JPH069273A - High density sintered product of iron nitride - Google Patents

High density sintered product of iron nitride

Info

Publication number
JPH069273A
JPH069273A JP3336908A JP33690891A JPH069273A JP H069273 A JPH069273 A JP H069273A JP 3336908 A JP3336908 A JP 3336908A JP 33690891 A JP33690891 A JP 33690891A JP H069273 A JPH069273 A JP H069273A
Authority
JP
Japan
Prior art keywords
powder
alloy
particles
iron
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3336908A
Other languages
Japanese (ja)
Inventor
Hoshiaki Terao
星明 寺尾
Koichiro Nakano
皓一朗 中野
Noboru Sakamoto
登 坂本
Naoki Yamamoto
直樹 山本
Jun Ota
潤 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3336908A priority Critical patent/JPH069273A/en
Publication of JPH069273A publication Critical patent/JPH069273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Abstract

PURPOSE:To obtain the iron nitride high density sintered product excellent in magnetic characteristics, weather resistance, strength, etc., by nitriding the powder of iron (alloy), coating the obtained magnetic particles with a ceramic material, compacting the coated particles, and subsequently sintering the compacted product. CONSTITUTION:Iron powder or iron alloy powder (e.g. Fe-Ni alloy) is nitrided by a gas nitriding method, an ion nitriding method, etc., to produce magnetic particles comprising particles consisting mainly of Fe4N or Fe16N2 or particles whose inner parts consists mainly of the Fe or the Fe alloy and whose outer peripheral parts consist mainly of the Fe4N or Fe16N2. The nitrided magnetic particles are coated with a ceramic material by a CVD method, a plating method, etc., compacted and subsequently sintered. Or, the powder of the nitrided magnetic particle and the powder of an insulating ceramic material are mixed with each other, compacted, and subsequently sintered. Thereby, the iron nitride high density sintered product comprising the composite sintered product in which the nitrided magnetic particles are dispersed in the matrix of the insulating ceramic material and which is suitable as an alternate material for compacted magnetic cores is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧粉磁芯の代替材料
として好適な窒化鉄系高密度焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron nitride-based high density sintered body suitable as a substitute material for a dust core.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】窒化鉄
は、窒素の含有量により結晶系が変化し、その磁気的特
性も大きく異なる侵入型化合物である。この窒化鉄は金
属と酸化物の中間的な性質を有する材料であり、金属F
eよりも耐食性、耐候性に優れ、かつ硬いという性質を
有している。特にFe4 N及びFe162 は高い飽和磁
化を有しており、耐食性、耐候性、及び機械的特性が優
れた磁性材料としての用途への適用が期待されている。
2. Description of the Related Art Iron nitride is an interstitial compound in which the crystal system changes depending on the content of nitrogen and the magnetic properties thereof are greatly different. This iron nitride is a material having intermediate properties between metal and oxide,
Corrosion resistance and weather resistance are superior to those of e, and they are hard. In particular, Fe 4 N and Fe 16 N 2 have high saturation magnetization, and are expected to be applied to magnetic materials having excellent corrosion resistance, weather resistance, and mechanical properties.

【0003】しかしながら、現在窒化鉄は基体上に塗布
して形成される塗布型磁気記録媒体への適用が考えられ
ているに過ぎず、上述のように優れた特性を考慮した焼
結体としての適用はなされていないのが実情である。こ
の発明はかかる事情に鑑みてなされたものであって、全
く新規でかつ実用的な窒化鉄系高密度焼結体を提供する
ことを目的とする。
However, at present, iron nitride is only considered to be applied to a coating type magnetic recording medium formed by coating on a substrate, and as described above, as a sintered body in consideration of excellent characteristics. The reality is that it has not been applied. The present invention has been made in view of such circumstances, and an object thereof is to provide a completely new and practical iron nitride-based high-density sintered body.

