.

[実施例52]
導電性マスターバッチ1 50部とPP樹脂(A2)50部をタンブリングした後、T−ダイ押出機で200℃にて押出成形し、厚さ100μmの導電性フィルム6を作成した。その後、実施例49と同様に延伸前後の導電性フィルム6の表面抵抗率(Ω/□)を測定した。
[Example 52]
After tumbling 50 parts of conductive masterbatch 1 and 50 parts of PP resin (A2), extrusion molding was carried out at 200 ° C. with a T-die extruder to prepare conductive film 6 having a thickness of 100 μm. Thereafter, the surface resistivity (Ω / □) of the conductive film 6 before and after stretching was measured in the same manner as in Example 49.

[実施例53〜54]、[比較例25]
導電性マスターバッチ6、7、12と熱可塑性樹脂A2を表11の配合比の通りに希釈し、実施例52と同様にして、導電性フィルム7〜9を作成し、延伸前後の表面抵抗率(Ω/□)を測定した。評価結果を表11に示す。
[Examples 53 to 54], [Comparative Example 25]
Conductive master batches 6, 7, 12 and thermoplastic resin A2 were diluted as shown in Table 11 to produce conductive films 7-9 in the same manner as in Example 52, and surface resistivity before and after stretching. (Ω / □) was measured. The evaluation results are shown in Table 11.

Figure 2016108524
Figure 2016108524

表11の結果から実施例52〜54の導電性フィルム6〜8は、CNTを用いていない比較例25の導電性フィルム9よりも、低い表面抵抗率を示し、延伸前後での表面抵抗値の変化率も小さく、良好な結果が得られることが明らかとなった。   From the results of Table 11, the conductive films 6 to 8 of Examples 52 to 54 show a lower surface resistivity than the conductive film 9 of Comparative Example 25 not using CNT, and the surface resistance values before and after stretching. It was revealed that the rate of change was small and good results were obtained.

[実施例101]
(導電性樹脂組成物101の製造)
LDPE樹脂(A3)93部およびカーボンナノチューブ(B1)2部、カーボンブラック(C1)5部をスーパーミキサー(カワタ社製)に投入し、25℃にて3分間撹拌して混合物を得た。次いで前記混合物を二軸押出し機(日本プラコン社製)に投入し、180℃で押し出し、ペレタイザーでカットすることで導電性樹脂組成物101を得た。
[Example 101]
(Manufacture of the conductive resin composition 101)
93 parts of LDPE resin (A3), 2 parts of carbon nanotube (B1), and 5 parts of carbon black (C1) were put into a super mixer (manufactured by Kawata) and stirred at 25 ° C. for 3 minutes to obtain a mixture. Subsequently, the said mixture was thrown into the twin-screw extruder (made by Nippon Placon Co., Ltd.), it extruded at 180 degreeC, and the conductive resin composition 101 was obtained by cutting with a pelletizer.

(インフレーション成形フィルムの作成)
導電性樹脂組成物101を、小型インフレーション成形機(サーモ・プラスティックス工業社製)を用いてインフレーション成形を行い、厚さ30μmの筒状のインフレーション成形フィルム1を作成した。
(Creation of blown film)
The conductive resin composition 101 was subjected to inflation molding using a small inflation molding machine (manufactured by Thermo Plastics Industries Co., Ltd.) to produce a tubular inflation molded film 1 having a thickness of 30 μm.

<インフレーション成形フィルムの表面抵抗率>
導電性フィルムの測定と同様に、抵抗率計「ロレスタGP」(0.5cm間隔の4端子プローブ)を用い、インフレーション成形フィルムの表面抵抗率(Ω/□)を測定した。
<Surface resistivity of blown film>
Similarly to the measurement of the conductive film, the surface resistivity (Ω / □) of the blown film was measured using a resistivity meter “Loresta GP” (4-terminal probe with a 0.5 cm interval).

