JP2006351946A - Method for manufacturing soft magnetic compact - Google Patents

Method for manufacturing soft magnetic compact Download PDF

Info

Publication number
JP2006351946A
JP2006351946A JP2005178078A JP2005178078A JP2006351946A JP 2006351946 A JP2006351946 A JP 2006351946A JP 2005178078 A JP2005178078 A JP 2005178078A JP 2005178078 A JP2005178078 A JP 2005178078A JP 2006351946 A JP2006351946 A JP 2006351946A
Authority
JP
Japan
Prior art keywords
soft magnetic
particles
magnetic
molded body
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005178078A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shibata
一喜 柴田
Shinji Uchida
真治 内田
Sanehiro Okuda
修弘 奥田
Toyoshige Sakaguchi
豊重 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005178078A priority Critical patent/JP2006351946A/en
Publication of JP2006351946A publication Critical patent/JP2006351946A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite soft magnetic compact that can attain three topics of high magnetic permeability, reduction in the decrease in magnetic permeability due to a DC-superimposed magnetic field, and low loss, at the same time. <P>SOLUTION: In the method for manufacturing the soft magnetic compact, a heat treatment is carried out, after composite soft magnetic particles have been compacted by forming a thin film of an electric insulating nonmagnetic material, on the surface of a soft magnetic particle by atomic layer deposition method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軟磁性成形体の製造方法に関し、より詳しくは、電気絶縁膜で被覆した複合軟磁性粒子を圧粉成形した軟磁性成形体の製造方法に関する。本発明の製造方法により製造された軟磁性成形体は、スイッチング電源などに搭載されるトランスやリアクトルなどの磁気部品に適している。   The present invention relates to a method for manufacturing a soft magnetic molded body, and more particularly to a method for manufacturing a soft magnetic molded body obtained by compacting composite soft magnetic particles coated with an electrical insulating film. The soft magnetic molded body manufactured by the manufacturing method of the present invention is suitable for magnetic parts such as a transformer and a reactor mounted on a switching power supply.

近年、各種電子機器は小型・軽量化されてきており、なおかつ、低消費電力化が求められている。これに伴い、電子機器に搭載される電源として高効率かつ小型のスイッチング電源に対する要求が高まっている。特にノート型パソコンや携帯電話等の小型情報機器、薄型CRT、フラットパネルディスプレイ等に用いられるスイッチング電源では、小型・薄型化が強く求められている。   In recent years, various electronic devices have been reduced in size and weight, and low power consumption has been demanded. In connection with this, the request | requirement with respect to a highly efficient and small switching power supply as a power supply mounted in an electronic device is increasing. In particular, switching power supplies used for small information devices such as notebook computers and mobile phones, thin CRTs, flat panel displays, and the like are strongly required to be small and thin.

しかし、スイッチング電源では、その主要な構成部品であるトランスやリアクトルなどの磁気部品が大きな体積を占めており、スイッチング電源を小型・薄型化するためには、これら磁気部品の体積を縮小することが必要不可欠となっていた。   However, magnetic components such as transformers and reactors, which are the main components of switching power supplies, occupy a large volume. To reduce the size and thickness of switching power supplies, the volume of these magnetic components can be reduced. It was indispensable.

従来、このような磁気部品には、センダストやパーマロイ等の金属磁性材料や、フェライト等の酸化物磁性材料が使用されていた。   Conventionally, metal magnetic materials such as Sendust and Permalloy, and oxide magnetic materials such as ferrite have been used for such magnetic parts.

金属磁性材料は、一般に高い飽和磁束密度と透磁率を有するが、電気抵抗率が低いため、特に高周波数領域では渦電流損失が大きくなってしまう。スイッチング電源では、高効率化および小型化のため回路を高周波駆動することが行われているが、上記の渦電流損失の影響から高周波駆動できないため金属磁性材料をスイッチング電源用の磁気部品に使用することは困難である。   Metallic magnetic materials generally have a high saturation magnetic flux density and magnetic permeability, but have low electrical resistivity, so that eddy current loss is particularly large in the high frequency region. In switching power supplies, circuits are driven at high frequency for high efficiency and downsizing, but metal magnetic materials are used for magnetic components for switching power supplies because they cannot be driven at high frequencies due to the effects of eddy current loss. It is difficult.

一方、フェライトに代表される酸化物磁性材料は、金属磁性材料に比べ電気抵抗率が高いため、高周波数領域でも発生する渦電流損失が小さい。しかしながら、トランスやリアクトルを小型化した場合、コイルに流す電流は同じでも磁心にかかる磁場は強くなってしまう。一般に、フェライトの飽和磁束密度は金属磁性材料に比べて小さく、スイッチング電源の磁気部品として使用した場合、上記の理由によりその小型化には限界がある。   On the other hand, an oxide magnetic material typified by ferrite has a higher electrical resistivity than a metal magnetic material, and therefore, an eddy current loss generated even in a high frequency region is small. However, when the transformer or the reactor is downsized, the magnetic field applied to the magnetic core becomes strong even if the current flowing through the coil is the same. In general, the saturation magnetic flux density of ferrite is smaller than that of a metal magnetic material, and when used as a magnetic component of a switching power supply, there is a limit to downsizing for the above reasons.

つまり、いずれの材料を用いても、スイッチング電源の磁気部品に対して要求される、高周波駆動と小型化の双方を満足させることは困難となっていた。   That is, regardless of which material is used, it has been difficult to satisfy both the high frequency driving and the miniaturization required for the magnetic components of the switching power supply.

最近、金属磁性材料および酸化物磁性材料の両者の長所を有する磁性材料として、1〜10μmの粒子からなる金属磁性材の表面をM-FexO4(但しM=Ni、Mn、Zn、x≦2)で表されるスピネル組成の金属酸化物磁性材で被覆してなる高密度焼結磁性体が提案されている(例えば、特許文献1参照)。特許文献1では、湿式フェライト製造法によりフェライトで金属磁性材の表面を被覆した後、水素または水素+窒素の還元性雰囲気中で熱処理してフェライトの完全な被覆を形成している。 Recently, as a magnetic material having the advantages of both a metal magnetic material and an oxide magnetic material, the surface of a metal magnetic material composed of particles of 1 to 10 μm has been changed to M-Fe x O 4 (where M = Ni, Mn, Zn, x There has been proposed a high-density sintered magnetic body coated with a metal oxide magnetic material having a spinel composition represented by ≦ 2) (see, for example, Patent Document 1). In Patent Document 1, the surface of a metal magnetic material is coated with ferrite by a wet ferrite manufacturing method, and then heat-treated in a reducing atmosphere of hydrogen or hydrogen + nitrogen to form a complete coating of ferrite.

