JPS63264867A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPS63264867A
JPS63264867A JP62097824A JP9782487A JPS63264867A JP S63264867 A JPS63264867 A JP S63264867A JP 62097824 A JP62097824 A JP 62097824A JP 9782487 A JP9782487 A JP 9782487A JP S63264867 A JPS63264867 A JP S63264867A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
alloy
discharge
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62097824A
Other languages
Japanese (ja)
Other versions
JPH0693358B2 (en
Inventor
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Yasuko Ito
康子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62097824A priority Critical patent/JPH0693358B2/en
Publication of JPS63264867A publication Critical patent/JPS63264867A/en
Publication of JPH0693358B2 publication Critical patent/JPH0693358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the charge-discharge cycle life and to decrease the self- discharge of an electrode by applying the kneaded material of the powder obtained by cooling a molten hydrogen storage alloy by a liquid quenching method and by crushing the alloy and a binder to an electrode supporter or filling the kneaded material in the electrode supporter, and immersing in high temperature concentrated alkaline solution, then forming an electrode. CONSTITUTION:Molten hydrogen storage alloy is cooled by liquid quenching method, then the alloy is crushed. The hydrogen storage alloy powder obtained is kneaded with a binder and the kneaded material is applied to or filled in an electrode supporter, then immersed in high temperature concentrated alkaline solution, washed, and dried to obtain an electrode. The electrode is pressed so as to have a desired thickness. By this process, the uniform part of CaCu5 type crystal which is effective in absorption and desorption of hydrogen in the hydrogen storage alloy is increased and the performance of a battery is improved. The electrode in which charge-discharge cycle life is long and self- discharge rate is low can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル水素蓄電池等のアルカリ蓄電池の負
極に用いる水素吸蔵電極の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a hydrogen storage electrode used as a negative electrode of an alkaline storage battery such as a nickel-metal hydride storage battery.

従来の技術 従来この種の電極はまだ実用化には至っていないが、そ
の製法としてつぎのような方法が提案されている。すな
わち、アーク溶解炉や高周波溶解炉により水素吸蔵合金
を作製し、その合金を不活性ガス中又は真空中で950
〜1260℃の温度範囲で熱処理した後、粉砕し、その
粉末をアルカリ水溶液中で表面処理を施し、さらにその
後、少なくとも水洗、乾燥後1合金粉末を結着剤と共に
電極支持体に塗着または充填した後、加圧一体化する工
程により水素吸蔵電極を作製していた(特開昭61−2
85658号公報)。
BACKGROUND OF THE INVENTION Although this type of electrode has not yet been put into practical use, the following methods have been proposed for its production. That is, a hydrogen storage alloy is produced using an arc melting furnace or a high frequency melting furnace, and the alloy is heated to 950% in an inert gas or vacuum.
After heat treatment at a temperature range of ~1260°C, the powder is pulverized and subjected to surface treatment in an alkaline aqueous solution, and then at least washed with water and after drying, the 1 alloy powder is applied or filled onto an electrode support together with a binder. After that, hydrogen storage electrodes were fabricated by a process of pressurizing and integrating them (Japanese Patent Laid-Open No. 61-2
85658).

発明が解決しようとする問題点 このような従来提案されている製造方法では、水素吸蔵
電極を負極に用い、ニッケル正極と組み合わせて密閉形
ニッケル水素蓄電池を構成した場合、充放電サイクル寿
命が短く、自己放電が大きいという問題があった。
Problems to be Solved by the Invention In such conventionally proposed manufacturing methods, when a hydrogen storage electrode is used as a negative electrode and combined with a nickel positive electrode to form a sealed nickel-metal hydride storage battery, the charge/discharge cycle life is short; There was a problem with large self-discharge.

本発明はこのような問題点を同時に解決するもので、簡
単な製造法により、充放電サイクル寿命を向上させ、さ
らに自己放電を低減させることを目的とする。
The present invention aims to solve these problems at the same time, and aims to improve the charge/discharge cycle life and further reduce self-discharge using a simple manufacturing method.

