JPH0693358B2 - Manufacturing method of hydrogen storage electrode - Google Patents

Manufacturing method of hydrogen storage electrode

Info

Publication number
JPH0693358B2
JPH0693358B2 JP62097824A JP9782487A JPH0693358B2 JP H0693358 B2 JPH0693358 B2 JP H0693358B2 JP 62097824 A JP62097824 A JP 62097824A JP 9782487 A JP9782487 A JP 9782487A JP H0693358 B2 JPH0693358 B2 JP H0693358B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
alloy
powder
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62097824A
Other languages
Japanese (ja)
Other versions
JPS63264867A (en
Inventor
宗久 生駒
博志 川野
功 松本
康子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62097824A priority Critical patent/JPH0693358B2/en
Publication of JPS63264867A publication Critical patent/JPS63264867A/en
Publication of JPH0693358B2 publication Critical patent/JPH0693358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル水素蓄電池等のアルカリ蓄電池の負
極に用いる水素吸蔵電極の製造方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for producing a hydrogen storage electrode used as a negative electrode of an alkaline storage battery such as a nickel-hydrogen storage battery.

従来の技術 従来この種の電極はまだ実用化には至っていないが、そ
の製法として次のような方法が提案されている。すなわ
ち、アーク溶解炉や高周波溶解炉により水素吸蔵合金を
作製し、その合金を不活性ガス又は真空中で950〜1250
℃の温度範囲で熱処理した後、粉砕し、その粉末をアル
カリ水溶液中で表面処理を施し、さらにその後、少なく
とも水洗,乾燥後,合金粉末を結着剤と共に電極支持体
に塗着または充填した後、加圧一体化する工程により水
素吸蔵電極を作製していた(特開昭61−285658号公
報)。
2. Description of the Related Art Conventionally, electrodes of this type have not yet been put to practical use, but the following method has been proposed as a manufacturing method thereof. That is, a hydrogen storage alloy is produced by an arc melting furnace or a high frequency melting furnace, and the alloy is heated in an inert gas or vacuum at 950 to 1250.
After heat treatment in the temperature range of ℃, pulverize, surface-treat the powder in an alkaline aqueous solution, and at least after washing with water and drying, after coating or filling the alloy powder with the binder on the electrode support A hydrogen storage electrode was manufactured by a pressure-integrating process (Japanese Patent Laid-Open No. 61-285658).

発明が解決しようとする問題点 このような従来提案されている製造方法では、水素吸蔵
電極を負極に用い、ニッケル正極と組み合わせて密閉形
ニッケル水素蓄電池を構成した場合、充放電サイクル寿
命が短く、自己放電が大きいという問題があった。
Problems to be Solved by the Invention In such a conventionally proposed manufacturing method, when a hydrogen storage electrode is used as a negative electrode and a sealed nickel-metal hydride storage battery is configured in combination with a nickel positive electrode, the charge / discharge cycle life is short, There was a problem of large self-discharge.

本発明はこのような問題点を同時に解決するもので、簡
単な製造法により、充放電サイクル寿命を向上させ、さ
らに自己放電を低減させることを目的とする。
The present invention solves these problems at the same time, and an object of the present invention is to improve the charge / discharge cycle life and reduce self-discharge by a simple manufacturing method.

問題点を解決するための手段 この問題点を解決するために本発明は、水素吸蔵合金の
溶湯を液体急冷法で冷却した後、微粉砕する工程と、粉
末と結着剤の混練物を電極支持体に塗着もしくは充填す
る工程と、高温高濃度のアルカリ中に浸漬する工程と水
洗,乾燥する工程、もしくは前記粉末を高温高濃度のア
ルカリ中に浸漬する工程と、水洗乾燥の後、結着剤と混
練した後に電極支持体に塗着もしくは充填したのち、乾
燥する工程とを有し、前記電極に加圧操作を施し、所望
の厚さにする工程を有するものである。
Means for Solving the Problems In order to solve this problem, the present invention relates to a step of cooling a molten metal of a hydrogen storage alloy by a liquid quenching method and then finely pulverizing it, and a kneaded material of powder and a binder. A step of coating or filling the support, a step of immersing in a high temperature and high concentration alkali, a step of washing with water and a drying step, or a step of immersing the powder in a high temperature and high concentration of alkali, and a step of rinsing and drying, After kneading with the binder, the electrode support is applied or filled, and then dried, and the electrode is subjected to a pressure operation to a desired thickness.