【0004】[0004]

【課題を解決するための手段及び作用】この発明に係る
窒化物系高密度焼結体は、Fe4 N若しくはFe162
を主体とする粒子、又は内部がFe若しくはFe合金で
外周部がFe4 N若しくはFe162 を主体とする粒子
が、絶縁性セラミック材料のマトリックス中に分散した
状態の複合焼結体からなることを特徴とする。この場合
に、マトリックス中に分散した粒子が、内部がFe−S
i合金、Fe−Ni合金、及びFe−Si−Al合金か
ら選択される合金であり外周部がFe4 N若しくはFe
162 を主体とするものにすることにより一層良好な磁
気特性を得ることができる。このような高密度焼結体
は、圧粉磁芯の代替材料として好適である。
MEANS FOR SOLVING THE PROBLEM AND ACTION The nitride-based high density sintered body according to the present invention is made of Fe 4 N or Fe 16 N 2.
Particles composed mainly of Fe, or particles composed mainly of Fe or Fe alloy and Fe 4 N or Fe 16 N 2 in the outer periphery are composed of a composite sintered body dispersed in a matrix of an insulating ceramic material. It is characterized by In this case, the particles dispersed in the matrix have Fe-S inside.
An alloy selected from an i alloy, an Fe-Ni alloy, and an Fe-Si-Al alloy, the outer peripheral portion of which is Fe 4 N or Fe.
By using 16 N 2 as a main component, better magnetic properties can be obtained. Such a high-density sintered body is suitable as a substitute material for the dust core.

【0005】圧粉磁芯は金属磁性粉末と樹脂とを主成分
とし、圧縮成形を経て製造される。この圧粉磁芯は、高
周波特性と磁束密度との組合わせにおいて、電磁鋼板及
びフェライトがカバ−できない範囲を補った鉄心材料で
パワ−エレクトロニクスによる電力変換装置に適した磁
気特性を持つ材料である。そして、このような圧粉磁心
は、金属磁性粉末の絶縁抵抗を高くし、かつその粒子径
を適切に制御し、さらに樹脂により磁性粉末粒子の直接
接触をなくして全体の渦電流を減少させることによっ
て、周波数特性を比較的良好なものとしている。
A powder magnetic core contains metal magnetic powder and a resin as main components, and is manufactured through compression molding. This dust core is a material having a combination of high-frequency characteristics and magnetic flux density, which is an iron core material that supplements the range in which electromagnetic steel sheets and ferrite cannot cover, and has magnetic characteristics suitable for power conversion devices by power electronics. . In addition, such a dust core can increase the insulation resistance of the metal magnetic powder and properly control the particle diameter thereof, and further reduce the total eddy current by eliminating direct contact of the magnetic powder particles with a resin. Makes the frequency characteristics relatively good.

【0006】しかし、このような圧粉磁芯は基本的に樹
脂をマトリックスとしているために機械的強度が不十分
であり、また、磁性粉が金属であるため耐候性が悪いと
いう欠点がある。さらに、金属磁性粉はそれ自体の電気
抵抗が低いため、損失を低減するのにも限界があり、高
周波数域で必ずしも十分な特性を有しているとは言えな
い。そこで、この発明では機械的強度及び耐候性に優
れ、高周波数域での特性が良好な圧粉磁芯の代替材料と
して適した焼結体を提供する。この発明においては、絶
縁体セラミックス材料のマトリックス粒子中に分散する
粒子として窒化鉄であるFe4 N又はFe162 を用い
る。
[0006] However, such a dust core basically has a drawback that it has insufficient mechanical strength because it uses a resin as a matrix, and that it has poor weather resistance because the magnetic powder is a metal. Furthermore, since the magnetic metal powder itself has a low electric resistance, there is a limit in reducing the loss, and it cannot be said that the metal magnetic powder has sufficient characteristics in a high frequency range. Therefore, the present invention provides a sintered body suitable as a substitute material for a powder magnetic core, which has excellent mechanical strength and weather resistance and has excellent characteristics in a high frequency range. In the present invention, Fe 4 N or Fe 16 N 2 which is iron nitride is used as the particles dispersed in the matrix particles of the insulating ceramic material.

