JPS61285658A - Manufacture of hydrogen occlusion electrode - Google Patents

Manufacture of hydrogen occlusion electrode

Info

Publication number
JPS61285658A
JPS61285658A JP60127408A JP12740885A JPS61285658A JP S61285658 A JPS61285658 A JP S61285658A JP 60127408 A JP60127408 A JP 60127408A JP 12740885 A JP12740885 A JP 12740885A JP S61285658 A JPS61285658 A JP S61285658A
Authority
JP
Japan
Prior art keywords
alloy
electrode
hydrogen storage
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60127408A
Other languages
Japanese (ja)
Other versions
JPH0789488B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60127408A priority Critical patent/JPH0789488B2/en
Publication of JPS61285658A publication Critical patent/JPS61285658A/en
Publication of JPH0789488B2 publication Critical patent/JPH0789488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the discharge characteristic while to prevent deterioration of performance due to micro shortcircuit phenomena thus to lengthen the cycle life by constituting with process for crushing hydrogen occlusion alloy after thermal processing, process for surface treating with alkali aqueous solution and process for pressure integrating the alloy powder at least applied with water washing and drying with an electrode support together with binding agent. CONSTITUTION:Process for thermally treating hydrogen occlusion alloy which will reversibly occlude/discharge hydrogen under the temperature in the range of 950-1,250 deg.C then crushing finely and process for surface treating the crushed alloy powder with alkali aqueous solution are provided. While process for pressure integrating the alloy powder at least applied with water washing and drying together with binding agent (macromolecular compound) through an electrode support (foam metal, punching metal, expanded metal, etc.) is provided. Hydrogen occlusion alloy composed of 30-34wt% or rare earth metal (more than one kind of La, Ce, Nd, Sm, Pr, etc.), 40-60wt% of Ni and 6-30wt% of other metal is effective.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は負極材料として水素を可逆的に吸蔵・放出する
合金を用いた水素吸蔵電極の製造方法に関するもので、
さらに詳しくは、無公害で高エネルギー密度のアルカリ
蓄電池を提供するものである0 従来の技術 従来の鉛−酸化鉛蓄電池、ニッケルーカドミウム蓄電池
などの電池は酸化物電極を持つために、重量または容積
の単位当シのエネルギー密度が比較的低い。そこで、エ
ネルギー貯蔵容量の向上を図るために、負極として可逆
的に水素を吸蔵・放出する水素吸蔵合金を用い、吸蔵し
た水素を活物質とする電極が提案されている。たとえば
特開昭51−13934号公報には水素吸蔵合金として
、L a N i 5 y L a Co 5 などが
示されている。さらには、Laの部分に他の金属、Ni
、Coの部分にも他の金属で置換された多元系合金も数
多く提案されているが、これを電池として用いた場合に
は高温における放電特性、サイクル寿命などに多くの改
善すべき課題を持っている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a hydrogen storage electrode using an alloy that reversibly stores and desorbs hydrogen as a negative electrode material.
More specifically, it provides a non-polluting, high-energy-density alkaline storage battery.0 Prior Art Because conventional batteries such as lead-lead oxide batteries and nickel-cadmium storage batteries have oxide electrodes, their weight or volume The energy density per unit is relatively low. Therefore, in order to improve the energy storage capacity, an electrode has been proposed in which a hydrogen storage alloy that reversibly stores and releases hydrogen is used as a negative electrode, and the stored hydrogen is used as an active material. For example, JP-A-51-13934 discloses L a N i 5 y L a Co 5 as a hydrogen storage alloy. Furthermore, other metals, Ni
Many multi-component alloys in which Co is replaced with other metals have been proposed, but when used in batteries, there are many issues that need to be improved, such as discharge characteristics at high temperatures and cycle life. ing.