<インフレーション成形フィルムの外観評価>
成形体をビデオマイクロスコープ「VHX−900」を用いて倍率500倍にて表面観察を行い、表面上の異物の数を計測し、下記の基準にて評価した。異物の数が少ないほど良好である。
○:10個未満(良好)
△:10個以上、50個未満(使用可能)
×:50個以上(使用不能)
<Appearance evaluation of blown film>
The surface of the molded body was observed with a video microscope “VHX-900” at a magnification of 500 times, the number of foreign matters on the surface was measured, and evaluated according to the following criteria. The smaller the number of foreign objects, the better.
○: Less than 10 (good)
Δ: 10 or more and less than 50 (can be used)
×: 50 or more (unusable)

[実施例102〜112][比較例101〜106]
(導電性樹脂組成物102〜119の製造)
カーボンナノチューブ及びカーボンブラックを、表12および表13の原料と配合量に変更した以外は、導電性樹脂組成物101と同様な方法により、それぞれ導電性樹脂組成物102〜118を得た。尚、表12および表13中の数値は、質量部を表し、空欄は使用していないことを表す。
[Examples 102 to 112] [Comparative Examples 101 to 106]
(Production of conductive resin compositions 102 to 119)
Conductive resin compositions 102 to 118 were obtained in the same manner as the conductive resin composition 101 except that the carbon nanotubes and carbon black were changed to the raw materials and blending amounts shown in Tables 12 and 13. In addition, the numerical value in Table 12 and Table 13 represents a mass part, and the blank represents that it is not using.

Figure 2016108524
Figure 2016108524

Figure 2016108524
Figure 2016108524


また、インフレーション成形フィルム1と同様に、導電性樹脂組成物102〜118を用いて、インフレーション成形フィルム2〜19を作成し、表面抵抗率測定と外観評価を行った。評価結果を表14に示す。

Moreover, similarly to the inflation molded film 1, using the conductive resin compositions 102 to 118, inflation molded films 2 to 19 were prepared, and surface resistivity measurement and appearance evaluation were performed. The evaluation results are shown in Table 14.

Figure 2016108524
Figure 2016108524

Claims (8)

熱可塑性樹脂(A)と、カーボンナノチューブ(B)と、カーボンブラック(C)とを含み、
前記熱可塑性樹脂(A)100質量部に対して、カーボンナノチューブ(B)0.1〜8質量部およびカーボンブラック(C)2〜15質量部とを含む、導電性樹脂組成物。
Including thermoplastic resin (A), carbon nanotube (B), and carbon black (C),
A conductive resin composition comprising 0.1 to 8 parts by mass of carbon nanotubes (B) and 2 to 15 parts by mass of carbon black (C) with respect to 100 parts by mass of the thermoplastic resin (A).
前記カーボンナノチューブ(B)100質量部に対して、前記カーボンブラック(C)50〜400質量部を含む、請求項1記載の導電性樹脂組成物。   The conductive resin composition of Claim 1 containing 50-400 mass parts of said carbon black (C) with respect to 100 mass parts of said carbon nanotubes (B). 前記カーボンナノチューブ(B)の平均直径が5〜30nmかつ平均アスペクト比が100〜1000である、請求項1または2記載の導電性樹脂組成物。   The conductive resin composition according to claim 1 or 2, wherein the carbon nanotube (B) has an average diameter of 5 to 30 nm and an average aspect ratio of 100 to 1000. 前記カーボンブラック(C)のDBP吸油量が、100〜400mL/100gである、請求項1〜3いずれか1項に記載の導電性樹脂組成物。   The conductive resin composition according to any one of claims 1 to 3, wherein the carbon black (C) has a DBP oil absorption of 100 to 400 mL / 100 g. 熱可塑性樹脂(A)100質量部に対して、カーボンナノチューブ(B)0.1〜8質量部およびカーボンブラック(C)2〜15質量部とを含む導電性樹脂組成物を含んでなる成形体を作成するための導電性マスターバッチであって、
前記熱可塑性樹脂(A)100質量部に対して、カーボンナノチューブ(B)1〜16質量部および導電性カーボンブラック(C)3〜30質量部とを含む、導電性マスターバッチ。
A molded article comprising a conductive resin composition containing 0.1 to 8 parts by mass of carbon nanotubes (B) and 2 to 15 parts by mass of carbon black (C) with respect to 100 parts by mass of the thermoplastic resin (A). A conductive masterbatch for creating
A conductive masterbatch comprising 1 to 16 parts by mass of carbon nanotubes (B) and 3 to 30 parts by mass of conductive carbon black (C) with respect to 100 parts by mass of the thermoplastic resin (A).
請求項1〜4いずれか1項に記載の導電性樹脂組成物を成形してなる、成形体。 The molded object formed by shape | molding the conductive resin composition of any one of Claims 1-4. 請求項1〜4いずれか1項に記載の導電性樹脂組成物を溶融混錬し、射出成形機を使用して成形することで成形体を得る、成形体の製造方法。   The manufacturing method of a molded object which obtains a molded object by melt-kneading the conductive resin composition of any one of Claims 1-4, and shape | molding using an injection molding machine. 請求項1〜4いずれか1項記載の導電性樹脂組成物を溶融混錬し、Tダイ成形機またはインフレーション成形機を使用してフィルム状に成形し、成形体を得る、成形体の製造方法。   A method for producing a molded body, wherein the conductive resin composition according to any one of claims 1 to 4 is melt-kneaded and molded into a film using a T-die molding machine or an inflation molding machine to obtain a molded body. .
JP2015070691A 2014-12-04 2015-03-31 Conductive resin composition, conductive master batch, molded body, and production method of the same Pending JP2016108524A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014245844 2014-12-04
JP2014245844 2014-12-04