問題点を解決するだめの手段 この問題点を解決するために本発明は、水素吸蔵合金の
溶湯を液体急冷法で冷却した後、微粉砕する工程と、粉
末と結着剤の混練物を電極支持体に塗着もしくは充填す
る工程と、高温高濃度のアルカリ中に浸漬する工程と水
洗、乾燥する工程。
Means to Solve the Problem In order to solve this problem, the present invention involves a step of cooling the molten hydrogen storage alloy by a liquid quenching method and then pulverizing it, and applying the kneaded mixture of powder and binder to an electrode. The process of coating or filling the support, the process of immersing it in high temperature and high concentration alkali, and the process of washing with water and drying.

もしくは前記粉末を高温高濃度のアルカリ中に浸漬する
工程と、水洗乾燥の後、結着剤と混練した後に電極支持
体に塗着もしくは充填したのち、乾燥する工程とを有し
、前記電極に加圧操作を施し。
Alternatively, the powder may be immersed in a high-temperature, high-concentration alkali solution, washed with water, dried, kneaded with a binder, applied to or filled with an electrode support, and then dried. Perform pressurized operation.

所望の厚さにする工程を有するものである。It has a step of making it a desired thickness.

作用 この製造法によシ、水素吸蔵合金における水素の吸蔵・
放出に有効なCaCu5型結晶の均質部分が増大する結
果、種々の電池特性が改善される。
Effect This production method allows hydrogen storage and absorption in hydrogen storage alloys.
As a result of increasing the homogeneous portion of CaCu type 5 crystals available for release, various cell properties are improved.

水素吸蔵合金中に水素の吸蔵・放出に無効な不均質の合
金相は、アルカリ電解液中で充放電を繰り返すことによ
シ溶解・析出し、負極の容量を減少させる。その結果、
充放電サイクル寿命が短くなる。また、金属が電解液中
に溶解すると、この金属イオンが電池の自己放電速度を
増大させる。以上のことにより、液体急冷法で均質な合
金を作製し、さらにアルカリ処理を施すことにより水素
吸蔵合金の均質性の良好な水素吸蔵合金粉末から成る水
素吸蔵電極を用いることによシ、充放電サイクル寿命が
良好で自己放電の少ない蓄電池が得られることとなる。
The heterogeneous alloy phase in the hydrogen storage alloy, which is ineffective in storing and desorbing hydrogen, dissolves and precipitates through repeated charging and discharging in an alkaline electrolyte, reducing the capacity of the negative electrode. the result,
The charge/discharge cycle life will be shortened. Also, when metal is dissolved in the electrolyte, the metal ions increase the self-discharge rate of the battery. As a result of the above, a homogeneous alloy is produced by the liquid quenching method, and further alkali treatment is performed to achieve charging and discharging by using a hydrogen storage electrode made of a hydrogen storage alloy powder with good homogeneity. A storage battery with good cycle life and little self-discharge can be obtained.

実施例 第1図は本発明の一実施例による蓄電池の充放電サイク
ル数と放電容量の関係図である。液体急冷法には、水素
吸蔵合金の溶湯を作成する高周波による溶解部と1合金
の溶湯を急冷するためのアモルファス合金を作成するの
と同様の、高速で回転する双ロール法(冷却速度10〜
10 ″に/5ee)を用いた。市販のミツシュメタル
Mu (希土類元素の混合物1例えばC1546wt%
、 La 30wt%。
Embodiment FIG. 1 is a diagram showing the relationship between the number of charge/discharge cycles and the discharge capacity of a storage battery according to an embodiment of the present invention. The liquid quenching method includes a melting section using high frequency to create a molten hydrogen storage alloy, and a twin roll method rotating at high speed (cooling rate 10 ~
10″/5ee) was used.Commercially available Mitshu Metal Mu (mixture of rare earth elements 1 e.g. C1546wt%) was used.
, La 30wt%.

Nd5wt%、他の希土類元素20wt%) とNi。5 wt% of Nd, 20 wt% of other rare earth elements) and Ni.