発明が解決しようとする問題点 上記合金において、Laの部分に他の金属を置換したシ
、または、Ni、Co、  の部分に他の金属で置換し
たシする多元素合金は溶解時の条件によっては、合金の
内部に歪を作ったり、均質性に優れた合金相になシにく
い場合もある。この事は水・素解離圧力の平坦性にも現
われ、水素を解離する時の圧力傾斜が大きくなる。この
現象は電池の電極とした場合、放電性能の電圧平坦性に
も影響を及ぼし、放電性能が悪くなる問題点を有する。
Problems to be Solved by the Invention In the above alloys, multi-element alloys in which La is replaced with other metals, or Ni, Co, and other metals are replaced depending on the melting conditions. In some cases, this may create strain inside the alloy, or it may be difficult to form an alloy phase with excellent homogeneity. This also appears in the flatness of the water/element dissociation pressure, and the pressure gradient when hydrogen is dissociated becomes large. When used as a battery electrode, this phenomenon has the problem of affecting the voltage flatness of discharge performance, resulting in poor discharge performance.

また、前記の多元系合金を用いて電極を構成すると不均
質な部分の金属が電池の充・放電のくシがえしによって
アルカリ水溶液(電解液)中に溶解したり、また溶解し
た金属が析出したりする。この溶解・析出の繰り返しに
よって、金属がセパレータを通して正極と負極間で微少
短絡を発生し、電池特性を著しく低下させる。本発明は
この不均質な部分を完全に除き、放電特性の向上と微小
短絡現象による性能低下を防止し、サイクル寿命の長い
水素吸蔵電極を製造することにある。この様に上記問題
点を高温度とアルカリ処理工程とを併用することにより
、両方の相乗効果を発揮させることを目的とするもので
ある。
Furthermore, when an electrode is constructed using the above-mentioned multi-component alloy, the metal in the heterogeneous portion may dissolve into the alkaline aqueous solution (electrolyte) due to the charging and discharging of the battery, or the dissolved metal may dissolve into the alkaline aqueous solution (electrolyte). It precipitates out. This repeated dissolution and precipitation causes the metal to pass through the separator and cause a slight short circuit between the positive and negative electrodes, significantly degrading the battery characteristics. The object of the present invention is to completely eliminate this heterogeneous portion, improve discharge characteristics, prevent performance deterioration due to micro short circuit phenomena, and manufacture a hydrogen storage electrode with a long cycle life. In this manner, the objective is to solve the above-mentioned problems by using both high temperature and alkali treatment steps in combination to achieve a synergistic effect of both.

問題点を解決するための手段 本発明は水素を可逆的に吸蔵・放出する水素吸蔵合金を
950〜1250℃の温度範囲で熱処理した後、この合
金を細かく粉砕する工程と、前記粉砕した合金粉末をア
ルカリ水溶液で表面処理(浸漬、洗浄)する工程とを有
し、さらにその後少なくとも水洗と乾燥を施した合金粉
末を結着剤(高分子化合物)と共に電極支持体(発泡状
金属。
Means for Solving the Problems The present invention provides a step of heat-treating a hydrogen storage alloy that reversibly stores and releases hydrogen at a temperature range of 950 to 1250°C, and then finely pulverizing the alloy, and a step of finely pulverizing the alloy, and a step of finely pulverizing the pulverized alloy powder. surface treatment (immersion, washing) with an alkaline aqueous solution, and then at least washing and drying the alloy powder together with a binder (polymer compound) and an electrode support (metal foam).

パンチングメタル、エキスバンドメタルなど)を介して
加圧一体化する工程とからなる水素吸蔵電極の製造方法
を提供するものである。
The present invention provides a method for manufacturing a hydrogen storage electrode, which comprises a step of pressurizing and integrating the electrodes via a punched metal, an expanded metal, etc.

さらに本発明では前記の高温熱処理を施した水素吸蔵合
金を細かく粉砕した後、結着剤と共に電極支持体を介し
て加圧一体化する工程と、一体化した電極基板をアルカ
リ水溶液で含浸(浸漬)処理する工程を有し、その後、
少なくとも水洗と乾燥を行なう工程とからなることを特
徴とする水素吸蔵電極の製造方法である。
Furthermore, the present invention includes a step of finely pulverizing the hydrogen storage alloy that has been subjected to the high-temperature heat treatment, and then pressurizing and integrating the hydrogen storage alloy with a binder through an electrode support, and impregnating (immersing) the integrated electrode substrate with an aqueous alkaline solution. ), and then,
This is a method for manufacturing a hydrogen storage electrode characterized by comprising at least the steps of washing with water and drying.

