JP3198896B2 - Nickel-metal hydride battery - Google Patents

Nickel-metal hydride battery

Info

Publication number
JP3198896B2
JP3198896B2 JP28831595A JP28831595A JP3198896B2 JP 3198896 B2 JP3198896 B2 JP 3198896B2 JP 28831595 A JP28831595 A JP 28831595A JP 28831595 A JP28831595 A JP 28831595A JP 3198896 B2 JP3198896 B2 JP 3198896B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
nickel
storage alloy
cobalt
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28831595A
Other languages
Japanese (ja)
Other versions
JPH09129227A (en
Inventor
有功 大村
浩次 湯浅
孝 海老原
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP28831595A priority Critical patent/JP3198896B2/en
Publication of JPH09129227A publication Critical patent/JPH09129227A/en
Application granted granted Critical
Publication of JP3198896B2 publication Critical patent/JP3198896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、活物質である水素
を電気化学的に吸蔵・放出可能な水素吸蔵合金を用いた
ニッケル・水素蓄電池の、特に水素吸蔵合金粉末の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-hydrogen storage battery using a hydrogen storage alloy which can electrochemically store and release hydrogen as an active material, and more particularly to an improvement in hydrogen storage alloy powder.

【0002】[0002]

【従来の技術】活物質である水素を多量に吸蔵・放出し
うる水素吸蔵合金は、高エネルギー密度を有する電極材
料として注目され、ニッケル・水素蓄電池への応用が図
られている。ここでの水素吸蔵合金は一般にCaCu5
型の結晶構造を有するMmNi5系合金のNiの一部を
Co、Al、Mn等の元素で置換して用いられている。
2. Description of the Related Art A hydrogen storage alloy capable of storing and releasing a large amount of hydrogen as an active material has attracted attention as an electrode material having a high energy density, and is being applied to nickel-hydrogen storage batteries. The hydrogen storage alloy here is generally CaCu 5
A part of Ni of MmNi 5 system alloy having a crystal structure of the type Co, Al, has been used to replace an element such as Mn.

【0003】このような水素吸蔵合金は、電池の充放電
に伴い次第に微粉化し酸化、劣化していくと考えられて
いる。この水素吸蔵合金のサイクル寿命を向上させる方
法として、合金中のコバルト量を増やす方法がある。合
金中のコバルトは、水素の吸蔵放出による結晶格子の膨
脹収縮を抑制するのに有効と考えられている。
[0003] It is considered that such a hydrogen storage alloy gradually becomes finer and oxidizes and deteriorates as the battery is charged and discharged. As a method of improving the cycle life of the hydrogen storage alloy, there is a method of increasing the amount of cobalt in the alloy. It is believed that cobalt in the alloy is effective in suppressing the expansion and contraction of the crystal lattice due to the storage and release of hydrogen.

【0004】また水素吸蔵合金のサイクル寿命を向上さ
せる方法として、特開平5−314971号には水素吸
蔵合金のBET法による比表面積を0.04〜0.12
2/gとすることが、また特開平4−137361号
には水素吸蔵合金のBET法による比表面積を0.1〜
10m2/gとすることがそれぞれ提案されている。
As a method for improving the cycle life of a hydrogen storage alloy, Japanese Patent Application Laid-Open No. Hei 5-314971 discloses that the specific surface area of a hydrogen storage alloy by the BET method is 0.04 to 0.12.
m 2 / g, and JP-A-4-137361 discloses that the specific surface area of the hydrogen storage alloy by the BET method is 0.1 to
It has been respectively proposed to be 10 m 2 / g.

【0005】[0005]

【発明が解決しようとする課題】このような従来提案さ
れている方法によれば、合金中のコバルト量を多くする
ことによりサイクル寿命特性は向上するが、電池として
の放電特性が低下するという問題点があった。また、コ
バルトは高コストな材料のため、水素吸蔵合金中のコバ
ルト量を増加させることにより合金のコストが高くなる
という問題点もあった。
According to such a conventionally proposed method, the cycle life characteristics are improved by increasing the amount of cobalt in the alloy, but the discharge characteristics of the battery are degraded. There was a point. In addition, since cobalt is a high-cost material, there is also a problem that increasing the amount of cobalt in the hydrogen storage alloy increases the cost of the alloy.