人l 、 Mn 、 Coの各試料をMmNi555M
nl14人”[L3”(L75の組成比に秤量し混合し
た。これらの試料を前記した双ロール法により急冷の可
能な高周波炉で、合金を溶解させ、高速で回転する双ロ
ール間に合金の溶湯を流し込み水素吸蔵合金(MmNi
、5Mnl14kl 、、 Coニア5)の薄片を得た
。この薄片をボールミルで38μm以下の粉末に粉砕し
、1.5wt%のポリビニルアルコール水溶液と混合し
、ペースト状とし1発泡ニッケル多孔体に充填、乾燥し
電極を構成した。ついで、この電極を比重1.30のK
OH水溶液中に80℃で12時間浸漬し、アルカリ水溶
液中で処理した後、水洗、乾燥後、加圧し負極に用いる
本発明の水素吸蔵電極を得た。従来例として、高周波溶
解炉で合金を溶解した後。
Each sample of Ni, Mn, and Co was treated with MmNi555M.
nl14 people were weighed and mixed to a composition ratio of "L3" (L75).These samples were melted in a high frequency furnace capable of rapid cooling using the twin roll method described above, and the alloy was heated between twin rolls rotating at high speed. Pour the molten metal into hydrogen storage alloy (MmNi
, 5Mnl14kl, and Conia 5) were obtained. This flake was ground into a powder of 38 μm or less using a ball mill, mixed with a 1.5 wt % polyvinyl alcohol aqueous solution, made into a paste, filled into a 1-foamed nickel porous body, and dried to form an electrode. Next, this electrode was heated to K with a specific gravity of 1.30.
It was immersed in an OH aqueous solution at 80° C. for 12 hours, treated in an alkaline aqueous solution, washed with water, dried, and then pressurized to obtain a hydrogen storage electrode of the present invention to be used as a negative electrode. As a conventional example, after melting the alloy in a high frequency melting furnace.

急冷せずに自然冷却する通常の合金製造法で作製した合
金を前記と同様な方法に工す水素吸蔵電極を作製した。
A hydrogen storage electrode was fabricated using a method similar to that described above using an alloy fabricated using a normal alloy manufacturing method that involves natural cooling without rapid cooling.

次に、酸化ニッケル正極として公知の方法で得られた発
泡式ニッケル正極(理論充填容量830〜870!II
Ah)を用いセパレータにはポリアミドの不織布、電解
液に水酸化リチウムを40t/l溶解した比重1.30
のKOH水溶液を使用し、前記負極と組み合わせ、公称
容量800 mAhの単3サイズ(ムムサイズ)の密閉
形ニッケルー水素蓄電池を構成した。これらの電池を2
0℃の一定温度下で1サイクル目の充電を0.1 t:
mムで15時間、2サイクル目以後は’Aanムで4.
6時間行った。放電は2サイクル目までを0.2譚人で
、3サイクル目以後は0.5cmムとじ、終止電圧は1
.Ovとした。
Next, a foamed nickel positive electrode obtained by a known method as a nickel oxide positive electrode (theoretical filling capacity 830-870! II
Ah), a polyamide non-woven fabric for the separator, and a specific gravity of 1.30 with 40t/l of lithium hydroxide dissolved in the electrolyte.
A KOH aqueous solution was used and combined with the negative electrode to construct a sealed nickel-metal hydride storage battery of AA size (Mumu size) with a nominal capacity of 800 mAh. These batteries are 2
The first cycle of charging is 0.1 t at a constant temperature of 0°C:
mm for 15 hours, and after the 2nd cycle, 'Aanmu' for 4.
I went for 6 hours. Discharge is 0.2 cm until the second cycle, 0.5 cm after the third cycle, and the final voltage is 1.
.. It was Ov.