作用 この製造法により、水素吸蔵合金における水素の吸蔵・
放出に有効なCaCu5型結晶の均質部分が増大する結果、
種々の電池特性が改善される。水素吸蔵合金中に水素の
吸蔵・放出に無効な不均質の合金相は、アルカリ電解液
中で充放電を繰り返すことにより溶解・析出し、負極の
容量を減少させる。その結果、充放電サイクル寿命が短
くなる。また、金属が電解液中に溶解すると、この金属
イオンが電池の自己放電速度を増大させる。以上のこと
により、液体急冷法で均質な合金を作製し、さらにアル
カリ処理を施すことにより水素吸蔵合金の均質性の良好
な水素吸蔵合金粉末から成る水素吸蔵電極を用いること
により、充放電サイクル寿命が良好で自己放電の少ない
蓄電池が得られることとなる。
Action By this manufacturing method, hydrogen storage in the hydrogen storage alloy
As a result of increasing the homogeneous part of CaCu 5 type crystal effective for release,
Various battery characteristics are improved. An inhomogeneous alloy phase, which is ineffective in storing and releasing hydrogen in the hydrogen storage alloy, dissolves and precipitates by repeating charge and discharge in the alkaline electrolyte and reduces the capacity of the negative electrode. As a result, the charge / discharge cycle life is shortened. Also, when the metal dissolves in the electrolyte, the metal ions increase the self-discharge rate of the battery. From the above, a homogeneous alloy was prepared by the liquid quenching method, and by further subjecting it to alkali treatment, by using a hydrogen storage electrode composed of hydrogen storage alloy powder with good homogeneity of the hydrogen storage alloy, the charge-discharge cycle life was improved. It is possible to obtain a storage battery that has a good electric charge and has less self-discharge.

実施例 第1図は本発明の一実施例による蓄電池の充放電サイク
ル数と放電容量の関係図である。液体急冷法には、水素
吸蔵合金の溶湯を作成する高周波による溶解部と、合金
の溶湯を急冷するためのアモルファス合金を作成するの
と同様の、高速で回転する双ロール法(冷却速度104〜1
05゜K/sec)を用いた。市販のミッシュメタルMm(希土類
元素の混合物、例えばCe45wt%,La30wt%,Nd5wt%,他
の希土類元素20wt%)とNi,Al,Mn,Coの各試料をMmNi
3.55Mn0.4Al0.3Co0.75の組成比に秤量し混合した。これ
らの試料を前記した双ロール法により急冷の可能な高周
波炉で、合金を溶解させ、高速で回転する双ロール間に
合金の溶湯を流し込み水素吸蔵合金(MmNi3.55Mn0.4Al
0.3Co0.75)の薄片を得た。この薄片をボールミルで38
μm以下の粉末に粉砕し、1.5wt%のポリビニルアルコ
ール水溶液と混合し、ペースト状とし、発泡ニッケル多
孔体に充填、乾燥し電極を構成した。ついで、この電極
を比重1.30のKOH水溶液中に80℃で12時間浸漬し、アル
カリ水溶液中で処理した後、水洗,乾燥後,加圧し負極
に用いる本発明の水素吸蔵電極を得た。従来例として、
高周波溶解炉で合金を溶解した後、急冷せずに自然冷却
する通常の合金製造法で作製した合金を前記と同様な方
法により水素吸蔵電極を作製した。
Example FIG. 1 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity of a storage battery according to an example of the present invention. The liquid quenching method is a high-speed twin-roll method (cooling speed 10 4) that is similar to the high-frequency melting part that creates a hydrogen-absorbing alloy melt and the amorphous alloy that quenches the alloy melt. ~ 1
0 5 ° K / sec) was used. Commercially available misch metal Mm (mixture of rare earth elements, such as Ce45wt%, La30wt%, Nd5wt%, other rare earth element 20wt%) and Ni, Al, Mn, Co samples were MmNi
The composition ratio of 3.55 Mn 0.4 Al 0.3 Co 0.75 was measured and mixed. These samples were melted in a high-frequency furnace capable of rapid cooling by the twin roll method described above, and the molten metal of the alloy was poured between twin rolls rotating at high speed to produce a hydrogen storage alloy (MmNi 3.55 Mn 0.4 Al
A thin piece of 0.3 Co 0.75 ) was obtained. 38 this ball slice with a ball mill
The powder was pulverized to a particle size of not more than μm, mixed with a 1.5 wt% polyvinyl alcohol aqueous solution to form a paste, filled in a foamed nickel porous body, and dried to form an electrode. Then, this electrode was immersed in a KOH aqueous solution having a specific gravity of 1.30 at 80 ° C. for 12 hours, treated in an alkaline aqueous solution, washed with water, dried, and pressurized to obtain a hydrogen storage electrode of the present invention used for a negative electrode. As a conventional example,
After the alloy was melted in the high-frequency melting furnace, the alloy prepared by the usual alloy manufacturing method in which the alloy was naturally cooled without being rapidly cooled was manufactured into a hydrogen storage electrode by the same method as described above.