【0007】図1は、鉄−窒素系の状態図である。この
状態図の中でγ´相がFe4 Nであり、α''相がFe16
2 である。Fe4 Nは、鉄のfcc相の体心位置に窒
素原子が入ったペロブスカイト型結晶格子を有してい
る。この相は常温でも安定であり、Tc=488℃の強
磁性体である。常温での飽和磁化は195emu/gと
純鉄より若干低い程度であり、磁性材料として有望であ
る。一方、Fe162 は準安定相であり、bcc格子を
母体としたbct結晶格子を有する。このbct構造は
bcc構造の鉄の体心位置に規則的に窒素原子が入り込
んだ型となっている。この相の常温での飽和磁化は26
0emu/gと純鉄の1.2倍であり、これも磁性材料
として有望である。また、大気中において、Fe4 N及
びFe162 の表面には緻密なα−Fe2 3 が形成さ
れるので、表面にFe3 4 が形成されるFeよりも耐
候性に優れている。さらに、これらは窒化物であるから
鉄よりもかなり硬い。
FIG. 1 is a phase diagram of the iron-nitrogen system. In this phase diagram, the γ'phase is Fe 4 N and the α '' phase is Fe 16 N.
It is N 2. Fe 4 N has a perovskite type crystal lattice in which nitrogen atoms are contained in the body-centered position of the fcc phase of iron. This phase is stable at room temperature and is a ferromagnetic material with Tc = 488 ° C. The saturation magnetization at room temperature is 195 emu / g, which is slightly lower than that of pure iron, and is promising as a magnetic material. On the other hand, Fe 16 N 2 is a metastable phase and has a bct crystal lattice having a bcc lattice as a matrix. This bct structure is a type in which nitrogen atoms regularly enter the body center position of iron of the bcc structure. The saturation magnetization of this phase at room temperature is 26
It is 0 emu / g, 1.2 times that of pure iron, which is also a promising magnetic material. Further, in the atmosphere, since dense α-Fe 2 O 3 is formed on the surface of Fe 4 N and Fe 16 N 2 , the weatherability is superior to that of Fe on which Fe 3 O 4 is formed. There is. Furthermore, since they are nitrides, they are considerably harder than iron.

【0008】このような、Fe4 N又はFe162 を絶
縁体セラミックス材料のマトリックス中に分散させた状
態の複合焼結体は、磁性粒子としてのFe4 N又はFe
162 自体の電気抵抗が高く、また、これらの飽和磁束
密度が大きく、さらにマトリックスが絶縁体であるた
め、高周波数域用の磁芯材料として適したものとなる。
また、マトリックス中の磁性粒子は、少なくともその外
周部が耐候性が高いFe4 N若しくはFe162 を主体
としているので、金属系の軟磁性材料よりも耐候性に優
れている。また、基本的に絶縁体セラミックスをマトリ
ックスとする焼結体であり、磁性粒子自体が高硬度であ
るため、機械的強度が高い。
Such a composite sintered body in which Fe 4 N or Fe 16 N 2 is dispersed in a matrix of an insulating ceramics material is used as Fe 4 N or Fe as magnetic particles.
Since 16 N 2 itself has a high electric resistance and the saturation magnetic flux density thereof is large, and the matrix is an insulator, it is suitable as a magnetic core material for a high frequency range.
Further, since the magnetic particles in the matrix are mainly composed of Fe 4 N or Fe 16 N 2 having a high weather resistance at least in the outer peripheral portion thereof, they are more excellent in weather resistance than the metallic soft magnetic material. Further, it is basically a sintered body having an insulating ceramic as a matrix, and since the magnetic particles themselves have high hardness, they have high mechanical strength.

【0009】マトリックス中の磁性粒子は、Fe4 N若
しくはFe162 を主体とするものであってもよいし、
内部がFe若しくはFe合金で外周部がFe4 N若しく
はFe162 を主体とするものであってもよい。この場
合に、この磁性粒子は、鉄粉末又は鉄合金粉末を適宜の
方法で窒化することにより形成することができる。窒化
処理時間が十分に長ければ粒子を完全にFe4 N若しく
はFe162 にすることができ、また窒化処理時間が短
ければ外周部だけを窒化して内部がFe若しくはFe合
金で外周部がFe4 N若しくはFe162 で構成された
粒子を製造することができる。この処理に際して、窒素
供給量、温度等の窒化条件を適宜規定することによって
Fe4 N及びFe162 のいずれかを形成することがで
きる。なお、前述したように、Fe162 は準安定相で
あるので、処理後急冷することにより得られる。
The magnetic particles in the matrix may be mainly Fe 4 N or Fe 16 N 2 .
The inside may be Fe or Fe alloy, and the outer peripheral part may be mainly Fe 4 N or Fe 16 N 2 . In this case, the magnetic particles can be formed by nitriding iron powder or iron alloy powder by an appropriate method. If the nitriding treatment time is sufficiently long, the particles can be completely made into Fe 4 N or Fe 16 N 2, and if the nitriding treatment time is short, only the outer peripheral portion is nitrided so that the inner portion is Fe or Fe alloy and the outer peripheral portion is Particles composed of Fe 4 N or Fe 16 N 2 can be produced. In this process, either Fe 4 N or Fe 16 N 2 can be formed by appropriately defining the nitriding conditions such as the nitrogen supply amount and the temperature. As described above, since Fe 16 N 2 is a metastable phase, it can be obtained by quenching after the treatment.