作  用 前記のLaNi   LaCo  はAB5型の曲型的
5P       5 な金属間化合物構造をとる。しかし、La、Ni。
Function The above-mentioned LaNi LaCo has an AB5-shaped curved 5P 5 intermetallic compound structure. However, La, Ni.

Coを他の金属に置換した、いわゆる多元系合金を形成
する場合、その合金の溶解時において不均質な部分も含
有し、水素解離圧力の一定した曲線を示さなく、やや大
きい傾斜を持って推移する。
When a so-called multi-component alloy is formed by replacing Co with other metals, the alloy contains inhomogeneous parts when melted, and the hydrogen dissociation pressure does not show a constant curve, but changes with a slightly large slope. do.

この水素解離圧力の傾斜が電極性能(放電電位の安定性
)にもかかわって来る。と同時にこの不均質(歪)な部
分が電解液中に溶出しやすいなどの問題点も発生する。
This gradient of hydrogen dissociation pressure also affects electrode performance (stability of discharge potential). At the same time, problems arise, such as the fact that this heterogeneous (distorted) portion tends to dissolve into the electrolyte.

この金属の溶解・析出はサイクル寿命にも大きな影響を
与え、品質の優れたアルカリ蓄電池を製造する上で問題
となる。高温状態ではその度合はさらに犬きくなシ、実
用的な観点からも改善が必要である。
This dissolution and precipitation of metal has a great effect on the cycle life and is a problem in manufacturing alkaline storage batteries of excellent quality. In high-temperature conditions, the degree of damage is even worse, and improvements are needed from a practical standpoint.

ここで、高温熱処理を行なう工程で、溶解時の均質性を
向上させ、合金内部の歪や不均質部分を大幅に減少させ
る。さらにはアルカリ処理を施すことによって、合金粉
末表面での溶解しやすい金属を前身って除去しておく事
と、合金表面をOH基等で修飾しておく事によって、電
解液中への溶解が著しく減少することになる。これら両
者の相乗作用によって、放電性能が優れ、しかも高温時
におけるサイクル寿命の長い水素吸蔵電極を負極とする
アルカリ蓄電池を製造することができる。
Here, the high-temperature heat treatment process improves the homogeneity during melting and significantly reduces distortion and non-uniformity inside the alloy. Furthermore, by applying alkali treatment to remove easily soluble metals on the surface of the alloy powder, and by modifying the alloy surface with OH groups, dissolution in the electrolyte is reduced. This will result in a significant decrease. Due to the synergistic effect of these two, it is possible to manufacture an alkaline storage battery using a hydrogen storage electrode as a negative electrode, which has excellent discharge performance and has a long cycle life at high temperatures.

実施例 1 市販のMm (ミツシュメタA/、La:60.Ce:
25、Ndニア、Pr その他:8)、Ni(純度99
チ以上)、Co(純度99%以上)の各試料を一定の組
成比に秤量し、水冷銅るつぼ内に入れ、アーり溶解炉に
よって加熱溶解させ、MmNts、5Co1.5合金を
製造した。ついで、この合金をアルゴン雰囲気中におい
て温度1000°C,20時間高温熱処理を行なった。
Example 1 Commercially available Mm (Mitsumeta A/, La:60.Ce:
25, Nd Near, Pr Others: 8), Ni (purity 99
Samples of Co (purity of 99% or higher) and Co (purity of 99% or higher) were weighed to a certain composition ratio, placed in a water-cooled copper crucible, and heated and melted in an earth melting furnace to produce a MmNts, 5Co1.5 alloy. This alloy was then subjected to high-temperature heat treatment at a temperature of 1000°C for 20 hours in an argon atmosphere.

この合金試料を粉砕し、ポリビニルアルコールの様な結
着剤と共に発泡メタル内に加圧充てんした後乾燥した電
極をAとした。
This alloy sample was pulverized, pressure-filled into a foamed metal together with a binder such as polyvinyl alcohol, and then dried. The electrode was designated as A.