第1図から明らかなように、従来例の液体急冷法により
作製していない合金粉末を負極に用いた電池は200サ
イクルの充放電サイクルを繰り返すことによシ放電容量
が初期容量の50%に低下する。これに対し、本発明の
液体急冷法により作製した合金粉末を負極に用いた電池
は450サイクルの充放電を繰り返しても放電容量はほ
とんど低下しない。これは1通常の高周波溶解法により
作製した合金粉末を用いた負極は、X線回折法などによ
る解析で結晶の均質性が良好でないことが明らかで、水
素の吸蔵・放出に有効なCaCu5型結晶以外の相が充
放電を繰り返すことにより、溶解・析出し、負極の充電
効率が低下し、20oサイクルの充放電を繰り返すこと
により放電容量が初期の60%に劣化する。これに対し
、急冷法で作製した合金粉末を負極に用いた本発明の電
池は、負極の水素吸蔵合金粉末の均質性が非常に良好で
あり、充放電を繰シ返すことによシ、CaCu5型の結
晶構造を有しない合金相の金属Go 、 Mn 、ムl
の溶解・析出が非常に少なく、長寿命の電池が得られる
As is clear from Figure 1, a battery using an alloy powder that is not produced by the conventional liquid quenching method for the negative electrode has a discharge capacity of 50% of its initial capacity after 200 charge/discharge cycles. descend. On the other hand, a battery using the alloy powder produced by the liquid quenching method of the present invention as a negative electrode hardly decreases in discharge capacity even after 450 charging/discharging cycles. This is because (1) it is clear from analysis using X-ray diffraction methods that the negative electrode using alloy powder produced by the normal high-frequency melting method does not have good crystal homogeneity; By repeating charging and discharging, the other phases dissolve and precipitate, and the charging efficiency of the negative electrode decreases, and by repeating charging and discharging at 20° cycles, the discharge capacity deteriorates to 60% of the initial value. On the other hand, in the battery of the present invention in which the alloy powder produced by the rapid cooling method was used for the negative electrode, the homogeneity of the hydrogen storage alloy powder in the negative electrode was very good, and by repeated charging and discharging, CaCu5 Alloy phase metals that do not have a type crystal structure Go, Mn, Mul
There is very little dissolution and precipitation of , and a long-life battery can be obtained.

第2図は46℃での保存期間と容量維持率との関係を示
す図である。第2図から明らかなように。
FIG. 2 is a diagram showing the relationship between storage period at 46° C. and capacity retention rate. As is clear from Figure 2.

本発明の製造法により作製した水素吸蔵電極を負極に用
いた電池の自己放電は、45℃で2週間充電状態で保存
した場合、60%の容量維持率である。しかしながら、
従来例の電池の自己放電は、12%の容量維持率であシ
、自己放電は非常に大きい。前述したように、急冷法で
作製していない合金を負極に用いた電池は、CaCu5
型の結晶相以外の相が存在するために、Go 、 Mn
 、ムl が充放電の繰シ返しにより溶解したシ、高温
で放置することによシ溶解するため、電池中の不純物量
が増大し、自己放電速度が増加する。これに対し、本発
明の製造法で作製した電極を負極に用いた電池は、負極
の水素吸蔵合金からのGo、Mn、ム1等の溶解が少力
いため、電池中の不純物が非常に少なくなるため、自己
放電速度は減少する。
Self-discharge of a battery using a hydrogen storage electrode produced by the production method of the present invention as a negative electrode has a capacity retention rate of 60% when stored in a charged state at 45° C. for two weeks. however,
The self-discharge of the conventional battery has a capacity retention rate of 12%, and the self-discharge is extremely large. As mentioned above, a battery using an alloy that is not made by the rapid cooling method for the negative electrode is made of CaCu5
Because there is a phase other than the crystalline phase of Go, Mn
, ml dissolves due to repeated charging and discharging, and when left at high temperatures, the amount of impurities in the battery increases and the self-discharge rate increases. On the other hand, in a battery using the electrode produced by the manufacturing method of the present invention as a negative electrode, the dissolution of Go, Mn, Mu1, etc. from the hydrogen storage alloy of the negative electrode is small, so there are very few impurities in the battery. Therefore, the self-discharge rate decreases.

なお、本実施例では液体急冷法で水素吸蔵合金を作製し
た後、粉砕し、その粉末を発泡ニッケル多孔度に充填し
た後、アルカリ水溶液中で処理する工程によシミ極を作
製したが、液体急冷法で作製した合金を粉砕した後、ア
ルカリ水溶液中で処理し、電極を構成した場合も同様な
効果が得られる。
In this example, a hydrogen storage alloy was produced by a liquid quenching method, then crushed, and the powder was filled into foamed nickel porosity, and a stain electrode was produced by a process of treating it in an alkaline aqueous solution. A similar effect can be obtained when an electrode is formed by pulverizing an alloy produced by the rapid cooling method and then treating it in an alkaline aqueous solution.