【0010】この場合に、鉄合金としては、Fe−Ni
合金(パ−マロイ;Ni30〜80重量%)、Fe−S
i合金(Si1〜6.5重量%)、Fe−Si−Al合
金(センダスト;Si5〜11重量%、Al3〜8重量
%)などの軟磁性材料として優れたものを好適に用いる
ことができる。このような合金粒子表面のみにFe4
若しくはFe162 を形成し、粒子内部にこれら合金を
残存させることにより、一層良好な磁気特性を得ること
ができる。この場合に、窒化鉄層の厚みは粒子径の1〜
3%程度(粒子径が10μmの場合には0.1〜0.3
μm)であることが好ましい。
In this case, the iron alloy is Fe--Ni.
Alloy (Permalloy; Ni 30-80% by weight), Fe-S
An excellent soft magnetic material such as an i alloy (Si 1 to 6.5% by weight) and an Fe-Si-Al alloy (Sendust; Si 5 to 11% by weight, Al 3 to 8% by weight) can be preferably used. Fe 4 N only on the surface of such alloy particles
Alternatively, better magnetic properties can be obtained by forming Fe 16 N 2 and allowing these alloys to remain inside the particles. In this case, the thickness of the iron nitride layer is 1 to the particle diameter.
About 3% (0.1-0.3 when the particle size is 10 μm
μm) is preferred.

【0011】窒化処理の方法としては、ガス窒化法及び
イオン窒化法が好適である。また、出発原料としての鉄
粉としては、粒子径が0.01〜200μmのものが好
ましく、CVD法による超微粒鉄粉、カルボニル鉄粉、
水アトマイズ鉄粉、ガスアトマイズ粉、ヘガネス鉄粉等
を用いることができる。また、また、鉄粉のみならず、
上述したようにFe−Ni合金、Fe−Si合金、Fe
−Si−Al合金を用いることもできる。
As the nitriding method, a gas nitriding method and an ion nitriding method are preferable. Further, as the iron powder as a starting material, those having a particle size of 0.01 to 200 μm are preferable, and ultrafine iron powder by a CVD method, carbonyl iron powder,
Water atomized iron powder, gas atomized powder, Hegane's iron powder, etc. can be used. Also, not only iron powder,
As described above, Fe-Ni alloy, Fe-Si alloy, Fe
A -Si-Al alloy can also be used.

【0012】マトリックスを構成する絶縁体セラミック
ス材料としては、材料的に特に限定されるものではない
が、Al2 3 、SiO2 、MgO、ZrO2 などが好
適である。
The insulating ceramic material forming the matrix is not particularly limited in terms of material, but Al 2 O 3 , SiO 2 , MgO, ZrO 2 and the like are preferable.

【0013】このようなFe4 N又はFe162 を含む
磁性粒子と絶縁体セラミックス材料マトリックスとの複
合焼結体は、Fe4 N又はFe162 を含む磁性粒子の
体積V1 と絶縁体セラミックスマトリックスの体積V2
との比V1 /V2 が100/5〜100/100である
ことが好ましい。また、このような高密度焼結体は、理
論密度の98%以上の密度を有していることが好まし
い。
Such a composite sintered body of magnetic particles containing Fe 4 N or Fe 16 N 2 and an insulating ceramic material matrix is insulated from the volume V 1 of magnetic particles containing Fe 4 N or Fe 16 N 2. Volume of body ceramic matrix V 2
It is preferable that the ratio V 1 / V 2 is 100/5 to 100/100. Further, such a high-density sintered body preferably has a density of 98% or more of the theoretical density.

【0014】このような複合焼結体は、上述のようにし
て窒化された磁性粒子にセラミックス材料を適宜の方法
でコ−ティング(例えばCVD、メッキ)した後、又は
窒化された磁性粒子粉末と絶縁性セラミック材料粉末と
を混合した後に、圧粉成形・焼結することにより形成す
ることができる。
Such a composite sintered body is obtained by coating (for example, CVD or plating) a ceramic material on the magnetic particles nitrided as described above by an appropriate method, or with a magnetic particle powder nitrided. It can be formed by mixing with the insulating ceramic material powder and then compacting and sintering.