さらに、表面に超音波励起フェライトめっきによって形成されたフェライト層の被覆を有する金属または金属間化合物の強磁性体微粒子粉末が圧縮成形され、前記フェライト層を介して前記強磁性体粒子間に磁路を形成するものであることを特徴とする複合磁性材料の提案もある(例えば、特許文献2参照。)。   Further, a ferromagnetic fine particle powder of a metal or an intermetallic compound having a ferrite layer coating formed by ultrasonic excitation ferrite plating on the surface is compression-molded, and a magnetic path is formed between the ferromagnetic particles via the ferrite layer. There is also a proposal of a composite magnetic material that is characterized by forming (see, for example, Patent Document 2).

特開昭56−38402号公報JP-A-56-38402 国際公開第03/015109号パンフレットWO03 / 015109 pamphlet

フェライト被覆軟磁性粉末成形体を大気中で熱処理すると成形体の透磁率は増大する。   When the ferrite-coated soft magnetic powder compact is heat-treated in the air, the magnetic permeability of the compact increases.

しかし、実際にはインダクタには直流磁場が印加される。これはインダクタコイル電極に直流電流が重畳して流れるからである。被膜のフェライトはこの直流磁場のため、磁気飽和に近づきフェライト自身の透磁率が低下する。そのため、成形体透磁率も低下する。   However, in practice, a DC magnetic field is applied to the inductor. This is because a direct current flows superimposed on the inductor coil electrode. Since the ferrite of the film is a direct current magnetic field, the magnetic permeability of the ferrite itself decreases as it approaches magnetic saturation. For this reason, the magnetic permeability of the molded body also decreases.

磁気部品用磁性材料としては、直流磁場が印加されても成形磁性体透磁率が低下しないあるいは低下量が少ないことが望まれている。   As a magnetic material for magnetic parts, it is desired that the magnetic permeability of the molded magnetic material does not decrease or the amount of decrease is small even when a DC magnetic field is applied.

しかし、軟磁性粉の組成を変えて軟磁性粉の直流重畳特性を改善することで直流磁場印加による透磁率低下を改善しようとすると、透磁率自体が低下してしまう。また、インダクタの損失も最小にする必要がある。すなわち、高い透磁率、直流重畳磁場による透磁率低下の低減及び低い損失という3つの課題を同時に達成することが必要であるが、フェライト被覆軟磁性粉末成形体ではこの3つの課題を同時に達成することはできなかった。   However, if the composition of the soft magnetic powder is changed to improve the DC superposition characteristics of the soft magnetic powder to improve the permeability decrease due to the application of the DC magnetic field, the permeability itself is decreased. It is also necessary to minimize inductor loss. In other words, it is necessary to simultaneously achieve the three problems of high magnetic permeability, reduction of magnetic permeability reduction due to DC superposition magnetic field, and low loss, but in the ferrite-coated soft magnetic powder compact, these three problems must be achieved simultaneously. I couldn't.

本発明者らはこのような状況に鑑み、皮膜のフェライトの代わりに、高周波域における渦電流の発生を防ぐために電気抵抗の高い材料として非磁性材料を用いることを試みた。   In view of such circumstances, the present inventors have attempted to use a non-magnetic material as a material having a high electrical resistance in order to prevent the generation of eddy currents in a high frequency region, instead of the ferrite of the film.

フェライト被覆軟磁性粉末と同等の被膜厚さ(約100nm)の非磁性材料の被膜を有する軟磁性粉末を用いた成形体は、成形体透磁率が大きく低下してしまう。   A compact using a soft magnetic powder having a coating of a non-magnetic material having a film thickness (about 100 nm) equivalent to that of the ferrite-coated soft magnetic powder has a significant decrease in the magnetic permeability of the compact.

本発明者らはさらに鋭意検討の結果、被膜として電気絶縁性非磁性材料を用いて、高い透磁率、直流重畳磁場による透磁率低下の低減及び低い損失という3つの課題を同時に達成できる軟磁性成形体の製造方法に到達した。   As a result of further intensive studies, the inventors of the present invention have made use of an electrically insulating non-magnetic material as a coating, and soft magnetic molding that can simultaneously achieve the three problems of high magnetic permeability, reduction of magnetic permeability reduction due to DC superimposed magnetic field, and low loss. Reached the body manufacturing method.

すなわち、本発明の軟磁性成形体の製造方法は、軟磁性粒子の表面にアトミック・レイヤ・デポジション法で電気絶縁性非磁性材料からなる薄膜を形成してなる複合軟磁性粒子を圧粉成形後、急速熱処理することを特徴とする。   That is, the method for producing a soft magnetic molded body of the present invention comprises compacting composite soft magnetic particles obtained by forming a thin film made of an electrically insulating nonmagnetic material by an atomic layer deposition method on the surface of soft magnetic particles. Thereafter, rapid heat treatment is performed.

本発明によれば、フェライト被覆軟磁性粉末を用いた成形体では得られない高い透磁率、直流重畳磁場による透磁率低下の低減及び低い損失の軟磁性成形体を得ることができる。   According to the present invention, it is possible to obtain a soft magnetic molded body having a high magnetic permeability that cannot be obtained by a molded body using a ferrite-coated soft magnetic powder, a reduction in permeability decrease due to a DC superimposed magnetic field, and a low loss.

本発明において、軟磁性粒子としては、例えば純鉄、鉄系合金、鉄−ケイ素合金、パーマロイをはじめとした鉄−ニッケル合金、センダスト合金、コバルトおよびコバルト系合金、ニッケルおよびニッケル合金、各種アモルファス合金などの各種の軟磁性材料からなる粒子、粒子の粒界に酸化物や炭化物などの不純物を析出させた軟磁性粒子を挙げることができ、パーマロイからなる粒子、FeCo合金からなる粒子、アモルファス合金からなる粒子、鉄−珪素−アルミニウムからなる粒子、粒子の粒界に酸化物や炭化物などの不純物を析出させた軟磁性粒子から選ばれるものであることが好ましい。粒子の粒界に酸化物や炭化物などの不純物を析出させた粒子としては、FeTaC、FeAlOなどを例示できる。   In the present invention, the soft magnetic particles include, for example, pure iron, iron-based alloys, iron-silicon alloys, iron-nickel alloys such as permalloy, sendust alloys, cobalt and cobalt-based alloys, nickel and nickel alloys, and various amorphous alloys. Examples include particles made of various soft magnetic materials such as soft magnetic particles in which impurities such as oxides and carbides are precipitated at the grain boundaries, particles made of permalloy, particles made of FeCo alloy, and amorphous alloys. The particles are preferably selected from the following: particles made of iron-silicon-aluminum; and soft magnetic particles in which impurities such as oxides and carbides are precipitated at the grain boundaries of the particles. Examples of the particles in which impurities such as oxides and carbides are precipitated at the grain boundaries of the particles include FeTaC and FeAlO.