次に、酸化ニッケル正極として公知の方法で得られた発
泡式ニッケル正極(理論充填容量830〜870mAh)を用い
たセパレータにはポリアミドの不織布、電解液に水酸化
リチウムを40g/l溶解した比重1.30のKOH水溶液を使用
し、前記負極と組み合わせ、公称容量800mAhの単3サイ
ズ(AAサイズ)の密閉形ニッケル−水素蓄電池を構成し
た。これらの電池を20℃の一定温度下で1サイクル目の
充電を0.1cmAで15時間、2サイクル目以後は1/3cmAで4.
5時間行った。放電は2サイクル目までを0.2cmAで、3
サイクル目以後は0.5cmAとし、終止電圧は1.0Vとした。
Next, a foamed nickel positive electrode obtained by a known method as a nickel oxide positive electrode (theoretical filling capacity: 830 to 870 mAh) was used as a separator in a polyamide nonwoven fabric, and a specific gravity of 1.30 in which lithium hydroxide was dissolved in an electrolyte solution at 40 g / l. KOH aqueous solution was used in combination with the negative electrode to form an AA size (AA size) sealed nickel-hydrogen storage battery having a nominal capacity of 800 mAh. Charge these batteries at a constant temperature of 20 ° C for the first cycle at 0.1 cmA for 15 hours, and after the second cycle at 1/3 cmA for 4.
I went for 5 hours. Discharge is 0.2 cmA up to the second cycle and is 3
After the cycle, the voltage was 0.5 cmA, and the final voltage was 1.0V.

第1図から明らかなように、従来例の液体急冷法により
作製していない合金粉末を負極に用いた電池は200サイ
クルの充放電サイクルを繰り返すことにより放電容量が
初期容量の50%に低下する。これに対し、本発明の液体
急冷法により作製した合金粉末を負極に用いた電池は45
0サイクルの充放電を繰り返しても放電容量はほとんど
低下しない。これは、通常の高周波溶解法により作製し
た合金粉末を用いた負極は、X線回折法などによる解析
で結晶の均質性が良好でないことが明らかで、水素の吸
蔵・放出に有効なCaCu5型結晶以外の相が充放電を繰り
返すことにより、溶解・析出し、負極の充電効率が低下
し、200サイクルの充放電を繰り返すことにより放電容
量が初期の50%に劣化する。これに対し、急冷法で作製
した合金粉末を負極に用いた本発明の電池は、負極の水
素吸蔵合金粉末の均質性が非常に良好であり、充放電を
繰り返すことにより、CaCu5型の結晶構造を有しない合
金相の金属Co,Mn,Alの溶解・析出が非常に少なく、長寿
命の電池が得られる。
As is clear from FIG. 1, in the battery using the alloy powder, which was not manufactured by the liquid quenching method of the conventional example, as the negative electrode, the discharge capacity was reduced to 50% of the initial capacity by repeating 200 charge / discharge cycles. . On the other hand, the battery using the alloy powder produced by the liquid quenching method of the present invention for the negative electrode is 45
Even if the charge and discharge are repeated for 0 cycles, the discharge capacity hardly decreases. It is clear from the analysis by X-ray diffraction method that the negative electrode using the alloy powder produced by the usual high frequency melting method does not have good crystal homogeneity, and the CaCu 5 type which is effective for hydrogen absorption and desorption Phases other than crystals are repeatedly charged and discharged to dissolve / precipitate, and the charging efficiency of the negative electrode is reduced. By repeating 200 cycles of charging and discharging, the discharge capacity deteriorates to 50% of the initial value. On the other hand, the battery of the present invention using the alloy powder produced by the quenching method for the negative electrode, the homogeneity of the hydrogen storage alloy powder of the negative electrode is very good, by repeating charge and discharge, CaCu 5 type crystals It is possible to obtain a battery with a long life because the metal Co, Mn, and Al in the alloy phase having no structure are dissolved and precipitated very little.