前記粉砕した合金試料(高温熱処理済)を45°Cの温
度の30%KOH水溶液中に24時間浸漬した後取り出
し、水洗と乾燥を行ない、同様に結着剤と共に発泡メタ
ル内に加圧充てんし水素吸蔵電極Bとした。
The pulverized alloy sample (high-temperature heat treated) was immersed in a 30% KOH aqueous solution at a temperature of 45°C for 24 hours, then taken out, washed with water, dried, and similarly pressure-filled into a foamed metal with a binder. This was designated as hydrogen storage electrode B.

比較のため従来方法として、何の処理も行なわない水素
吸蔵電極をCとした。
For comparison, as a conventional method, a hydrogen storage electrode without any treatment was designated as C.

これらA、B、Cの負極と正極として公知の方法で作っ
た酸化ニッケル電極を用い、セパレータを介して円筒型
(単2サイズ)のアルカリ蓄電池を構成した。充電電流
をo、1C(10時間率)放電電流を0.20(5時間
率)とし、充電電気量は正極容量に対して130%(過
充電)とし、放電終止電圧は1.o Vとした。負極容
量は正極容量の1.3倍とし、正極容量は2Ahで正極
律則で試験を行なった。電池サイクル寿命試験の温度は
45°Cで行ない、20℃にて容量測定を行なった。
A cylindrical (size AA) alkaline storage battery was constructed using a nickel oxide electrode made by a known method as the negative electrodes and positive electrodes of A, B, and C, with a separator interposed therebetween. The charging current is 1C (10 hour rate), the discharge current is 0.20 (5 hour rate), the amount of electricity charged is 130% (overcharge) of the positive electrode capacity, and the discharge end voltage is 1. oV. The negative electrode capacity was 1.3 times the positive electrode capacity, the positive electrode capacity was 2 Ah, and the test was conducted according to the positive electrode rule. The battery cycle life test was conducted at a temperature of 45°C, and the capacity was measured at 20°C.

初期の放電特性は6サイクル目とし、放電電位を比較し
た。サイクル寿命は10サイクル毎に放電容量を測定し
た。
The initial discharge characteristics were determined at the 6th cycle, and the discharge potentials were compared. The cycle life was determined by measuring the discharge capacity every 10 cycles.

第1図に初期(5サイクル目)の放電性能を示す。Cは
放電中期かつ末期にかけて放電電圧が他のA、Bと比較
して低い。本発明のA、Bは剖電末期においても放電電
圧が高い。また、Aよりはわずかであるが、Bの方が優
れている。Cより、A、Bが優れている理由として、水
素解離圧力がCよシはA、Bの方が平坦性がよく、水素
解離末期においても水素解離圧力が高いことに起因して
いる。この点に、まず熱処理の効果が現われている0 第2図は45℃におけるサイクル寿命を示したものであ
る。Cの容量は50サイクルで初期容量の50%まで低
下している。これは明らかに電池内での微少短絡現象に
よる容量低下であって、充電電圧の挙動からもわかる。
Figure 1 shows the initial (fifth cycle) discharge performance. The discharge voltage of C is lower than that of A and B in the middle and final stages of discharge. A and B of the present invention have a high discharge voltage even at the final stage of autopsy. Also, although it is slightly better than A, B is better. The reason why A and B are superior to C is that A and B have better flatness than C and have a higher hydrogen dissociation pressure even at the final stage of hydrogen dissociation. In this respect, the effect of heat treatment is first seen. Figure 2 shows the cycle life at 45°C. The capacity of C has decreased to 50% of the initial capacity after 50 cycles. This is clearly a decrease in capacity due to a micro short circuit phenomenon within the battery, which can also be seen from the behavior of the charging voltage.

また、A電極の場合はCよりは1.5倍程向上している
がやはり、同様な傾向が見られた。しかし、B電極につ
いては、10oサイクルに達しても容量低下は殆んど見
られない。B、Cはいずれも高温において金属の溶解、
析出現象による短絡現象により、充電が十分出来ていな
い。
Further, in the case of electrode A, the improvement was about 1.5 times that of electrode C, but the same tendency was observed. However, for the B electrode, almost no capacity reduction is observed even after reaching 10 o cycles. Both B and C melt metal at high temperatures;
Due to the short circuit phenomenon caused by the precipitation phenomenon, sufficient charging is not possible.