パーマロイはNi組成、Mo、Cu組成などの添加元素組成など種々の組成のものがあるが、Ni78Mo5Feパーマロイ(Niが78重量%、Moが5重量%、残りがFeからなるパーマロイ)をはじめとして種々の組成のパーマロイのいずれも用いることができる。   There are various types of permalloy such as Ni, Mo, Cu and other additive element compositions, including Ni78Mo5Fe permalloy (78% by weight of Ni, 5% by weight of Mo, and the rest made of Fe). Any of the following permalloys can be used.

軟磁性粒子は、これらの材料を、ガス還元法、固体還元法、熱分解法、電解法、機械的粉砕法、噴霧法(アトマイズ法)などの各種製法によって粒子状とすることにより得られる。軟磁性粒子の形状は、球状、粒状、楕円体状、円板状、フレーク状、針状、鋭角状、樹枝状、繊維状、板状、立方体状その他各種形状が可能であり、これらを単独または複数種組み合わせて用いることができる。圧縮成形によって形状の変形を生じてもよい。軟磁性粒子の粒子サイズは、粒子内部での渦電流の発生が少なく、加圧成形時に電気絶縁性非磁性材料からなる被覆の損傷が少なく、かつ高い電気抵抗率を保った成形体が容易に得られるような範囲とする。粒子内部での渦電流の発生が少なく、加圧成形時の電気絶縁性非磁性材料からなる被覆の損傷を低減し、かつ高い電気抵抗率の成形体を得るには、平均粒子径が小さい方が有利である一方で、平均粒子径があまり小さくなると、磁気特性の確保および必要な透磁率の獲得が困難になる。したがって、軟磁性粒子の粒子サイズは、100nm〜300μmが好ましく、1μm〜30μmの範囲がさらに好ましい。   Soft magnetic particles can be obtained by making these materials into particles by various production methods such as a gas reduction method, a solid reduction method, a thermal decomposition method, an electrolysis method, a mechanical pulverization method, and a spray method (atomization method). The shape of the soft magnetic particles can be spherical, granular, ellipsoidal, disc-like, flake-like, needle-like, acute-angled, dendritic, fiber-like, plate-like, cubic or other various shapes, and these can be used alone. Alternatively, a plurality of types can be used in combination. The shape may be deformed by compression molding. The particle size of soft magnetic particles is small in the generation of eddy currents inside the particles, less damage to the coating made of electrically insulating nonmagnetic material during pressure molding, and easy to form with high electrical resistivity. The range is such that it can be obtained. To reduce the damage of the coating made of an electrically insulating nonmagnetic material during pressure molding, and to produce a compact with high electrical resistivity, the eddy current inside the particle is small. On the other hand, if the average particle size is too small, it becomes difficult to secure the magnetic properties and obtain the necessary magnetic permeability. Therefore, the particle size of the soft magnetic particles is preferably 100 nm to 300 μm, and more preferably 1 μm to 30 μm.

電気絶縁性非磁性材料としては、金属酸化物及び金属窒化物を挙げることができ、金属酸化物としては酸化アルミニウム、酸化ケイ素などを例示でき、金属窒化物としては窒化アルミニウム、窒化ケイ素などを例示できる。   Examples of electrically insulating nonmagnetic materials include metal oxides and metal nitrides. Examples of metal oxides include aluminum oxide and silicon oxide. Examples of metal nitrides include aluminum nitride and silicon nitride. it can.

本発明においては、軟磁性粒子表面にこの電気絶縁性非磁性材料からなる膜を厚さ20nm以下、好ましくは1〜20nmの厚さで形成する。20nmを超える厚さの膜を形成すると、得られる複合磁性体の透磁率が低下するので好ましくない。   In the present invention, a film made of this electrically insulating nonmagnetic material is formed on the soft magnetic particle surface with a thickness of 20 nm or less, preferably 1 to 20 nm. If a film having a thickness exceeding 20 nm is formed, the magnetic permeability of the obtained composite magnetic material is lowered, which is not preferable.

本発明においては、軟磁性粒子表面の電気絶縁性非磁性材料からなる膜の形成にALD(アトミック・レイヤ・デポジション)法を用いる。   In the present invention, an ALD (Atomic Layer Deposition) method is used to form a film made of an electrically insulating nonmagnetic material on the surface of soft magnetic particles.

ALD法は、膜の構成原子を含む分子を1原子層ずつ成長表面に付着させながら薄膜を成長させる膜形成法である。そのために膜厚の高精度の制御が可能であり、厚み20nm以下の薄膜を再現性よく成膜することができる。さらに、軟磁性粒子表面に凹凸が形成されていても凹凸に沿ってその凹凸と同一形状に膜が形成され、均一な厚みの膜を凹凸表面に形成できる。さらに、ALD法では一層ずつ化合物を粒子表面に付着させては化学反応により膜を形成するため、膜は緻密で電気絶縁性の高い膜となる。   The ALD method is a film formation method in which a thin film is grown while attaching molecules including constituent atoms of the film to the growth surface one layer at a time. Therefore, the film thickness can be controlled with high accuracy, and a thin film having a thickness of 20 nm or less can be formed with good reproducibility. Furthermore, even if unevenness is formed on the surface of the soft magnetic particles, a film is formed along the unevenness in the same shape as the unevenness, and a film having a uniform thickness can be formed on the uneven surface. Further, in the ALD method, a compound is deposited on the particle surface one by one and a film is formed by a chemical reaction. Therefore, the film becomes a dense and highly electrically insulating film.

成膜に当たっては、粒子同士が接触している部分、成膜室の床面、壁面に当たっている部分には膜が形成されないので、成膜中に粒子が少しずつ転がるような運動をさせれば粒子表面全体に薄膜が形成される。   During film formation, no film is formed on the part where the particles are in contact with each other, the floor surface of the film formation chamber, or the part where the particle is in contact with the wall surface. A thin film is formed on the entire surface.