第2図は45℃での保存期間と容量維持率との関係を示す
図である。第2図から明らかなように、本発明の製造法
により作製した水素吸蔵電極を負極に用いた電池の自己
放電は、45℃で2週間充電状態で保持した場合、50%の
容量維持率である。しかしながら、従来例の電池の自己
放電は、12%の容量維持率であり、自己放電は非常に大
きい。前述したように、急冷法で作製していない合金を
負極に用いた電池は、CaCu5型の結晶相以外の相が存在
するために、Co,Mn,Alが充放電の繰り返しにより溶解し
たり、高温で放置することにより溶解するため、電池中
の不純物量が増大し、自己放電速度が増加する。これに
対し、本発明の製造法で作製した電極を負極に用いた電
池は、負極の水素吸蔵合金からのCo,Mn,Al等の溶解が少
ないため、電池中の不純物が非常に少なくなるため、自
己放電速度は減少する。
FIG. 2 is a diagram showing the relationship between the storage period at 45 ° C. and the capacity retention rate. As is clear from FIG. 2, the self-discharge of the battery using the hydrogen storage electrode manufactured by the manufacturing method of the present invention as the negative electrode shows a capacity retention ratio of 50% when the battery is held in a charged state at 45 ° C. for 2 weeks. is there. However, the self-discharge of the conventional battery has a capacity retention rate of 12%, and the self-discharge is very large. As described above, in the battery using the alloy not manufactured by the quenching method for the negative electrode, Co, Mn, and Al may be dissolved by repeated charging and discharging due to the existence of phases other than the CaCu 5 type crystal phase. Since it dissolves when left at high temperature, the amount of impurities in the battery increases and the self-discharge rate increases. On the other hand, the battery using the electrode manufactured by the manufacturing method of the present invention for the negative electrode, because the dissolution of Co, Mn, Al, etc. from the hydrogen storage alloy of the negative electrode is small, the impurities in the battery are very small. , The self-discharge rate decreases.

なお、本実施例では液体急冷法で水素吸蔵合金を作製し
た後、粉砕し、その粉末を発泡ニッケル多孔度に充填し
た後、アルカリ水溶液中で処理する工程により電極を作
製したが、液体急冷法で作製した合金を粉砕した後、ア
ルカリ水溶液中で処理し、電極を構成した場合も同様な
効果が得られる。
In this example, the hydrogen-absorbing alloy was prepared by the liquid quenching method, then pulverized, the powder was filled into the foamed nickel porosity, and then the electrode was prepared by the step of treating in an alkaline aqueous solution. The same effect can be obtained when the electrode is formed by crushing the alloy produced in (1) and then treating it in an alkaline aqueous solution.

また、液体急冷法で冷却した合金を微粉砕した後に、電
極の状態もしくは粉末で行うアルカリ処理は、45〜100
℃で比重1.10〜1.40のアルカリ水溶液中で行なえば、水
素吸蔵合金の表面に酸化物や水酸化物から成る被膜を形
成し、特性の優れた水素吸蔵電極が得られる。また、粉
末の平均粒子径は10〜60μmの範囲が好ましく、60μm
以上になればサイクルの寿命が短くなり、10μm以下に
なると発火等の安全性の問題がある。
In addition, after finely pulverizing the alloy cooled by the liquid quenching method, the alkali treatment performed in the state of the electrode or in the powder state is 45 to 100.
When it is carried out in an alkaline aqueous solution having a specific gravity of 1.10 to 1.40 at ℃, a film made of oxide or hydroxide is formed on the surface of the hydrogen storage alloy to obtain a hydrogen storage electrode having excellent characteristics. The average particle size of the powder is preferably in the range of 10 to 60 μm, 60 μm
If the above is exceeded, the cycle life is shortened, and if it is 10 μm or less, there is a safety problem such as ignition.

なお、本実施例では液体急冷法で水素吸蔵合金を製造し
た場合も非晶質でない合金系について示したが、Zr−Ni
系,Ti−Ni系等の液体急冷法で作製した場合に非晶質合
金でも同様な効果が得られる。
In this example, the alloy system which is not amorphous is shown even when the hydrogen storage alloy is manufactured by the liquid quenching method.
Similar effects can be obtained with amorphous alloys when they are produced by liquid quenching methods such as Ti-based and Ti-Ni-based.