また、一定時間放置すると容量低下がAと比べて大きい
ことからも理解出来る。この点からA電極は自己放電の
観点からも優れた特性を持っている。
This can also be understood from the fact that the capacity decrease is greater than that of A when left for a certain period of time. From this point of view, the A electrode has excellent characteristics from the viewpoint of self-discharge.

またアルカリ処理だけの電極では放電電圧がC電極と同
様に低いために両者の処理があってはじめて実用上重要
な特性を満足する事になり、より一層の長寿命化が図れ
る。
Further, since the discharge voltage of an electrode treated only with alkali is as low as that of a C electrode, the practically important characteristics can only be satisfied with both treatments, and the life can be further extended.

実施例 2 実施例1と同じ合金材料を用い、この合金を真空中(1
0’Torr)”t’1000℃(’)温度で7時間熱
処理した。この熱処理した合金を細かく粉砕し、ポリビ
ニルアルコールの様な結着剤と共に発泡メタル内に加圧
充てんした後、60℃の温度の30q6KOH水溶液中
に24時間浸漬した後、取出し、水洗(または温水洗)
と乾燥を行なって水素吸蔵電極とした。この水素吸蔵電
極を負極として実施例1と同じ電池を構成し、同じ充・
放電試験を行なった所、放電特性はA、Bと大差なく、
サイクル寿命も100サイクルを経過してもBと同程、
殆んど劣化は見られない。従ってアルカリ処理は粉末状
態ばかりでなく、電極基板を構成した後でも相乗効果が
あり、製造工程の簡易化を考えて、適宜選択することが
できる。また、アルカリ液に浸漬中に電極基板を充・放
電をくりかえして水素化して電池に組むことも可能でそ
の場合にも同様な効果が期待できる。
Example 2 Using the same alloy material as in Example 1, this alloy was heated in vacuum (1
The heat-treated alloy was finely ground and pressure-filled into foam metal with a binder such as polyvinyl alcohol, and then heated at 60°C. After immersing in a 30q6KOH aqueous solution for 24 hours, take it out and wash with water (or warm water)
This was then dried and used as a hydrogen storage electrode. The same battery as in Example 1 was constructed using this hydrogen storage electrode as a negative electrode, and the same charging and
When we conducted a discharge test, the discharge characteristics were not much different from A and B.
The cycle life is the same as B even after 100 cycles.
Almost no deterioration can be seen. Therefore, the alkali treatment has a synergistic effect not only in the powder state but also after forming the electrode substrate, and can be appropriately selected in consideration of simplifying the manufacturing process. It is also possible to hydrogenate the electrode substrate by repeatedly charging and discharging it while immersed in an alkaline solution and assemble it into a battery, and in that case, similar effects can be expected.

次に熱処理温度の範囲について、第3図のLa(希土類
)とNiとの状態図を用いて説明する。
Next, the heat treatment temperature range will be explained using the phase diagram of La (rare earth) and Ni shown in FIG.

温度950℃以下では融点がLaNi−LaNi2の合
金相に相当し、LaNi5の融点が1325℃であるの
で、この合金系に類似するAB6型の合金において金属
間の拡散が十分性なわれなくて均質化が進みに<<、熱
処理効果も少ない。一方。
At temperatures below 950°C, the melting point corresponds to the LaNi-LaNi2 alloy phase, and the melting point of LaNi5 is 1325°C, so in the AB6 type alloy, which is similar to this alloy system, the diffusion between the metals is not sufficient and the metal is homogeneous. As the process progresses, the effect of heat treatment is also small. on the other hand.

1250°C以上ではL ON x 6のNiリッチ側
に移行すると融点は1245℃まで下がるので、L a
 N isに類似する合金系において好ましくない。
At temperatures above 1250°C, the melting point drops to 1245°C when L ON x 6 moves to the Ni-rich side, so L a
Not preferred in alloy systems similar to Nis.