これらの特徴により、ALD法によれば、膜厚が20nm以下という薄膜でも軟磁性粒子表面全体に均一な厚みで電気絶縁性の高い膜を再現性よく形成できる。ALD法により電気絶縁性非磁性材料からなる膜を形成すれば、薄くても電気絶縁性を確保できるが、電気絶縁性をより十分に確保するためには1nm以上の厚みであることが好ましい。   Due to these characteristics, according to the ALD method, even a thin film having a film thickness of 20 nm or less can be formed with high reproducibility with a uniform thickness over the entire surface of the soft magnetic particles. If a film made of an electrically insulating nonmagnetic material is formed by the ALD method, it is possible to ensure electrical insulation even if it is thin. However, in order to ensure sufficient electrical insulation, the thickness is preferably 1 nm or more.

以下に、電気絶縁性非磁性材料として酸化アルミニウムの膜をALD法で形成する場合について説明する。   The case where an aluminum oxide film is formed as an electrically insulating nonmagnetic material by the ALD method will be described below.

酸化アルミニウムの膜は塩化アルミニウムと水を原料にして成膜する。   The aluminum oxide film is formed using aluminum chloride and water as raw materials.

例えば、Arなどの不活性ガスを搬送ガスとして用い、このガスを加熱した塩化アルミニウムに通して成膜室に送り込むと、蒸発した塩化アルミニウムがArと共に成膜室に搬送され、成膜室の中に置いた軟磁性粒子表面に付着する。付着は1原子層のみである。   For example, when an inert gas such as Ar is used as a carrier gas, and this gas is passed through heated aluminum chloride and sent into the film formation chamber, the evaporated aluminum chloride is transferred to the film formation chamber together with Ar, It adheres to the surface of soft magnetic particles placed on the surface. The adhesion is only one atomic layer.

次にArを加熱した水に通して成膜室に送り込むと、加熱されて生成した水蒸気がArと共に成膜室に搬送され、軟磁性粒子表面に付着した塩化アルミニウムと接触し、その場で化学反応が生じ、酸化アルミニウムと塩化水素が発生する。酸化アルミニウムは粒子表面に1原子層のみ形成され、塩化水素は搬送ガスとともに軟磁性粒子表面から取り除かれる。すなわち、この工程により、軟磁性粒子表面に酸化アルミニウム膜が1原子層形成される。   Next, when Ar is passed through heated water and sent into the film forming chamber, the water vapor generated by heating is transferred to the film forming chamber together with Ar, and comes into contact with the aluminum chloride adhering to the surface of the soft magnetic particles. Reaction occurs, generating aluminum oxide and hydrogen chloride. Aluminum oxide forms only one atomic layer on the particle surface, and hydrogen chloride is removed from the soft magnetic particle surface together with the carrier gas. That is, this process forms one atomic layer of an aluminum oxide film on the surface of the soft magnetic particles.

この工程を繰り返すことにより、軟磁性粒子表面に酸化アルミニウムの薄膜を形成することができる。例えば、10nmの酸化アルミニウムの薄膜形成には上記の工程を約300回繰り返せばよい。   By repeating this step, an aluminum oxide thin film can be formed on the surface of the soft magnetic particles. For example, the above process may be repeated about 300 times to form a 10 nm aluminum oxide thin film.

水の代わりに窒素を含む分子を用いて同様にすると、酸化物の代わりに窒化物からなる膜を形成することができる。窒化物も非磁性で電気抵抗が高く、軟磁性粒子の被膜として用いることができる。例えば、水蒸気の代わりにアンモニアを用いて上記と同様にすると窒化アルミニウムの薄膜を形成することができる。   When molecules containing nitrogen are used instead of water, a film made of nitride can be formed instead of oxide. Nitride is also non-magnetic and has high electrical resistance, and can be used as a coating of soft magnetic particles. For example, an aluminum nitride thin film can be formed by using ammonia instead of water vapor in the same manner as described above.

こうして得られた電気絶縁性非磁性被膜を有する軟磁性粒子を圧粉成形する。
圧粉成形方法としては、金型を用いて、例えば上下方向から加圧圧縮する単軸圧縮成形、圧縮圧延成形、電気絶縁性非磁性被膜を有する軟磁性粒子をゴム型などにつめて全方向から加圧圧縮する静圧圧縮成形、これらを温間で行う温間単軸圧縮成形、温間静圧圧縮成形(WIP)、熱間で行う熱間単軸圧縮成形および熱間静圧圧縮成形(HIP)などを用いることができる。これらの圧粉成形は、1回または複数回行ってもよく、その際異なる圧縮成形方法を用いてもよい。圧縮温度は、成形性が向上する温度であって、電気絶縁性非磁性被膜が保たれる温度であれば特に制限させるものではない。成形が容易であり、かつ電気絶縁性非磁性被膜が保たれる温度は、室温以上600℃未満である。加熱手段としては、抵抗加熱、輻射加熱、熱媒による伝導加熱、誘導加熱、高周波誘導加熱、放電プラズマ加熱などの当該技術において知られている任意の加熱手段を用いることができる。圧縮圧力は、良好な成形体が得られ、電気絶縁性非磁性被膜が保たれる圧力であれば特に制限されない。例えば490〜2352MPa、好ましくは784〜1960MPaである。
The soft magnetic particles having the electrically insulating nonmagnetic coating film thus obtained are compacted.
As a compacting method, using a mold, for example, uniaxial compression molding in which pressure is compressed from above and below, compression rolling molding, soft magnetic particles having an electrically insulating nonmagnetic coating are packed in a rubber mold, etc. in all directions Compressed and compressed hydrostatic compression molding, warm uniaxial compression molding that performs warm, warm static pressure compression molding (WIP), hot uniaxial compression molding and hot static pressure compression molding performed hot (HIP) or the like can be used. These compacting may be performed once or a plurality of times, and different compression molding methods may be used. The compression temperature is not particularly limited as long as it is a temperature at which the moldability is improved and the temperature at which the electrically insulating nonmagnetic coating can be maintained. Molding is easy and the temperature at which the electrically insulating nonmagnetic coating is maintained is not less than room temperature and less than 600 ° C. As the heating means, any heating means known in the art such as resistance heating, radiation heating, conduction heating with a heating medium, induction heating, high frequency induction heating, discharge plasma heating, etc. can be used. The compression pressure is not particularly limited as long as a good molded body can be obtained and the electrically insulating nonmagnetic film can be maintained. For example, it is 490-2352 MPa, Preferably it is 784-1960 MPa.