【0006】水素吸蔵合金を特開平5−314971号
に提案されているような比表面積にした場合、寿命特性
の改善には効果があるが、電池としての放電特性は著し
く低下してしまう。
When the hydrogen storage alloy is made to have a specific surface area as proposed in Japanese Patent Application Laid-Open No. Hei 5-314971, it is effective in improving the life characteristics, but the discharge characteristics of the battery are remarkably deteriorated.

【0007】また、特開平4−137361号には水素
吸蔵合金中のコバルト量とBET比表面積との詳細な関
係が開示されておらず、特にコバルト量の少ない水素吸
蔵合金については、提案されているような比表面積とし
た際の有効性は定かではない。
Japanese Patent Application Laid-Open No. 4-137361 does not disclose a detailed relationship between the amount of cobalt in the hydrogen storage alloy and the BET specific surface area. In particular, a hydrogen storage alloy having a small amount of cobalt has been proposed. It is not clear whether the specific surface area is effective.

【0008】さらに、これらの従来の技術では水素吸蔵
合金粉末の粒子径、及び粒子径と比表面積との関係につ
いては何ら開示されていない。
Furthermore, these conventional techniques do not disclose the particle size of the hydrogen storage alloy powder and the relationship between the particle size and the specific surface area.

【0009】本発明はこのような課題を解決するもの
で、コバルト量の少ない水素吸蔵合金を用いてそのサイ
クル寿命を向上させ、かつ電池としての放電特性にも優
れた低コストなニッケル・水素蓄電池を提供することを
目的とする。
The present invention solves such a problem, and uses a hydrogen storage alloy having a small amount of cobalt to improve its cycle life and to provide a low-cost nickel-hydrogen storage battery having excellent discharge characteristics as a battery. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】この課題を解決するため
に本発明は、ニッケル酸化物を主体とする正極と、活物
質である水素を電気化学的に吸蔵・放出することが可能
な水素吸蔵合金粉末を主構成材料とする負極と、セパレ
ータと、アルカリ電解液とからなるニッケル・水素蓄電
池において、前記水素吸蔵合金粉末は、希土類元素およ
びコバルトを含んでCaCu5型の結晶構造を有し、コ
バルトの含有量が5wt%以下、BET法による比表面積
が0.3m2/g以上0.7m2/g以下、平均粒子径が
5〜60μmとしたものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a positive electrode mainly composed of nickel oxide and a hydrogen storage capable of electrochemically storing and releasing hydrogen as an active material. In a nickel-metal hydride storage battery including a negative electrode having an alloy powder as a main constituent material, a separator, and an alkaline electrolyte, the hydrogen storage alloy powder has a CaCu 5 type crystal structure including a rare earth element and cobalt, the cobalt content is less 5 wt%, specific surface area by BET method of 0.3 m 2 / g or more 0.7 m 2 / g or less, average particle size is obtained by a 5 to 60 m.

【0011】[0011]

【発明の実施の形態】多元化した水素吸蔵合金粉末中の
コバルト量は、水素吸蔵合金の割れやすさに影響を与え
ると考えられる。本発明のような構成とすることによ
り、コバルト含有量が少ない水素吸蔵合金においても電
池の充放電に伴う合金粉末の酸化、劣化が抑制でき、合
金粉末のサイクル寿命が向上し、かつ放電特性にも優れ
た、低コストなニッケル・水素蓄電池が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION It is considered that the amount of cobalt in a multiplexed hydrogen storage alloy powder affects the fragility of the hydrogen storage alloy. By adopting a configuration as in the present invention, even in a hydrogen storage alloy having a small cobalt content, oxidation and deterioration of the alloy powder due to charging and discharging of the battery can be suppressed, the cycle life of the alloy powder is improved, and the discharge characteristics are improved. An excellent, low-cost nickel-metal hydride storage battery can be obtained.

【0012】[0012]

【実施例】以下、本発明の詳細を図面とともに実施例を
もって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings and embodiments.

【0013】市販のMm、Ni、Co、Al、Mn等の
金属を原料として、アルゴン雰囲気中、高周波溶解炉で
加熱溶解することにより水素吸蔵合金を作製した。な
お、その組成は一般式MmNi4.0Mn0.4Al0.3Co
0.4となるように作製した。
Using a commercially available metal such as Mm, Ni, Co, Al, and Mn as a raw material, a hydrogen storage alloy was prepared by heating and melting in a high-frequency melting furnace in an argon atmosphere. The composition is represented by the general formula: MmNi 4.0 Mn 0.4 Al 0.3 Co
It was prepared to be 0.4 .