また蒸気圧の高い金属を加えると合金の組成づれ等の問
題もあり熱処理温度は950〜1250℃が適切な条件
である。とくに、希土類金属とNiを主体とする水素吸
蔵合金の熱処理温度は950℃〜1150℃が最適であ
る。一方、TiとNiを主体とする水素吸蔵合金の熱処
理温度は105o℃〜1250℃が最適である。この様
に合金の種類によっても熱処理条件は異なるが、本発明
の一部に含有される熱処理条件としては950℃〜12
50℃が適切な温度範囲と云う事になる。
Furthermore, if a metal with a high vapor pressure is added, there will be problems such as a change in the composition of the alloy, so the appropriate heat treatment temperature is 950 to 1250°C. In particular, the optimal heat treatment temperature for hydrogen storage alloys mainly composed of rare earth metals and Ni is 950°C to 1150°C. On the other hand, the optimum heat treatment temperature for a hydrogen storage alloy mainly composed of Ti and Ni is 105°C to 1250°C. As described above, the heat treatment conditions differ depending on the type of alloy, but the heat treatment conditions included in a part of the present invention are 950°C to 12°C.
This means that 50°C is an appropriate temperature range.

希土類金属(La、Ce、Nd、Sm、Pr 他の1種
以上)1原子に対して水素平衡圧力の関係から算出して
、水素吸蔵電極に用いた場合、希土類金属が30〜34
重量%とNiが40〜60重量%、残部の他金属Mが6
〜30重量%からなる組成が熱処理、アルカリ処理にお
いて効果的に働く。
Calculated from the relationship of hydrogen equilibrium pressure for one atom of rare earth metal (La, Ce, Nd, Sm, Pr, etc.), when used in a hydrogen storage electrode, the rare earth metal is 30 to 34
% by weight, Ni is 40-60% by weight, and the remainder is 6% by weight of other metals M.
A composition consisting of ~30% by weight works effectively in heat treatment and alkali treatment.

Mの量が6重量%以下になると合金自体の耐久性が乏し
くなシサイクル寿命が短かくなる。逆にMの量が30重
量%以上になると水素吸蔵量が減少し、放電容量が小さ
くなるので、熱処理しアルカリ処理の相乗効果が発揮し
にくくなる。一方。
If the amount of M is less than 6% by weight, the durability of the alloy itself will be poor and the cycle life will be shortened. On the other hand, when the amount of M is 30% by weight or more, the amount of hydrogen storage decreases and the discharge capacity decreases, making it difficult to exhibit the synergistic effect of heat treatment and alkali treatment. on the other hand.

NiO量が60重量係以上になると合金自体の耐久性が
なくなシサイクル寿命が短かくなる。逆にNiO量が4
0重量%以下になると水素吸蔵量が減少し、放電容量が
小さくなるので、熱処理とアルカリ処理の相乗効果が出
にくい。この様に合金組成によっても熱処理効果、アル
カリ処理効果が異なるので、上記組成範囲がこの効果を
発揮しうる最適条件である。
When the amount of NiO exceeds 60% by weight, the durability of the alloy itself is lost and the cycle life is shortened. On the other hand, if the amount of NiO is 4
If it is less than 0% by weight, the amount of hydrogen storage decreases and the discharge capacity decreases, making it difficult to achieve a synergistic effect between heat treatment and alkali treatment. As described above, the heat treatment effect and the alkali treatment effect vary depending on the alloy composition, so the above composition range is the optimum condition for exhibiting this effect.

発明の効果 以上の様に本発明によれば、高温時のサイクル寿命が長
く、放電性能とくに放電電圧が高く、自己放電にも優れ
た効果を発揮するなど実用性の高い水素吸蔵電極の製造
方法を提供するものである。
Effects of the Invention As described above, the present invention provides a highly practical method for producing a hydrogen storage electrode that has a long cycle life at high temperatures, has a high discharge performance, particularly a high discharge voltage, and exhibits excellent self-discharge effects. It provides:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明と従来の水素吸蔵電極を用いた電池の放
電特性を比較した図、第2図は本発明と従来の水素吸蔵
電極を用いた電池のサイクル寿命特性を比較した図、第
3図はLaとNiとの合金の状態図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 族 1を岩1.(ハ(り 第2図 光−か?歌すイクル(凹〕
Figure 1 is a diagram comparing the discharge characteristics of batteries using the present invention and conventional hydrogen storage electrodes. Figure 2 is a diagram comparing the cycle life characteristics of batteries using the present invention and conventional hydrogen storage electrodes. FIG. 3 is a state diagram of an alloy of La and Ni. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure family 1 and rock 1. (Ha(ri Figure 2) Light-?