成形の際には、ステアリン酸塩、ワックスなどの潤滑剤、および成形のために、ポリビニルアルコール、セルロースなどの補助剤を用いることができる。しかし、これらは、加温時に成形体から揮発するなどして成形体に残留しないものであることが望ましい。   At the time of molding, a lubricant such as stearate and wax, and an auxiliary agent such as polyvinyl alcohol and cellulose can be used for molding. However, it is desirable that these do not remain in the molded body due to, for example, volatilization from the molded body when heated.

本発明においては、得られた圧粉成形体を熱処理する。熱処理することにより透磁率が高く(μ′(透磁率の実部)が大きく)、損失の小さい(μ″(透磁率の虚部)が小さい)成形体を得ることができる。熱処理の最高到達温度は600〜700℃であることが好ましい。最高到達温度が700℃を超えるとμ′も大きくなるが、μ″が大きくなりすぎ、損失が大きくなる。最高到達温度が600℃未満であるとμ′があまり大きくならない。μ′が大きく、μ″が小さくなるようにするために、熱処理の最高到達温度が600〜700℃であることが好ましい。   In the present invention, the obtained green compact is heat-treated. By heat treatment, it is possible to obtain a molded article having high permeability (μ ′ (real part of magnetic permeability) is large) and low loss (small μ ″ (imaginary part of magnetic permeability)). The temperature is preferably 600 to 700 ° C. When the maximum temperature reaches 700 ° C., μ ′ increases, but μ ″ becomes too large and loss increases. When the maximum temperature is less than 600 ° C., μ ′ does not become so large. In order to make μ ′ large and μ ″ small, it is preferable that the maximum temperature of heat treatment is 600 to 700 ° C.

最高到達温度の保持時間は最高到達温度が高いほど短くすることが好ましい。
最高到達温度が700℃の場合は保持時間が1〜20秒、675℃の場合は3〜60秒、650℃の場合は保持時間が10〜200秒、625℃の場合は30〜600秒、最高到達温度が600℃の場合は、最高到達温度保持時間が100〜2000秒であることが好ましい。また、最高到達温度が675〜700℃の場合は、最高到達温度保持時間が1〜60秒であることが好ましい。また、最高温度が650〜675℃の場合は最高到達温度保持時間が3〜200秒であることが好ましい。また、最高到達温度が625〜650℃の場合は、最高到達温度保持時間が10〜600秒であることが好ましい。また、最高到達温度が600〜625℃の場合は最高到達温度保持時間が30〜2000秒であることが好ましい。
It is preferable that the retention time of the maximum temperature is shorter as the maximum temperature is higher.
When the maximum temperature reached 700 ° C., the holding time is 1 to 20 seconds, when 675 ° C. is 3 to 60 seconds, when 650 ° C. is holding time 10 to 200 seconds, when 625 ° C. is 30 to 600 seconds, When the maximum attained temperature is 600 ° C., the maximum attained temperature holding time is preferably 100 to 2000 seconds. In addition, when the maximum attainment temperature is 675 to 700 ° C., the maximum attainment temperature holding time is preferably 1 to 60 seconds. When the maximum temperature is 650 to 675 ° C., it is preferable that the maximum temperature holding time is 3 to 200 seconds. Moreover, when the highest attained temperature is 625-650 degreeC, it is preferable that the highest attained temperature holding time is 10 to 600 seconds. In addition, when the maximum temperature is 600 to 625 ° C., it is preferable that the maximum temperature holding time is 30 to 2000 seconds.

本発明においては熱処理における昇温速度及び降温速度を300℃/minの速度で行うことが好ましい。昇温速度及び降温速度の上限は用いる熱処理装置の装置特性で決まる値である。   In the present invention, it is preferable that the temperature increase rate and the temperature decrease rate in the heat treatment are performed at a rate of 300 ° C./min. The upper limit of the heating rate and the cooling rate is a value determined by the device characteristics of the heat treatment device used.

本発明の方法で得られる圧粉成形体の熱処理物の2MHzにおけるμ′は140以上、直流重畳磁場印加時はμ′は130以上であれば問題ないが、相対損失係数は極力小さくする必要がある。   There is no problem as long as μ ′ at 2 MHz of the heat-treated product of the green compact obtained by the method of the present invention is 140 or more, and μ ′ is 130 or more when a DC superimposed magnetic field is applied, but it is necessary to make the relative loss coefficient as small as possible. is there.

その相対損失係数(μ″/(μ′))は4×10−4未満であることが好ましい。熱処理の最高到達温度、最高到達温度の保持時間、熱処理における昇温速度及び降温速度を上述のような範囲にすることによって、μ′、μ″、相対損失係数を上述の好ましい所望の範囲内のものとすることができる。 The relative loss coefficient (μ ″ / (μ ′) 2 ) is preferably less than 4 × 10 −4 . The maximum temperature reached in the heat treatment, the holding time of the maximum temperature, the rate of temperature increase and the rate of temperature decrease in the heat treatment are described above. By making these ranges, μ ′, μ ″, and the relative loss coefficient can be set within the above-mentioned preferable desired ranges.

熱処理の雰囲気は電気絶縁性非磁性材料が金属酸化物の場合は大気または酸素含有ガスが好適である。電気絶縁性非磁性材料が金属窒化物の場合は、大気、酸素含有ガス、窒素ガス、窒素含有ガスのいずれでもよい。   The heat treatment atmosphere is preferably air or an oxygen-containing gas when the electrically insulating nonmagnetic material is a metal oxide. When the electrically insulating nonmagnetic material is a metal nitride, any of air, oxygen-containing gas, nitrogen gas, and nitrogen-containing gas may be used.

以下に実施例を用いて本発明をさらに説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES The present invention will be further described below using examples, but the present invention is not limited to these examples.

[実施例1]
軟磁性粒子として水アトマイズ法により作製した平均粒子径8μmのNi78Mo5Feパーマロイ粒子粉末を用い、ALD法でAl薄膜を形成した。すなわち、Ni78Mo5Feパーマロイ粒子粉末を成膜室の円筒形サセプタの内側に置き、サセプタを円筒中心の周りを回転させ、粒子粉末が円筒形内壁を転がるようにした。この状態でパーマロイ粒子粉末を350℃に加熱した。
[Example 1]
An Al 2 O 3 thin film was formed by ALD method using Ni78Mo5Fe permalloy particle powder having an average particle diameter of 8 μm prepared by water atomization method as soft magnetic particles. That is, Ni78Mo5Fe permalloy particle powder was placed inside the cylindrical susceptor in the film forming chamber, and the susceptor was rotated around the center of the cylinder so that the particle powder rolled on the cylindrical inner wall. In this state, the permalloy particle powder was heated to 350 ° C.