Publications (2)

Publication Number Publication Date
JP2016108524A true JP2016108524A (en) 2016-06-20
JP2016108524A5 JP2016108524A5 (en) 2018-02-08

Family

ID=56123440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070691A Pending JP2016108524A (en) 2014-12-04 2015-03-31 Conductive resin composition, conductive master batch, molded body, and production method of the same

Country Status (1)

Country Link
JP (1) JP2016108524A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145414A (en) * 2016-02-19 2017-08-24 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. Method for producing conductive resin composition
JP2018028031A (en) * 2016-08-19 2018-02-22 東洋インキScホールディングス株式会社 Conductive resin composition, molded article, and method for producing the same
WO2022004236A1 (en) * 2020-06-30 2022-01-06 ポリプラスチックス株式会社 Thermoplastic resin composition, member, manufacturing method therefor, and method for developing conductivity of thermoplastic resin composition
CN114133665A (en) * 2021-12-15 2022-03-04 广州润锋科技股份有限公司 High-conductivity composite master batch containing carbon black and carbon nano tubes and preparation method thereof
JP7126666B1 (en) 2022-02-01 2022-08-29 株式会社DR.goo Carbon material granules, method for producing carbon material granules, and conductive resin composition
WO2022230778A1 (en) 2021-04-27 2022-11-03 東洋インキScホールディングス株式会社 Thermoplastic resin composition to be used in electromagnetic wave absorber, and molded article
JP7230269B1 (en) 2022-07-29 2023-02-28 大日精化工業株式会社 Carbon material dispersion and its use
JP7310996B1 (en) 2022-08-03 2023-07-19 東洋インキScホールディングス株式会社 Thermoplastic resin composition for electromagnetic wave absorber and molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154662A (en) * 2003-11-28 2005-06-16 Mitsubishi Gas Chem Co Inc Electrically conductive thermoplastic polycarbonate resin composition having flame retardance and molded article made therefrom
JP2008038125A (en) * 2005-11-10 2008-02-21 Asahi Kasei Chemicals Corp Resin composition having excellent flame retardancy
JP2010024261A (en) * 2008-07-15 2010-02-04 Mitsubishi Engineering Plastics Corp Electro-conductive resin composition and conductive resin molded article
JP2011225630A (en) * 2010-03-19 2011-11-10 Mitsubishi Chemicals Corp Conductive polyamide resin composition and conductive polyamide film
JP2012507587A (en) * 2008-11-06 2012-03-29 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Composition comprising propylene-olefin-copolymer wax and carbon nanotubes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154662A (en) * 2003-11-28 2005-06-16 Mitsubishi Gas Chem Co Inc Electrically conductive thermoplastic polycarbonate resin composition having flame retardance and molded article made therefrom
JP2008038125A (en) * 2005-11-10 2008-02-21 Asahi Kasei Chemicals Corp Resin composition having excellent flame retardancy
JP2010024261A (en) * 2008-07-15 2010-02-04 Mitsubishi Engineering Plastics Corp Electro-conductive resin composition and conductive resin molded article
JP2012507587A (en) * 2008-11-06 2012-03-29 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Composition comprising propylene-olefin-copolymer wax and carbon nanotubes
JP2011225630A (en) * 2010-03-19 2011-11-10 Mitsubishi Chemicals Corp Conductive polyamide resin composition and conductive polyamide film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145414A (en) * 2016-02-19 2017-08-24 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. Method for producing conductive resin composition
JP2018028031A (en) * 2016-08-19 2018-02-22 東洋インキScホールディングス株式会社 Conductive resin composition, molded article, and method for producing the same
KR20180020901A (en) * 2016-08-19 2018-02-28 토요잉크Sc홀딩스주식회사 Conductive resin composition, molded article and manufacturing method thereof
KR102359134B1 (en) 2016-08-19 2022-02-08 토요잉크Sc홀딩스주식회사 Conductive resin composition, molded article and manufacturing method thereof
WO2022004236A1 (en) * 2020-06-30 2022-01-06 ポリプラスチックス株式会社 Thermoplastic resin composition, member, manufacturing method therefor, and method for developing conductivity of thermoplastic resin composition
JP7431970B2 (en) 2020-06-30 2024-02-15 ポリプラスチックス株式会社 Thermoplastic resin composition, member and method for producing the same, and method for developing electrical conductivity of thermoplastic resin composition
WO2022230778A1 (en) 2021-04-27 2022-11-03 東洋インキScホールディングス株式会社 Thermoplastic resin composition to be used in electromagnetic wave absorber, and molded article
CN114133665A (en) * 2021-12-15 2022-03-04 广州润锋科技股份有限公司 High-conductivity composite master batch containing carbon black and carbon nano tubes and preparation method thereof
JP2023112535A (en) * 2022-02-01 2023-08-14 株式会社DR.goo Carbon material granulated product, method for producing carbon material granulated product, and conductive resin composition
JP7126666B1 (en) 2022-02-01 2022-08-29 株式会社DR.goo Carbon material granules, method for producing carbon material granules, and conductive resin composition
WO2023149136A1 (en) * 2022-02-01 2023-08-10 株式会社DR.goo Carbon material granulated product, method for producing carbon material granulated product, and conductive resin composition
JP7230269B1 (en) 2022-07-29 2023-02-28 大日精化工業株式会社 Carbon material dispersion and its use
WO2024024162A1 (en) * 2022-07-29 2024-02-01 大日精化工業株式会社 Carbon material dispersion and use thereof
JP2024018830A (en) * 2022-07-29 2024-02-08 大日精化工業株式会社 Carbon material dispersion and its use
WO2024029312A1 (en) * 2022-08-03 2024-02-08 東洋インキScホールディングス株式会社 Thermoplastic resin composition for electromagnetic wave absorber and molded body
JP7310996B1 (en) 2022-08-03 2023-07-19 東洋インキScホールディングス株式会社 Thermoplastic resin composition for electromagnetic wave absorber and molded article