Claims (3)

【特許請求の範囲】[Claims] (1)水素を可逆的に吸蔵・放出する水素吸蔵合金を9
50〜1250℃の温度で熱処理した後この合金を細か
く粉砕する工程と、粉砕した合金粉末をアルカリ水溶液
で表面処理する工程と、その後少なくとも水洗と乾燥を
施した合金粉末を結着剤と共に電極支持体に加圧一体化
する工程とからなることを特徴とする水素吸蔵電極の製
造方法。
(1) 9 hydrogen storage alloys that reversibly absorb and release hydrogen
A process of finely pulverizing the alloy after heat treatment at a temperature of 50 to 1250°C, a process of surface treating the pulverized alloy powder with an alkaline aqueous solution, and then a process of at least washing and drying the alloy powder with a binder to support the electrode. 1. A method for manufacturing a hydrogen storage electrode, comprising the step of pressurizing and integrating it with a body.
(2)水素吸蔵合金は、希土類金属(La、Ce、Nd
、Sm、Pr、などの一種以上)が30〜34重量%、
Niが40〜60重量%、その他の金属が6〜30重量
%の組成からなり、この合金を不活性ガス中、または真
空中で熱処理した後、高温のアルカリ水溶液で表面処理
することを特徴とする特許請求の範囲第1項記載の水素
吸蔵電極の製造方法。
(2) Hydrogen storage alloys include rare earth metals (La, Ce, Nd
, Sm, Pr, etc.) is 30 to 34% by weight,
The alloy has a composition of 40 to 60% by weight of Ni and 6 to 30% by weight of other metals, and is characterized by heat-treating this alloy in an inert gas or vacuum, and then surface-treating it with a high-temperature alkaline aqueous solution. A method for manufacturing a hydrogen storage electrode according to claim 1.
(3)水素を可逆的に吸蔵・放出する水素吸蔵合金を9
50〜1250℃の温度で熱処理した後この合金を細か
く粉砕する工程と、粉砕した合金粉末を結着剤と共に電
極支持体に加圧一体化して電極基板とする工程と、一体
化した電極基板をアルカリ水溶液で含浸処理する工程と
、その後、少なくとも水洗と乾燥を施す工程とからなる
ことを特徴とする水素吸蔵電極の製造方法。
(3) 9 hydrogen storage alloys that reversibly absorb and release hydrogen.
A process of finely pulverizing this alloy after heat treatment at a temperature of 50 to 1250°C, a process of pressurizing and integrating the pulverized alloy powder with a binder onto an electrode support to form an electrode substrate, and a process of forming an electrode substrate by combining the pulverized alloy powder with a binder. A method for manufacturing a hydrogen storage electrode, comprising a step of impregnating with an aqueous alkaline solution, and then a step of at least washing with water and drying.
JP60127408A 1985-06-12 1985-06-12 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0789488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127408A JPH0789488B2 (en) 1985-06-12 1985-06-12 Method for manufacturing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127408A JPH0789488B2 (en) 1985-06-12 1985-06-12 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS61285658A true JPS61285658A (en) 1986-12-16
JPH0789488B2 JPH0789488B2 (en) 1995-09-27