一旦、成膜室内を真空にした後、搬送ガスとしてArを成膜室内に向けて流した。次いで、AlClを入れた原料室を230℃に加熱し、Arを原料室を通過した後に成膜室に流入するように流すと、原料室で蒸発したAlClはArと共に成膜室に搬送され、パーマロイ粒子粉末表面に付着した。付着は1原子層のみである。その後、搬送ガスを停止し、真空に引いた後、HOを入れた第2の原料室を130℃に加熱し、Arを第2の原料室を経由して成膜室に流入するように流すと、第2の原料室で蒸発したHOが成膜室に搬送され、パーマロイ粒子表面に付着したAlClに接触して化学反応を起こし、パーマロイ粒子表面にAlが1原子層形成され、同時に形成されたHClは搬送ガスと共に成膜室外に排出された。 Once the film formation chamber was evacuated, Ar was flowed into the film formation chamber as a carrier gas. Next, when the source chamber containing AlCl 3 is heated to 230 ° C. and Ar is allowed to flow into the deposition chamber after passing through the source chamber, the AlCl 3 evaporated in the source chamber is transferred to the deposition chamber together with Ar. And adhered to the surface of the permalloy particles. The adhesion is only one atomic layer. After that, after the carrier gas is stopped and vacuumed, the second source chamber containing H 2 O is heated to 130 ° C. so that Ar flows into the film formation chamber via the second source chamber. The H 2 O evaporated in the second raw material chamber is transported to the film forming chamber and contacted with AlCl 3 adhering to the surface of the permalloy particles to cause a chemical reaction. Al 2 O 3 is 1 on the surface of the permalloy particles. An atomic layer was formed, and the simultaneously formed HCl was discharged out of the film formation chamber together with the carrier gas.

このようなAlClの搬送とHOの搬送を繰り返すことによりパーマロイ粒子表面に10nmの膜厚のAl被膜を形成した。 By repeating such transport of AlCl 3 and transport of H 2 O, an Al 2 O 3 film having a thickness of 10 nm was formed on the surface of the permalloy particles.

このAl被覆パーマロイ粒子粉末をプレス圧力1568MPa(16トン重/cm)で内径3mm、外径8mm、厚さ0.3mmのトロイダル状に圧縮成形した。 This Al 2 O 3 coated permalloy particle powder was compression-molded into a toroidal shape having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm at a press pressure of 1568 MPa (16 ton weight / cm 2 ).

この成形体を大気中で、最高到達温度700℃、最高到達温度保持時間1秒、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。   This molded body was subjected to a rapid heat treatment in air at a maximum temperature of 700 ° C., a maximum temperature holding time of 1 second, a heating rate and a cooling rate of 300 ° C./min.

こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。   It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.

得られた成形体の2MHzにおけるμ′は160、μ″は9であった。このときの相対損失係数は3.5×10−4であった。また、直流重畳磁場が500A/mのときのμ′は150であった。 The obtained compact had a μ ′ of 160 at 2 MHz and a μ ″ of 9. The relative loss factor at this time was 3.5 × 10 −4 . When the DC superimposed magnetic field was 500 A / m. The μ ′ of this was 150.

[実施例2]
実施例1と同様にして、平均粒子径8μmのNi78Mo5Feパーマロイ粒子粉末の表面にALD法で10nmの膜厚のAl被膜を形成し、内径3mm、外径8mm、厚さ0.3mmのトロイダル状成形体を得た。
[Example 2]
In the same manner as in Example 1, an Al 2 O 3 coating having a thickness of 10 nm was formed on the surface of Ni 78 Mo 5 Fe permalloy particles having an average particle size of 8 μm by the ALD method, and the inner diameter was 3 mm, the outer diameter was 8 mm and the thickness was 0.3 mm A toroidal shaped body was obtained.

この成形体を大気中で、最高到達温度650℃、最高到達温度保持時間60秒、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。   This compact was subjected to a rapid heating treatment in the atmosphere at a maximum temperature of 650 ° C., a maximum temperature holding time of 60 seconds, a heating rate and a cooling rate of 300 ° C./min.

こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。   It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.

得られた成形体の2MHzにおけるμ′は155、μ″は8であった。このときの相対損失係数は3.3×10−4であった。また、直流重畳磁場が500A/mのときのμ′は147であった。 The obtained molded body had a μ ′ of 155 and a μ ″ of 8 at 2 MHz. The relative loss coefficient was 3.3 × 10 −4 . When the DC superposed magnetic field was 500 A / m, The μ ′ was 147.

[実施例3]
実施例1と同様にして、平均粒子径8μmのNi78Mo5Feパーマロイ粒子粉末の表面にALD法で10nmの膜厚のAl被膜を形成し、内径3mm、外径8mm、厚さ0.3mmのトロイダル状成形体を得た。
[Example 3]
In the same manner as in Example 1, an Al 2 O 3 coating having a thickness of 10 nm was formed on the surface of Ni 78 Mo 5 Fe permalloy particles having an average particle size of 8 μm by the ALD method, and the inner diameter was 3 mm, the outer diameter was 8 mm and the thickness was 0.3 mm A toroidal shaped body was obtained.

この成形体を大気中で、最高到達温度600℃、最高到達温度保持時間1000秒、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。   This compact was subjected to a rapid heat treatment in the atmosphere at a maximum temperature of 600 ° C., a maximum temperature holding time of 1000 seconds, a heating rate and a cooling rate of 300 ° C./min.

こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。   It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.

得られた成形体の2MHzにおけるμ′は140、μ″は6であった。このときの相対損失係数は3.1×10−4であった。また、直流重畳磁場が500A/mのときのμ′は135であった。 The obtained compact had a μ ′ of 140 MHz and a μ ″ of 6 at 2 MHz. The relative loss factor at this time was 3.1 × 10 −4 . When the DC superimposed magnetic field was 500 A / m The μ ′ was 135.

[実施例4]
実施例1で用いたと同様の平均粒子径8μmのNi78Mo5Feパーマロイ粒子粉末を用い、ALD法でAlN薄膜を形成した。すなわち、Ni78Mo5Feパーマロイ粒子粉末を成膜室の円筒形サセプタの内側に置き、サセプタを円筒中心の周りを回転させ、粒子粉末が円筒形内壁を転がるようにした。この状態でパーマロイ粒子粉末を350℃に加熱した。
[Example 4]
An AlN thin film was formed by the ALD method using Ni78Mo5Fe permalloy particle powder having an average particle diameter of 8 μm similar to that used in Example 1. That is, Ni78Mo5Fe permalloy particle powder was placed inside the cylindrical susceptor in the film forming chamber, and the susceptor was rotated around the center of the cylinder so that the particle powder rolled on the cylindrical inner wall. In this state, the permalloy particle powder was heated to 350 ° C.