【0015】ここでの圧粉成形・焼結処理は、上述のよ
うにして得た粉末を金型プレスにより圧粉成形した後、
一般的に用いられる焼成炉にて行ってもよいし、ホット
プレスによって成形・焼結を同時に行うこともできる。
更に、ホットプレスとPAS(Plasma Activated Sinte
ring)とを併用してもよく、爆着法を用いてもよい。
The powder compacting / sintering treatment here is carried out by compacting the powder obtained as described above with a die press,
It may be performed in a generally used firing furnace, or the molding and sintering may be performed simultaneously by hot pressing.
Furthermore, hot press and PAS (Plasma Activated Sinte
ring) may be used together, or the explosive deposition method may be used.

【0016】このようにして窒化鉄系の複合焼結体を形
成することにより、高周波数域用の磁芯材料として適し
た磁気特性を有し、かつ耐候性及び機械的強度に優れた
高密度焼結体を得ることができる。
By forming the iron nitride-based composite sintered body in this manner, high density having magnetic properties suitable as a magnetic core material for a high frequency range and excellent in weather resistance and mechanical strength is obtained. A sintered body can be obtained.

【0017】[0017]

【実施例】以下、この発明の実施例について説明する。 実施例1 この実施例においては、出発原料として粒径が0.1〜
40μmの水アトマイズ鉄粉を用いた。この水アトマイ
ズ鉄粉をガス窒化法により窒化処理して窒化粉とした。
この窒化処理は、反応ガスとしてH2 ガス及びNH3
スを用い、H2/NH3 を0/100〜90/10まで
変化させ、室温〜750℃の範囲で5分間〜2時間の窒
化処理を行った。その結果、Fe4 N若しくはFe16
2 を主体とする粒子、又は内部がFeで外周部がFe4
N若しくはFe162 を主体とする粒子が形成された。
これらの窒化粉のうち、H2 /NH3 が50/50〜7
0/30、温度500℃で30分間保持の条件で窒化処
理してほぼ全体がFe4 Nとなったものについて、Si
2 コ−ティングおよびAl2 3 コ−ティングを夫々
施した。SiO2 コ−ティングはFe4 N粉とSiO2
粉とを混練機で混練して、Fe4 N粒子にSiO2 粒子
を付着させることにより行い、Al2 3 コ−ティング
は有機溶剤に微粒のAl2 3 (0.1〜0.3μm)
を分散させ、この有機溶剤中にFe4 N粉を入れてロ−
タリエバポレ−タにより有機溶剤を蒸発させながらこれ
らを混合してFe4 N粒子にAl2 3 粒子を付着させ
ることにより行った。次に、このコ−ティングされた粉
末をホットプレスにより焼結させて、物性及び磁気特性
を測定した。なお、ホットプレス条件はいずれも500
℃で圧力3ton /cm2 とした。その結果、Fe4 N粒子
が夫々SiO2 及びAl2 3 のマトリックス中に分散
した状態の複合焼結体が生成された。この焼結体のうち
SiO2 マトリックスを形成したものの物性及び特性は
以下に示す通りであった。 密度 6.9 g/cm3 初透磁率μi 200 実効透磁率μeff 25 比抵抗ρ 100 μΩ・cm 飽和時速密度BS 15000 Gauss 保磁力HC 15 Oe また、損失係数も小さいものであった。以上のように、
圧粉磁芯の代替材料として優れた特性を有する高密度焼
結体が得られたことが確認された。
Embodiments of the present invention will be described below. Example 1 In this example, the starting material has a particle size of 0.1-0.1
40 μm of water atomized iron powder was used. This water atom
The iron powder was nitrided by a gas nitriding method to obtain a nitride powder.
This nitriding treatment uses H as a reaction gas.2Gas and NH3Moth
Use H2/ NH3From 0/100 to 90/10
Change the temperature and the temperature range from room temperature to 750 ℃ for 5 minutes to 2 hours.
The chemical treatment was performed. As a result, FeFourN or Fe16N
2Particles mainly composed of Fe, or Fe inside and Fe outsideFour
N or Fe16N2Particles mainly composed of were formed.
Of these nitride powders, H2/ NH3Is 50 / 50-7
Nitriding treatment under the conditions of 0/30 and temperature of 500 ℃ for 30 minutes
By the way, almost all FeFourFor those with N, Si
O2Coating and Al2O3Each coating
gave. SiO2The coating is FeFourN powder and SiO2
Fe and knead with powderFourSiO in N particles2particle
By attaching2O3Coating
Is a fine particle of Al in organic solvent2O3(0.1-0.3 μm)
Fe is dispersed in this organic solvent.FourPut N powder and roll
This is done by evaporating the organic solvent with a tarie evaporator.
Fe mixed withFourAl for N particles2O3Attach particles
I went by. Next, this coated powder
Powder and physical properties and magnetic properties
Was measured. The hot press conditions are 500
Pressure at 3 ℃ / cm2 And As a result, FeFourN particles
Each is SiO2And Al2O3Dispersed in the matrix
A composite sintered body in the as-prepared state was produced. Out of this sintered body
SiO2The physical properties and characteristics of what formed the matrix
It was as shown below. Density 6.9 g / cm3  Initial permeability μi 200 Effective permeability μeff 25 Specific resistance ρ 100 μΩ ・ cm Saturation velocity density BS 15000 Gauss Coercive force HC 15 Oe Moreover, the loss coefficient was also small. As mentioned above,
High-density firing with excellent properties as an alternative material for dust cores
It was confirmed that a solid was obtained.