また、液体急冷法で冷却した合金を微粉砕した後に、電
極の状態もしくは粉末で行うアルカリ処理は、46〜1
oO℃で比重1.10〜164oのアルカリ水溶液中で
行なえば、水素吸蔵合金の表面に酸化物や水酸化物から
成る被膜を形成し、特性の優れた水素吸蔵電極が得られ
る。また、粉末の平均粒子径は10〜60μmの範囲が
好ましく。
In addition, after finely pulverizing the alloy cooled by the liquid quenching method, alkali treatment is performed in the form of an electrode or powder.
When carried out in an alkaline aqueous solution having a specific gravity of 1.10 to 164 degrees Celsius, a film made of oxide or hydroxide is formed on the surface of the hydrogen storage alloy, and a hydrogen storage electrode with excellent properties can be obtained. Moreover, the average particle diameter of the powder is preferably in the range of 10 to 60 μm.

60μm以上になればサイクル寿命が短ぐなシ、10μ
m以下になると発火等の安全性の問題がある。
If it is 60μm or more, the cycle life will be shortened, 10μm or more.
If it is less than m, there are safety problems such as ignition.

なお、本実施例では液体急冷法で水素吸蔵合金を製造し
た場合も非晶質でない合金系について示したが、Zr−
Ni系、Ti−Ni系等の液体急冷法で作製した場合に
非晶質合金でも同様な効果が得られる。
In addition, in this example, an alloy system that is not amorphous is shown even when a hydrogen storage alloy is manufactured by a liquid quenching method, but Zr-
Similar effects can be obtained with amorphous alloys such as Ni-based and Ti-Ni-based alloys produced by the liquid quenching method.

発明の効果 以上のように本発明によれば充放電サイクル寿命特性が
良好で、自己放電の少ない褒れた電池を提供できるとい
う効果が得られる。
Effects of the Invention As described above, according to the present invention, it is possible to provide an excellent battery with good charge/discharge cycle life characteristics and little self-discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で示した蓄電池の放電容量と充
放電サイクル数との関係を示す図、第2図は実施例で示
した電池における保存期間と容量維持率の関係を示す図
である。 代理人の氏名 弁理士 中 尾 敏 男 はが1名承を
意f(ηA)t)        ヵ第2図 保存剛VIl(111)
FIG. 1 is a diagram showing the relationship between the discharge capacity and the number of charge/discharge cycles of the storage battery shown in the example of the present invention, and FIG. 2 is a diagram showing the relationship between the storage period and capacity retention rate of the battery shown in the example. It is. Name of agent: Patent attorney Toshio Nakao (Only one person is accepted) (Fig. 2) (111)

Claims (3)

【特許請求の範囲】[Claims] (1)可逆的に水素を吸蔵・放出する水素吸蔵合金の溶
湯を液体急冷法で冷却した後、微粉砕する工程と、粉末
と結着剤の混練物を電極支持体に塗着もしくは充填する
工程と、高温高濃度のアルカリ中に浸漬する工程と水洗
、乾燥する工程もしくは前記粉末を高温高濃度のアルカ
リ中に浸漬する工程と、水洗乾燥の後、結着剤と混練し
た後に電極支持体に塗着もしくは充填したのち、乾燥す
る工程とを有し、前記電極に加圧操作を施し、所望の厚
さにする工程を有することを特徴とする水素吸蔵電極の
製造法。
(1) After cooling the molten hydrogen storage alloy that reversibly absorbs and releases hydrogen using a liquid quenching method, pulverizing it finely, and applying or filling the electrode support with a kneaded mixture of powder and binder. A step of immersing the powder in a high-temperature, high-concentration alkali, and a step of washing and drying, or a step of immersing the powder in a high-temperature, high-concentration alkali, and after washing and drying, kneading with a binder, and then forming an electrode support. 1. A method for producing a hydrogen storage electrode, comprising a step of coating or filling the electrode with the hydrogen absorbing material, and then drying the electrode, and applying pressure to the electrode to obtain a desired thickness.
(2)粉砕は平均粒径10〜60μmの範囲であること
を特徴とする特許請求の範囲第1項記載の水素吸蔵電極
の製造法。
(2) The method for producing a hydrogen storage electrode according to claim 1, wherein the pulverization is performed to have an average particle size in the range of 10 to 60 μm.
(3)電極又は粉末を浸漬するのに使用するアルカリ液
は、比重1.10〜1.40で45〜100℃の範囲で
あることを特徴とする特許請求の範囲第1項記載の水素
吸蔵電極の製造法。
(3) The hydrogen storage storage according to claim 1, wherein the alkaline liquid used for immersing the electrode or powder has a specific gravity of 1.10 to 1.40 and a temperature of 45 to 100°C. Electrode manufacturing method.
JP62097824A 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0693358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097824A JPH0693358B2 (en) 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097824A JPH0693358B2 (en) 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63264867A true JPS63264867A (en) 1988-11-01
JPH0693358B2 JPH0693358B2 (en) 1994-11-16