一旦、成膜室内を真空にした後、搬送ガスとしてArを成膜室内に向けて流した。次いで、AlClを入れた原料室を230℃に加熱し、Arを原料室を通過した後に成膜室に流入するように流すと、原料室で蒸発したAlClはArと共に成膜室に搬送され、パーマロイ粒子粉末表面に付着した。付着は1原子層のみである。その後、搬送ガスを停止し、真空に引いた後、NHを入れた第2の原料室を経由して成膜室に流入するようにArを流すと、NHが成膜室に搬送され、パーマロイ粒子表面に付着したAlClに接触して化学反応を起こし、パーマロイ粒子表面にAlNが1原子層形成され、同時に形成されたHClは搬送ガスと共に成膜室外に排出された。 Once the film formation chamber was evacuated, Ar was flowed into the film formation chamber as a carrier gas. Next, when the source chamber containing AlCl 3 is heated to 230 ° C. and Ar is allowed to flow into the deposition chamber after passing through the source chamber, the AlCl 3 evaporated in the source chamber is transferred to the deposition chamber together with Ar. And adhered to the surface of the permalloy particles. The adhesion is only one atomic layer. Then, stop the carrier gas, after evacuated, the through the second raw material chamber containing the NH 3 flow Ar to flow into the film forming chamber, NH 3 is transported to the film forming chamber A chemical reaction was caused by contact with AlCl 3 adhering to the surface of the permalloy particles, one atomic layer of AlN was formed on the surface of the permalloy particles, and simultaneously formed HCl was discharged out of the film formation chamber together with the carrier gas.

このようなAlClの搬送とNHの搬送を繰り返すことによりパーマロイ粒子表面に10nmの膜厚のAlN被膜を形成した。 By repeating such transport of AlCl 3 and transport of NH 3 , an AlN film having a thickness of 10 nm was formed on the surface of the permalloy particles.

このAlN被覆パーマロイ粒子粉末をプレス圧力1568MPa(16トン重/cm)で内径3mm、外径8mm、厚さ0.3mmのトロイダル状に圧縮成形した。 This AlN-coated permalloy particle powder was compression-molded into a toroidal shape having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm at a press pressure of 1568 MPa (16 ton weight / cm 2 ).

この成形体を大気中で、最高到達温度700℃、最高到達温度保持時間1秒、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。   This molded body was subjected to a rapid heat treatment in air at a maximum temperature of 700 ° C., a maximum temperature holding time of 1 second, a heating rate and a cooling rate of 300 ° C./min.

こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。   It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.

得られた成形体の2MHzにおけるμ′は155、μ″は8であった。このときの相対損失係数は3.3×10−4であった。また、直流重畳磁場が500A/mのときのμ′は147であった。 The obtained molded body had a μ ′ of 155 and a μ ″ of 8 at 2 MHz. The relative loss coefficient was 3.3 × 10 −4 . When the DC superposed magnetic field was 500 A / m, The μ ′ was 147.

[比較例1]
実施例1で用いたと同様の平均粒子径8μmのNi78Mo5Feパーマロイ粒子粉末を用い、超音波励起フェライトめっき法によりフェライトめっき軟磁性粒子を以下のようにして作製した。
[Comparative Example 1]
Using the same Ni78Mo5Fe permalloy particle powder having an average particle diameter of 8 μm as used in Example 1, ferrite-plated soft magnetic particles were prepared by the ultrasonic excitation ferrite plating method as follows.

めっき反応液としてはFeCl+NiCl+ZnClの水溶液、酸化液としてはNaNO+NHOHを用いて超音波励起フェライトめっきを行い、フェライト組成(Ni0.5Zn0.5)Fe、めっき膜厚100nmのフェライトめっき軟磁性粒子を得た。 Ultrasound-excited ferrite plating is performed using an aqueous solution of FeCl 2 + NiCl 2 + ZnCl 2 as a plating reaction solution and NaNO 2 + NH 4 OH as an oxidizing solution, and a ferrite composition (Ni 0.5 Zn 0.5 ) Fe 2 O 4. Ferrite plated soft magnetic particles having a plating film thickness of 100 nm were obtained.

このフェライトめっきパーマロイ粒子粉末をプレス圧力1568MPa(16トン重/cm)で内径3mm、外径8mm、厚さ0.3mmのトロイダル状に圧縮成形した。 This ferrite-plated permalloy particle powder was compression-molded into a toroidal shape having an inner diameter of 3 mm, an outer diameter of 8 mm, and a thickness of 0.3 mm at a press pressure of 1568 MPa (16 ton weight / cm 2 ).

この成形体を窒素中で、最高到達温度550℃、最高到達温度保持時間1秒、加熱速度、冷却速度ともに300℃/minの急速加熱処理を行った。   This compact was subjected to a rapid heat treatment in nitrogen at a maximum temperature of 550 ° C., a maximum temperature holding time of 1 second, a heating rate and a cooling rate of 300 ° C./min.

こうして得られた成形体に付き、B−Hアナライザを用いて、周波数を変えながら透磁率を測定した。測定時の交流磁場振幅は40A/mである。   It attached to the molded object obtained in this way, and measured the magnetic permeability, changing a frequency using the BH analyzer. The AC magnetic field amplitude at the time of measurement is 40 A / m.

得られた成形体の2MHzにおけるμ′は151、μ″は11であった。このときの相対損失係数は4.8×10−4であった。また、直流重畳磁場が500A/mのときのμ′は108であった。 The obtained molded body had a μ ′ of 151 and 2 ″ of 11 at 2 MHz. The relative loss factor was 4.8 × 10 −4 . When the DC superposed magnetic field was 500 A / m. The μ ′ was 108.

各実施例と比較例から、実施例1,2,4ではμ′は比較例よりも大きく、μ″、相対損失係数は比較例より小さいことがわかる。実施例3はμ′は比較例よりも小さいものの、μ″が比較例よりも格段に小さくなっている。500m/Aの直流重畳磁場の下でのμ′は、各実施例とも比較例より格段に大きい、すなわち直流重畳磁場における透磁率の低下が少ないことがわかる。   From the examples and comparative examples, it can be seen that in Examples 1, 2 and 4, μ ′ is larger than that of the comparative example and μ ″ and the relative loss coefficient is smaller than that of the comparative example. In Example 3, μ ′ is larger than that of the comparative example. However, μ ″ is much smaller than that of the comparative example. It can be seen that μ ′ under a DC superimposed magnetic field of 500 m / A is much larger than the comparative example in each example, that is, there is little decrease in permeability in the DC superimposed magnetic field.