【0018】また、この高密度焼結体と従来の圧粉磁芯
とを温度60℃、湿度99%の環境下で4週間保持して
耐環境性を確認した。その結果、従来の圧粉磁芯ではさ
びが発生したが、この実施例の焼結体は全く変化がなか
った。この結果から、従来の圧粉磁芯よりも耐酸化性が
良好なことが確認された。この耐食性試験中のサンプル
につき1週間毎に飽和磁化を測定した。その結果を図2
に示す。この図から明らかなように、この実施例の焼結
体は4週間後も飽和磁化の低下が少ないのに対し、従来
の圧粉磁芯では1週間の間に飽和磁化が大きく低下する
ことが確認された。
Further, the high-density sintered body and the conventional dust core were held in an environment of a temperature of 60 ° C. and a humidity of 99% for 4 weeks to confirm the environment resistance. As a result, rust was generated in the conventional dust core, but there was no change in the sintered body of this example. From this result, it was confirmed that the oxidation resistance was better than that of the conventional dust core. Saturation magnetization was measured every one week for the sample during this corrosion resistance test. The result is shown in Figure 2.
Shown in. As is clear from this figure, the sintered body of this example shows a small decrease in the saturation magnetization even after 4 weeks, whereas the conventional dust core has a large decrease in the saturation magnetization within 1 week. confirmed.

【0019】実施例2 この実施例においては、出発原料として粒径が1〜40
μmのFe−Si合金(Si3重量%)、Fe−Ni合
金(Ni45重量%)、Fe−Si−Al合金(Si
9.5重量%、Al5.5重量%)の粉末を用いた。こ
れら合金粉末をガス窒化法により窒化処理して窒化粉と
した。この窒化処理は、反応ガスとしてH2 ガス及びN
3 ガスを用い、H2 /NH3 を50/50にし400
℃で5分間の窒化処理を行った。その結果、上記各合金
粒子の表面に5体積%程度のFe4Nを主体とする層が
形成された。
Example 2 In this example, the starting material has a particle size of 1-40.
μm Fe-Si alloy (Si 3 wt%), Fe-Ni alloy (Ni 45 wt%), Fe-Si-Al alloy (Si
Powder of 9.5 wt% and Al 5.5 wt% was used. These alloy powders were nitrided by a gas nitriding method to obtain nitride powder. This nitriding treatment uses H 2 gas and N as reaction gases.
Use H 3 gas and change H 2 / NH 3 to 50/50 400
Nitriding treatment was performed at 5 ° C. for 5 minutes. As a result, a layer mainly containing Fe 4 N in an amount of about 5% by volume was formed on the surface of each alloy particle.

【0020】これらの窒化粉末について、その表面にA
2 3 をコ−ティングした。このコ−ティングに際し
ては、Alの硫酸塩の溶液を用いて、NaOHによりこ
れら溶液のpH9〜10に調整した。なおpH緩衝剤と
してCH3 COONH4 を添加してpHを安定化させ
た。これら溶液中に窒化粉を装入し、窒化粉の周囲に金
属イオンを吸着させた。その後、この窒化粉を溶液から
引き上げて空気にさらし、空気中の酸素と金属とにより
Al2 3 を形成し、これを再び溶液中に装入するとい
った工程を複数回繰り返してAl2 3 コ−ティング層
を形成した。なお、Al2 3 コ−ティング層の体積比
は5体積%とした。
On the surface of each of these nitride powders, A
l 2 O 3 was coated. In this coating, a solution of Al sulfate was used and the pH of these solutions was adjusted to 9 to 10 with NaOH. CH 3 COONH 4 was added as a pH buffer to stabilize the pH. Nitride powder was charged into these solutions, and metal ions were adsorbed around the nitride powder. After that, the process of pulling this nitride powder out of the solution and exposing it to air to form Al 2 O 3 by oxygen and metal in the air and charging it again into the solution is repeated a plurality of times to produce Al 2 O 3. A coating layer was formed. The volume ratio of the Al 2 O 3 coating layer was 5% by volume.