【0014】次に、この水素吸蔵合金の均質化を図るた
めにアルゴン雰囲気中1050℃で6時間熱処理を行っ
た。得られた合金塊を粗粉砕後、湿式ボールミルにより
微粉砕を行い、各種の平均粒径を持つ微粉末を調製し
た。次にこの微粉末を水酸化カリウム水溶液中で攪拌処
理をした後、水洗乾燥して水素吸蔵合金粉末を得た。湿
式ボールミルによる粉砕時間を変えることにより、その
平均粒径を調整した。また、水酸化カリウム水溶液中で
の攪拌処理時の処理温度、処理時間、水酸化カリウム水
溶液濃度を変えることによりその比表面積を調整した。
Next, in order to homogenize the hydrogen storage alloy, heat treatment was performed at 1050 ° C. for 6 hours in an argon atmosphere. After coarsely pulverizing the obtained alloy lump, it was finely pulverized by a wet ball mill to prepare fine powders having various average particle diameters. Next, this fine powder was stirred in an aqueous potassium hydroxide solution, washed with water and dried to obtain a hydrogen storage alloy powder. The average particle size was adjusted by changing the pulverization time by a wet ball mill. Further, the specific surface area was adjusted by changing the processing temperature, the processing time, and the concentration of the aqueous potassium hydroxide solution during the stirring treatment in the aqueous potassium hydroxide solution.

【0015】なお、上記粉末の比表面積は窒素ガスを用
いたBET法により測定し、平均粒子径はレーザー回折
式粒度分布測定装置を用いて測定した。
The specific surface area of the powder was measured by a BET method using nitrogen gas, and the average particle diameter was measured by using a laser diffraction type particle size distribution analyzer.

【0016】これらの水素吸蔵合金粉末に水を加えてペ
ースト状にし、発泡ニッケル多孔体に充填、乾燥、加圧
後所定の寸法に切断し、水素吸蔵合金電極を作成した。
これを、公知の発泡ニッケル式正極とポリプロピレン不
織布をスルホン化したセパレータと組み合わせ、渦巻き
状電極群を構成して金属ケースに挿入後、比重1.30
の水酸化カリウム水溶液を電解液として所定量注液した
後ケースを封口し、それぞれAAサイズで電池容量10
00mAhのニッケル・水素蓄電池を構成した。
Water was added to these hydrogen-absorbing alloy powders to form a paste, filled in a porous nickel foam, dried, pressurized, and cut into predetermined dimensions to prepare a hydrogen-absorbing alloy electrode.
This is combined with a known foamed nickel-type positive electrode and a separator formed by sulfonating a polypropylene non-woven fabric to form a spiral electrode group and insert it into a metal case, and then have a specific gravity of 1.30.
After injecting a predetermined amount of potassium hydroxide aqueous solution as an electrolytic solution, the case is sealed, and each has an AA size and a battery capacity of 10
A nickel-metal hydride storage battery of 00 mAh was formed.

【0017】上記のそれぞれの電池を用いて、サイクル
寿命試験を行った。充放電条件は45℃の雰囲気、1C
mAで1.5時間充電後、終止電圧1.0Vまで1Cm
Aで放電を行った。それぞれの平均粒径の水素吸蔵合金
粉末のBET法による比表面積と放電容量が初期の1/
2の容量になるまでのサイクル数との関係を図1に示
す。
A cycle life test was performed using each of the above batteries. Charge and discharge conditions are 45 ° C atmosphere, 1C
After charging for 1.5 hours at 1 mA, 1 Cm to the final voltage of 1.0 V
A discharge was performed. The specific surface area and the discharge capacity of the hydrogen storage alloy powder having the respective average particle diameters according to the BET method were 1 / the initial values.
FIG. 1 shows the relationship with the number of cycles until the capacity reaches 2.

【0018】図1から明らかなように、同一粒径の粉末
ではBET法による比表面積を小さくした試料のほうが
サイクル寿命の向上が認められ、0.7m2/g以下で
あれば効果の得られることがわかった。また、比表面積
が同じ場合には平均粒径が大きいほど寿命特性が向上し
た。
As is clear from FIG. 1, for powders of the same particle size, the cycle life was improved by the sample whose specific surface area was reduced by the BET method, and the effect was obtained when it was 0.7 m 2 / g or less. I understand. In addition, when the specific surface area was the same, the life characteristics were improved as the average particle size was larger.