発明の効果 以上のように本発明によれば充放電サイクル寿命特性が
良好で、自己放電の少ない優れた電池を提供できるとい
う効果が得られる。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to obtain an effect that an excellent battery having good charge / discharge cycle life characteristics and less self-discharge can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例で示した蓄電池の放電容量と充
放電サイクル数との関係を示す図、第2図は実施例で示
した電池における保存期間と容量維持率の関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the discharge capacity and the number of charge / discharge cycles of the storage battery shown in the example of the present invention, and FIG. 2 is a diagram showing the relationship between the storage period and the capacity retention rate in the battery shown in the example. Is.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】可逆的に水素を吸蔵・放出する水素吸蔵合
金の溶湯を液体急冷法で冷却した後、微粉砕する工程
と、粉末と結着剤の混練物を電極支持体に塗着もしくは
充填する工程と、高温高濃度のアルカリ中に浸漬する工
程と水洗,乾燥する工程,もしくは前記粉末を高温高濃
度のアルカリ中に浸漬する工程と、水洗乾燥の後、結着
剤と混練した後に電極支持体に塗着もしくは充填したの
ち、乾燥する工程とを有し、前記電極に加圧操作を施
し、所望の厚さにする工程を有することを特徴とする水
素吸蔵電極の製造法。
1. A step of cooling a molten metal of a hydrogen storage alloy capable of reversibly storing and releasing hydrogen by a liquid quenching method and then finely pulverizing it, and coating a kneaded material of powder and a binder on an electrode support or Filling step, immersing in high temperature and high concentration alkali, washing and drying, or immersing the powder in high temperature and high concentration alkali, rinsing and drying, and after kneading with a binder A method for producing a hydrogen storage electrode, comprising the steps of coating and filling an electrode support and then drying, and applying a pressure to the electrode to obtain a desired thickness.
【請求項2】粉砕は平均粒径10〜60μmの範囲であるこ
とを特徴とする特許請求の範囲第1項記載の水素吸蔵電
極の製造法。
2. The method for producing a hydrogen storage electrode according to claim 1, wherein the pulverization is performed in the range of an average particle size of 10 to 60 μm.
【請求項3】電極又は粉末を浸漬するのに使用するアル
カリ液は、比重1.10〜1.40で45〜100℃の範囲であるこ
とを特徴とする特許請求の範囲第1項記載の水素吸蔵電
極の製造法。
3. The hydrogen storage electrode according to claim 1, wherein the alkaline liquid used for immersing the electrode or the powder has a specific gravity of 1.10 to 1.40 and a range of 45 to 100 ° C. Manufacturing method.
JP62097824A 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0693358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097824A JPH0693358B2 (en) 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097824A JPH0693358B2 (en) 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63264867A JPS63264867A (en) 1988-11-01
JPH0693358B2 true JPH0693358B2 (en) 1994-11-16

Family

ID=14202476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097824A Expired - Lifetime JPH0693358B2 (en) 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0693358B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644490B2 (en) * 1989-05-16 1994-06-08 三洋電機株式会社 Metal-hydrogen alkaline storage battery manufacturing method
KR960014512B1 (en) * 1992-09-14 1996-10-16 가부시키가이샤 도시바 Hydrogen-absorbing alloy for battery, method of manufacturing the same and secondary nickel metal hydride battery
EP0652601B1 (en) * 1993-10-08 1999-08-18 Sanyo Electric Co. Ltd Method for evaluating hydrogen-absorbing alloys for electrode.
US5629000A (en) * 1994-11-25 1997-05-13 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115158A (en) * 1983-10-28 1985-06-21 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Electrode for electrochemical cell, method of producing sameelectrode, electrochemical cell having said electrode and assembly of same cell
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115158A (en) * 1983-10-28 1985-06-21 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Electrode for electrochemical cell, method of producing sameelectrode, electrochemical cell having said electrode and assembly of same cell
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Also Published As

Publication number Publication date
JPS63264867A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
US5605585A (en) Method for producing hydrogen storage alloy particles and sealed-type nickel-metal hydride storage battery using the same
JPH0773878A (en) Manufacture of metal hydride electrode
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP2920343B2 (en) Hydrogen storage alloy powder, nickel-metal hydride battery having the hydrogen storage alloy powder as negative electrode active material, and method for producing hydrogen storage alloy powder
JP2003533854A (en) Method for improving the properties of alloy powder for NiMH batteries
JP3432870B2 (en) Method for producing metal hydride electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPH0756799B2 (en) Method for producing hydrogen storage alloy negative electrode
JP2982195B2 (en) Manufacturing method of battery electrode
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP3198896B2 (en) Nickel-metal hydride battery
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JPH11269501A (en) Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
JP2002343349A (en) Hydrogen storage alloy electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3322449B2 (en) Method for producing metal hydride electrode
JP2001196092A (en) Sealed nickel-hydrogen battery and manufacturing method therefor
US20180019469A1 (en) Alloy powder for electrodes, negative electrode for nickel-hydrogen storage batteries using same and nickel-hydrogen storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 13