Similar Documents

Publication Publication Date Title
JP2016108524A (en) Conductive resin composition, conductive master batch, molded body, and production method of the same
JP5983850B1 (en) Conductive resin composition, molded article and method for producing the same
KR101135672B1 (en) Conductive thermosets by extrusion
Chu et al. Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets
JP6780363B2 (en) Conductive resin composition, molded product and method for producing the same
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
JP5152711B2 (en) Structure composed of filler and incompatible resin or elastomer, production method thereof and use thereof
US8653177B2 (en) Semiconductive resin composition
JP2006526058A (en) Conductive composition and method for producing the same
US9978475B2 (en) Production method for conductive resin composition, and conductive resin composition
JP5634870B2 (en) Composite material containing carbon fiber
KR20060061306A (en) Electrically conductive compositions and method of manufacture thereof
EP1623435A2 (en) Conductive thermoplastic composites and methods of making
KR101183016B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
JP2003306607A (en) Resin composition and method for producing the same
JP2010254945A (en) Electroconductive resin composition
JP2015061891A (en) Production method of conductive resin composition master batch and master batch
KR101164287B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
JP2019094486A (en) Conductive resin composition and method for producing the same
JP2009127038A (en) Resin composition, method for producing the same and use of the same
JP6972517B2 (en) Method for manufacturing conductive resin composition and molded product
CN113754927B (en) Method for producing carbon nanofiber composite and carbon nanofiber composite
WO2019181828A1 (en) Electrically conductive resin composition and method for producing same
TWI822573B (en) Carbon material granules, method for producing carbon material granules, and conductive resin composition
Saeedi et al. Conducting polymer/carbonaceous nanocomposite systems for antistatic applications

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190312