Family

ID=14202476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097824A Expired - Lifetime JPH0693358B2 (en) 1987-04-21 1987-04-21 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0693358B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301971A (en) * 1989-05-16 1990-12-14 Sanyo Electric Co Ltd Manufacture of metal-hydrogen alkaline storage battery
US5629000A (en) * 1994-11-25 1997-05-13 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same
US5654115A (en) * 1992-09-14 1997-08-05 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy for battery, method of manufacturing the same, and secondary nickel-metal hydride battery
US5688341A (en) * 1993-10-08 1997-11-18 Sanyo Electric Co. Ltd Hydrogen-absorbing alloy electrode and method for evaluating hydrogen-absorbing alloys for electrode
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115158A (en) * 1983-10-28 1985-06-21 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Electrode for electrochemical cell, method of producing sameelectrode, electrochemical cell having said electrode and assembly of same cell
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115158A (en) * 1983-10-28 1985-06-21 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Electrode for electrochemical cell, method of producing sameelectrode, electrochemical cell having said electrode and assembly of same cell
JPS61285658A (en) * 1985-06-12 1986-12-16 Matsushita Electric Ind Co Ltd Manufacture of hydrogen occlusion electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301971A (en) * 1989-05-16 1990-12-14 Sanyo Electric Co Ltd Manufacture of metal-hydrogen alkaline storage battery
JPH0644490B2 (en) * 1989-05-16 1994-06-08 三洋電機株式会社 Metal-hydrogen alkaline storage battery manufacturing method
US5654115A (en) * 1992-09-14 1997-08-05 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy for battery, method of manufacturing the same, and secondary nickel-metal hydride battery
US5688341A (en) * 1993-10-08 1997-11-18 Sanyo Electric Co. Ltd Hydrogen-absorbing alloy electrode and method for evaluating hydrogen-absorbing alloys for electrode
US5629000A (en) * 1994-11-25 1997-05-13 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries

Also Published As

Publication number Publication date
JPH0693358B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
JPH0773878A (en) Manufacture of metal hydride electrode
JPH0789488B2 (en) Method for manufacturing hydrogen storage electrode
JPS63264867A (en) Manufacture of hydrogen storage electrode
WO2020151154A1 (en) High-capacity long-life la-mg-ni negative electrode hydrogen storage material for use in secondary rechargeable nickel-metal hydride battery, and preparation method therefor
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JP3432870B2 (en) Method for producing metal hydride electrode
JPS6215760A (en) Manufacture of hydrogen-occlusion electrode
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3432989B2 (en) Method for manufacturing metal hydride storage battery
JP2982195B2 (en) Manufacturing method of battery electrode
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3198896B2 (en) Nickel-metal hydride battery
JPH04328252A (en) Hydrogen storage alloy electrode
JPH01132049A (en) Hydrogen storage electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS61203561A (en) Battery electrode
JP3306154B2 (en) Hydrogen storage alloy and method for producing the same
JP3322449B2 (en) Method for producing metal hydride electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 13