【0021】次に、このコ−ティングされた粉末をホッ
トプレスにより焼結させて、物性及び磁気特性を測定し
た。なお、ホットプレス条件は500℃で圧力3ton /
cm2 とした。その結果、夫々Fe−Si合金、Fe−N
i合金、Fe−Si−Al合金の粉末粒子表面にFe4
Nが形成された粒子がMn−Znフェライトのマトリッ
クス中に分散した状態の複合焼結体が生成された。Fe
−Si合金を用いた場合の焼結体の物性及び特性は以下
に示す通りであった。 密度 7.5 g/cm3 初透磁率μi 1350 実効透磁率μeff 500 比抵抗ρ 0.85 μΩ・cm 飽和磁束密度BS 14400 Gauss 保磁力HC 0.11 Oe 飽和磁化MS 153 emu /g
Next, the coated powder is hot
Sinter by Toppress to measure physical properties and magnetic properties
It was The hot press conditions are 500 ° C and pressure of 3 ton /
cm2 And As a result, Fe-Si alloy and Fe-N, respectively
Fe on the surface of powder particles of i alloy and Fe-Si-Al alloyFour
The particles on which N is formed are the matrix of Mn-Zn ferrite.
A composite sintered body in a state of being dispersed in the cast was produced. Fe
-The physical properties and characteristics of the sintered body using the Si alloy are as follows.
It was as shown in. Density 7.5 g / cm3  Initial permeability μi 1350 Effective permeability μeff 500 Specific resistance ρ 0.85 μΩ ・ cm Saturation magnetic flux density BS 14400 Gauss Coercive force HC 0.11 Oe Saturation magnetization MS 153 emu / g

【0022】また、Fe−Ni合金を用いた場合にMS
が140emu /g、BSが12700Gauss であり、ま
たFe−Si−Al合金を用いた場合にMSが138emu
/g、BSが13000Gauss であった他はFe−Si
合金を用いた場合と同等な値を示した。以上のように、
この実施例では実施例1の場合より圧粉磁芯の代替材料
として優れた特性を有する高密度焼結体が得られたこと
が確認された。耐環境試験についても実施例1と同様に
良好な結果が得られた。
When Fe--Ni alloy is used, M S
Is 140 emu / g, B S is 12700 Gauss, and M S is 138 emu when Fe—Si—Al alloy is used.
Fe / Si, except that Bs / g and B S were 13,000 Gauss
It showed the same value as when the alloy was used. As mentioned above,
In this example, it was confirmed that a high density sintered body having excellent characteristics as an alternative material to the dust core was obtained as compared with the case of Example 1. Also in the environment resistance test, good results were obtained as in Example 1.

【0023】[0023]

【発明の効果】この発明によれば、全く新規かつ実用的
な窒化鉄系高密度焼結体を提供することができる。この
焼結体は磁性体粒子が高電気抵抗及び高飽和磁化を有し
ており、マトリックスが絶縁体セラミックス材料で形成
されているため、全体の損失が小さく、さらに耐候性及
び機械的強度に優れている。従って、高周波数域用の磁
芯材料としての圧粉磁芯の代替材料として好適である。
According to the present invention, a completely new and practical iron nitride-based high-density sintered body can be provided. In this sintered body, the magnetic particles have high electrical resistance and high saturation magnetization, and the matrix is made of an insulating ceramic material, so the overall loss is small, and the weather resistance and mechanical strength are excellent. ing. Therefore, it is suitable as a substitute material for a dust core as a core material for a high frequency range.

【図面の簡単な説明】[Brief description of drawings]

【図1】鉄−窒素系の状態図。FIG. 1 is a state diagram of an iron-nitrogen system.