【0019】同様に、前記の電池を用いて放電特性試験
を行った。充放電条件は20℃の雰囲気、1CmAで
1.5時間充電後、20℃、および0℃で終止電圧1.
0Vまで1CmAで放電を行った。水素吸蔵合金のBE
T法による比表面積と各電池の20℃に対する0℃の放
電容量比率との関係を図2に示す。
Similarly, a discharge characteristic test was performed using the above-mentioned battery. The charge and discharge conditions were as follows: an atmosphere at 20 ° C., charging at 1 CmA for 1.5 hours, and a final voltage at 20 ° C. and 0 ° C.
Discharge was performed at 1 CmA to 0 V. BE of hydrogen storage alloy
FIG. 2 shows the relationship between the specific surface area by the T method and the discharge capacity ratio of 0 ° C. to 20 ° C. of each battery.

【0020】図2から明らかなように、同一粒径の粉末
では比表面積を小さくした試料は放電特性の低下が認め
られ、0.3m2/g以上で放電特性に効果のあること
がわかった。また、比表面積が同じ場合には平均粒径が
大きいほど放電特性が低下したが、平均粒径が60μm
以下であれば実仕様上問題のないレベルであった。
As is apparent from FIG. 2, in the case of powders having the same particle size, the sample having a small specific surface area exhibited a decrease in discharge characteristics, and it was found that the discharge characteristics were effective at 0.3 m 2 / g or more. . Also, when the specific surface area is the same, the larger the average particle size, the lower the discharge characteristics, but the average particle size is 60 μm.
If it was below, there was no problem in actual specifications.

【0021】以上のように水素吸蔵合金粉末中のコバル
トの含有量が5wt%以下であり、BET法による比表面
積が0.3m2/g以上0.7m2/g以下、平均粒子径
が5〜60μmとすることにより、サイクル寿命におい
て長寿命であり、かつ放電特性にも優れた、低コストな
ニッケル・水素蓄電池を提供できる。
As described above, the content of cobalt in the hydrogen storage alloy powder is 5 wt% or less, the specific surface area by the BET method is 0.3 m 2 / g or more and 0.7 m 2 / g or less, and the average particle diameter is 5 wt% or less. By setting the thickness to μ60 μm, a low-cost nickel-hydrogen storage battery having a long cycle life and excellent discharge characteristics can be provided.

【0022】なお本実施例では水素吸蔵合金としてMm
Ni4.0Mn0.4Al0.3Co0.4を用いたが、希土類元素
およびコバルトを含んでCaCu5型の結晶構造を有
し、コバルトの含有量が5wt%以下、BET法による比
表面積が0.3m2/g以上0.7m2/g以下、平均粒
子径が5〜60μmの粉末であれば、いかなるタイプの
水素吸蔵合金を用いてもほぼ同様の効果が得られること
は言うまでもない。
In this embodiment, the hydrogen storage alloy is Mm
Although Ni 4.0 Mn 0.4 Al 0.3 Co 0.4 was used, it had a CaCu 5 type crystal structure containing a rare earth element and cobalt, had a cobalt content of 5 wt% or less, and had a specific surface area of 0.3 m 2 / BET method. It goes without saying that almost the same effect can be obtained by using any type of hydrogen storage alloy as long as the powder has a particle size of at least 0.7 m 2 / g and an average particle diameter of 5 to 60 μm.

【0023】[0023]

【発明の効果】以上のように本発明によれば、ニッケル
酸化物を主体とする正極と、活物質である水素を電気化
学的に吸蔵・放出することが可能な水素吸蔵合金粉末を
主構成材料とする負極と、セパレータと、アルカリ電解
液とからなるニッケル・水素蓄電池において、用いる水
素吸蔵合金粉末は、希土類元素、コバルトを含んでCa
Cu5型の結晶構造を有し、コバルトの含有量が5wt%
以下、BET法による比表面積が0.3m2/g以上
0.7m2/g以下、平均粒子径が5〜60μmとする
ことにより、サイクル寿命、放電特性の両方に優れた、
低コストなニッケル・水素蓄電池を提供できる。
As described above, according to the present invention, a positive electrode mainly composed of nickel oxide and a hydrogen storage alloy powder capable of electrochemically storing and releasing hydrogen as an active material are mainly constituted. In a nickel-hydrogen storage battery composed of a negative electrode as a material, a separator, and an alkaline electrolyte, the hydrogen storage alloy powder used contains a rare earth element, cobalt containing Ca.
It has a Cu 5 type crystal structure with a cobalt content of 5 wt%
Hereinafter, when the specific surface area by the BET method is 0.3 m 2 / g or more and 0.7 m 2 / g or less and the average particle diameter is 5 to 60 μm, both cycle life and discharge characteristics are excellent.
A low-cost nickel-metal hydride storage battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における密閉型ニッケル・水素
蓄電池の負極水素吸蔵合金粉末のBET比表面積とサイ
クル寿命との関係を示す図
FIG. 1 is a diagram showing the relationship between the BET specific surface area and the cycle life of a negative electrode hydrogen storage alloy powder of a sealed nickel-metal hydride storage battery according to an example of the present invention.