Family

ID=14959238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127408A Expired - Lifetime JPH0789488B2 (en) 1985-06-12 1985-06-12 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0789488B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63175339A (en) * 1987-01-16 1988-07-19 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorption electrode
JPS63264867A (en) * 1987-04-21 1988-11-01 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage electrode
JPS6454669A (en) * 1987-08-25 1989-03-02 Matsushita Electric Ind Co Ltd Hydrogen occlusion alloy electrode
JPH01132048A (en) * 1987-11-17 1989-05-24 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JPH02186559A (en) * 1989-01-13 1990-07-20 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
DE4004759A1 (en) * 1989-02-16 1990-09-20 Sanyo Electric Co Hydrogen absorbing alloy electrode used in rechargeable battery - consists of powdered metal-alloy with additive which regulates oxidn. of alloy surface
US6331367B1 (en) 1998-09-11 2001-12-18 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery hydrogen-absorbing alloy electrode and method for producing the same
EP1271677A1 (en) * 2001-06-21 2003-01-02 Matsushita Electric Industrial Co., Ltd. Hydrogen-absorption alloy electrode
US6666899B2 (en) 2000-02-22 2003-12-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode plates for batteries
US6740450B2 (en) 1998-02-19 2004-05-25 Matsushita Electric Industrial Co., Ltd. Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
US6790558B2 (en) 2000-12-27 2004-09-14 Matsushita Electric Industrial Co., Ltd. Electrode alloy powder and method of producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756802B2 (en) * 1987-01-16 1995-06-14 松下電器産業株式会社 Manufacturing method of hydrogen storage electrode
JPS63175339A (en) * 1987-01-16 1988-07-19 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorption electrode
JPS63264867A (en) * 1987-04-21 1988-11-01 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage electrode
JPH0693358B2 (en) * 1987-04-21 1994-11-16 松下電器産業株式会社 Manufacturing method of hydrogen storage electrode
JPS6454669A (en) * 1987-08-25 1989-03-02 Matsushita Electric Ind Co Ltd Hydrogen occlusion alloy electrode
JP2532498B2 (en) * 1987-08-25 1996-09-11 松下電器産業株式会社 Hydrogen storage alloy electrode
JPH01132048A (en) * 1987-11-17 1989-05-24 Matsushita Electric Ind Co Ltd Manufacture of hydrogen storage alloy electrode
JPH02186559A (en) * 1989-01-13 1990-07-20 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline storage battery
DE4004759A1 (en) * 1989-02-16 1990-09-20 Sanyo Electric Co Hydrogen absorbing alloy electrode used in rechargeable battery - consists of powdered metal-alloy with additive which regulates oxidn. of alloy surface
US6740450B2 (en) 1998-02-19 2004-05-25 Matsushita Electric Industrial Co., Ltd. Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
US6331367B1 (en) 1998-09-11 2001-12-18 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery hydrogen-absorbing alloy electrode and method for producing the same
US6699617B2 (en) 1998-09-11 2004-03-02 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery, hydrogen-absorbing alloy electrode and method for producing the same
US6666899B2 (en) 2000-02-22 2003-12-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing electrode plates for batteries
US6790558B2 (en) 2000-12-27 2004-09-14 Matsushita Electric Industrial Co., Ltd. Electrode alloy powder and method of producing the same
EP1271677A1 (en) * 2001-06-21 2003-01-02 Matsushita Electric Industrial Co., Ltd. Hydrogen-absorption alloy electrode
US7943255B2 (en) 2001-06-21 2011-05-17 Panasonic Corporation Hydrogen-absorption alloy electrode

Also Published As

Publication number Publication date
JPH0789488B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JPS61285658A (en) Manufacture of hydrogen occlusion electrode
JPH0773878A (en) Manufacture of metal hydride electrode
US6083327A (en) Hydrogen occluding alloy
JPH0479474B2 (en)
JP5388397B2 (en) Method for improving the properties of alloy powders for NiMH batteries
JPH0641663A (en) Hydrogen storage alloy and its manufacture, and hydrogen storage alloy electrode
JP2512076B2 (en) Manufacturing method of sealed nickel-metal hydride storage battery
JPH06223827A (en) Manufacture of hydrogen storage alloy powder for battery
JP3022019B2 (en) Heat treatment method for hydrogen storage alloy for Ni-hydrogen battery
JP3432870B2 (en) Method for producing metal hydride electrode
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JPH0693358B2 (en) Manufacturing method of hydrogen storage electrode
EP1059684B1 (en) Process for producing a hydrogen absorbing alloy, and hydrogen absorbing alloy electrodes
JPH0763007B2 (en) Manufacturing method of hydrogen storage electrode
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2823301B2 (en) Hydrogen storage alloy electrode
JP3198896B2 (en) Nickel-metal hydride battery
JP2848467B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS6231947A (en) Manufacture of hydrogen occlusion electrode
JPH04319258A (en) Hydrogen storage alloy electrode
JPS61203561A (en) Battery electrode
JPH04328252A (en) Hydrogen storage alloy electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH02301971A (en) Manufacture of metal-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term