【図2】飽和磁化の経時変化を示す図。FIG. 2 is a diagram showing a change with time of saturation magnetization.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B22F 1/02 E C23C 8/26 7516−4K (72)発明者 山本 直樹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 太田 潤 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location B22F 1/02 E C23C 8/26 7516-4K (72) Inventor Naoki Yamamoto One Marunouchi, Chiyoda-ku, Tokyo 1-2 1-2 Nihon Steel Pipe Co., Ltd. (72) Inventor Jun Ota 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Fe4 N若しくはFe162 を主体とす
る粒子、又は内部がFe若しくはFe合金で外周部がF
4 N若しくはFe162 を主体とする粒子が、絶縁体
セラミックス材料のマトリックス中に分散した状態の複
合焼結体からなることを特徴とする窒化鉄系高密度焼結
体。
1. Particles mainly composed of Fe 4 N or Fe 16 N 2 , or Fe or Fe alloy in the inside and F in the outer peripheral portion.
An iron nitride-based high-density sintered body, characterized in that particles mainly composed of e 4 N or Fe 16 N 2 are composed of a composite sintered body in a state of being dispersed in a matrix of an insulating ceramic material.
【請求項2】 前記絶縁体セラミックス材料のマトリッ
クス中に分散した粒子は、内部がFe−Si合金、Fe
−Ni合金、及びFe−Si−Al合金から選択される
合金であり外周部がFe4 N若しくはFe162 を主体
とするものであることを特徴とする請求項1に記載の窒
化鉄系高密度焼結体。
2. The particles dispersed in the matrix of the insulating ceramic material are Fe--Si alloy, Fe
-Ni alloy, and iron nitride according to claim 1, the outer peripheral portion is an alloy selected from Fe-Si-Al alloy is characterized in that mainly the Fe 4 N or Fe 16 N 2 High density sintered body.
JP3336908A 1990-12-25 1991-12-19 High density sintered product of iron nitride Pending JPH069273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3336908A JPH069273A (en) 1990-12-25 1991-12-19 High density sintered product of iron nitride

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-406144 1990-12-25
JP40614490 1990-12-25
JP3336908A JPH069273A (en) 1990-12-25 1991-12-19 High density sintered product of iron nitride

Publications (1)

Publication Number Publication Date
JPH069273A true JPH069273A (en) 1994-01-18

Family

ID=26575613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3336908A Pending JPH069273A (en) 1990-12-25 1991-12-19 High density sintered product of iron nitride

Country Status (1)

Country Link
JP (1) JPH069273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045116A1 (en) * 1999-12-14 2001-06-21 Robert Bosch Gmbh Weakly-magnetic sintered composite-material and a method for production thereof
JP2012069811A (en) * 2010-09-24 2012-04-05 Toda Kogyo Corp Ferromagnetic particle powder, method of manufacturing the same, anisotropic magnet, and bond magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045116A1 (en) * 1999-12-14 2001-06-21 Robert Bosch Gmbh Weakly-magnetic sintered composite-material and a method for production thereof
US6726740B1 (en) 1999-12-14 2004-04-27 Robert Bosch Gmbh Weakly-magnetic sintered composite-material and a method for production thereof
JP2012069811A (en) * 2010-09-24 2012-04-05 Toda Kogyo Corp Ferromagnetic particle powder, method of manufacturing the same, anisotropic magnet, and bond magnet
TWI509643B (en) * 2010-09-24 2015-11-21 Toda Kogyo Corp A strong magnetic particle powder and a method for producing the same, an anisotropic magnet and a bonded magnet

Similar Documents

Publication Publication Date Title
JP4971886B2 (en) Soft magnetic powder, soft magnetic molded body, and production method thereof
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JPH0421739A (en) Composite and its manufacture
JP2006351946A (en) Method for manufacturing soft magnetic compact
CN110997187B (en) Method for manufacturing dust core and method for manufacturing electromagnetic component
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JPH05222483A (en) Production of iron nitride based high density sintered compact
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP2009158802A (en) Manufacturing method of dust core
JP2000232014A (en) Manufacture of composite magnetic material
JPH04217305A (en) Manufacture of iron-nitride-based high-density sintered body
JP2002256304A (en) Composite magnetic material and its manufacturing method
JPS63117406A (en) Amorphous alloy dust core
JPH069273A (en) High density sintered product of iron nitride
JPS63115309A (en) Magnetic alloy powder
JPH07135106A (en) Magnetic core
JPH0547541A (en) Manufacture of magnetic core
EP0541887B1 (en) Method of making a composite soft magnetic material and composite soft magnetic material
JPH04225204A (en) Dust core
JPS57140307A (en) Manufacture of metallic nitride powder for magnetic recording
JPS5698401A (en) Ferromagnetic metal powder with improved oxidation stability and preparation thereof
JPH0582328A (en) Iron nitride series high density sintered material
JP2006324612A (en) Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder
JPH0525581A (en) Manufacture of iron nitride base high density sintered body
JP2004156102A (en) Production method for high-density high-resistance composite soft magnetic sintered material