【図2】同蓄電池の負極水素吸蔵合金粉末のBET比表
面積と20℃に対する0℃の放電容量比率との関係を示
す図
FIG. 2 is a diagram showing a relationship between a BET specific surface area of a negative electrode hydrogen storage alloy powder of the storage battery and a discharge capacity ratio of 0 ° C. to 20 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−137361(JP,A) 特開 平5−314971(JP,A) 特開 平7−73880(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/38 H01M 10/30 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hideo Kamiya 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-137361 (JP, A) JP-A-5- 314971 (JP, A) JP-A-7-73880 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/38 H01M 10/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ニッケル酸化物を主体とする正極と、活物
質である水素を電気化学的に吸蔵・放出することが可能
な水素吸蔵合金粉末を主構成材料とする負極と、セパレ
ータと、アルカリ電解液とからなるニッケル・水素蓄電
池であって、前記水素吸蔵合金粉末は、希土類元素およ
びコバルトを含んでCaCu5型の結晶構造を有し、合
金中のコバルトの含有量が5wt%以下、BET法による
比表面積が0.3m2/g以上0.7m2/g以下、平均
粒子径が5〜60μmであることを特徴とするニッケル
・水素蓄電池。
A positive electrode mainly composed of nickel oxide; a negative electrode mainly composed of a hydrogen storage alloy powder capable of electrochemically storing and releasing hydrogen as an active material; a separator; a nickel-metal hydride battery composed of an electrolytic solution, wherein the hydrogen storage alloy powder has a crystal structure of CaCu 5 type include rare earth elements and cobalt, less 5 wt% content of cobalt in the alloy, BET A nickel-hydrogen storage battery having a specific surface area of 0.3 m 2 / g or more and 0.7 m 2 / g or less and an average particle diameter of 5 to 60 μm by a method.
JP28831595A 1995-11-07 1995-11-07 Nickel-metal hydride battery Expired - Lifetime JP3198896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28831595A JP3198896B2 (en) 1995-11-07 1995-11-07 Nickel-metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28831595A JP3198896B2 (en) 1995-11-07 1995-11-07 Nickel-metal hydride battery

Publications (2)

Publication Number Publication Date
JPH09129227A JPH09129227A (en) 1997-05-16
JP3198896B2 true JP3198896B2 (en) 2001-08-13

Family

ID=17728594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28831595A Expired - Lifetime JP3198896B2 (en) 1995-11-07 1995-11-07 Nickel-metal hydride battery

Country Status (1)

Country Link
JP (1) JP3198896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181117B2 (en) 2019-02-15 2022-11-30 Juki株式会社 sewing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011780A (en) * 1999-06-29 2001-01-16 Fukuda Metal Foil & Powder Co Ltd Gold color powder for print dyeing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181117B2 (en) 2019-02-15 2022-11-30 Juki株式会社 sewing machine

Also Published As

Publication number Publication date
JPH09129227A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
KR920010422B1 (en) Electrode and method of storage hidrogine
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2926734B2 (en) Alkaline storage battery using hydrogen storage alloy
JP3198896B2 (en) Nickel-metal hydride battery
EP1111700A2 (en) Alkaline storage battery
US6455195B1 (en) Hydrogen absorbing alloy electrodes and nickel-metal hydride batteries using the same
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JPH0765833A (en) Hydrogen storage alloy electrode
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
EP0566055B1 (en) A hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP2679441B2 (en) Nickel-metal hydride battery
JP2001266860A (en) Nickel hydrogen storage battery
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2001196092A (en) Sealed nickel-hydrogen battery and manufacturing method therefor
JPH0850919A (en) Manufacture of nickel metal hydride cell
JP2000243387A (en) Hydrogen storage alloy electrode and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

EXPY Cancellation because of completion of term