本発明の製造方法によれば、金属磁性材料および酸化物磁性材料の両者の長所を有し、かつ、μ′が大きくμ″が小さく、相対損失係数が小さく、また、直流重畳磁場における透磁率の低下が少ない成形体を得ることができる。このような成形体は特にノート型パソコンや携帯電話等の小型情報機器、薄型CRT、フラットパネルディスプレイ等に用いられるスイッチング電源に搭載されるトランスやリアクトルなどとして有用である。
According to the manufacturing method of the present invention, it has the advantages of both a metal magnetic material and an oxide magnetic material, has a large μ ′, a small μ ″, a small relative loss coefficient, and a magnetic permeability in a DC superimposed magnetic field. It is possible to obtain a molded body with a low drop in the power consumption, such as a transformer or a reactor mounted on a switching power source used for a small information device such as a notebook computer or a mobile phone, a thin CRT, a flat panel display, etc. It is useful as such.

Claims (7)

軟磁性粒子の表面にアトミック・レイヤ・デポジション法で電気絶縁性非磁性材料からなる薄膜を形成してなる複合軟磁性粒子を圧粉成形後、熱処理することを特徴とする軟磁性成形体の製造方法。   A composite soft magnetic particle comprising a composite soft magnetic particle formed by forming a thin film made of an electrically insulating nonmagnetic material on the surface of a soft magnetic particle by an atomic layer deposition method, and then heat-treating the powder. Production method. 電気絶縁性非磁性材料からなる薄膜の厚みが20nm以下であることを特徴とする請求項1記載の軟磁性成形体の製造方法。   2. The method for producing a soft magnetic molded body according to claim 1, wherein the thickness of the thin film made of the electrically insulating nonmagnetic material is 20 nm or less. 熱処理の最高到達温度が600〜700℃であることを特徴とする請求項1または2記載の軟磁性成形体の製造方法。   The method for producing a soft magnetic molded article according to claim 1 or 2, wherein the maximum temperature of heat treatment is 600 to 700 ° C. 熱処理の最高到達温度及び最高到達温度保持時間が675〜700℃、1〜60秒;650〜675℃、3〜200秒;625〜650℃、10〜600秒;または600〜625℃、30〜2000秒であることを特徴とする請求項1から3のいずれか1項に記載の軟磁性成形体の製造方法。   Maximum heat treatment temperature and maximum heat retention time 675-700 ° C, 1-60 seconds; 650-675 ° C, 3-200 seconds; 625-650 ° C, 10-600 seconds; or 600-625 ° C, 30- It is 2000 second, The manufacturing method of the soft-magnetic molded object of any one of Claim 1 to 3 characterized by the above-mentioned. 熱処理の加熱速度、冷却速度が300℃/min以上であることを特徴とする請求項1〜4のいずれか1項に記載の軟磁性成形体の製造方法。   The method for producing a soft magnetic molded body according to any one of claims 1 to 4, wherein a heating rate and a cooling rate of the heat treatment are 300 ° C / min or more. 軟磁性粒子がパーマロイからなる粒子、FeCo合金からなる粒子、アモルファス合金からなる粒子、鉄−珪素−アルミニウムからなる粒子、粒子の粒界に酸化物や炭化物などの不純物を析出させた軟磁性粒子から選ばれるものであることを特徴とする請求項1〜5のいずれか1項に記載の軟磁性成形体の製造方法。   Soft magnetic particles are particles made of permalloy, particles made of FeCo alloy, particles made of amorphous alloy, particles made of iron-silicon-aluminum, and soft magnetic particles in which impurities such as oxides and carbides are precipitated at the grain boundaries of the particles. The method for producing a soft magnetic molded body according to any one of claims 1 to 5, wherein the soft magnetic molded body is selected. 電気絶縁性非磁性材料が金属酸化物または金属窒化物であることを特徴とする請求項1〜6のいずれか1項に記載の軟磁性成形体の製造方法。
The method for producing a soft magnetic molded body according to any one of claims 1 to 6, wherein the electrically insulating nonmagnetic material is a metal oxide or a metal nitride.
JP2005178078A 2005-06-17 2005-06-17 Method for manufacturing soft magnetic compact Pending JP2006351946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178078A JP2006351946A (en) 2005-06-17 2005-06-17 Method for manufacturing soft magnetic compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178078A JP2006351946A (en) 2005-06-17 2005-06-17 Method for manufacturing soft magnetic compact

Publications (1)

Publication Number Publication Date
JP2006351946A true JP2006351946A (en) 2006-12-28

Family

ID=37647454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178078A Pending JP2006351946A (en) 2005-06-17 2005-06-17 Method for manufacturing soft magnetic compact

Country Status (1)

Country Link
JP (1) JP2006351946A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181923A (en) * 2007-01-23 2008-08-07 Fuji Electric Device Technology Co Ltd Magnetic component and manufacturing method thereof
JP2009164402A (en) * 2008-01-08 2009-07-23 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
GB2545243A (en) * 2015-12-10 2017-06-14 Rolls Royce Plc Method of manufacturing a magnetically graded material
US10272491B2 (en) 2013-11-12 2019-04-30 Denso Corporation Soft magnetic member and manufacturing method of soft magnetic member
CN111755196A (en) * 2020-07-08 2020-10-09 广东泛瑞新材料有限公司 High-corrosion-resistance iron-silicon-chromium alloy soft magnetic material and preparation method thereof
JP2021048175A (en) * 2019-09-17 2021-03-25 株式会社村田製作所 Magnetic material core, inductor and method for manufacturing inductor
JP2021048176A (en) * 2019-09-17 2021-03-25 株式会社村田製作所 Magnetic material core, inductor and method for manufacturing inductor
JP2021093406A (en) * 2019-12-06 2021-06-17 株式会社タムラ製作所 Method of manufacturing dust core
CN113096907A (en) * 2021-03-10 2021-07-09 广东省科学院材料与加工研究所 Metal magnetic powder core and preparation method thereof
US20210213524A1 (en) * 2020-01-15 2021-07-15 Seiko Epson Corporation Method for producing powder magnetic core and powder magnetic core
JP2021523570A (en) * 2018-05-08 2021-09-02 アビオメド オイローパ ゲーエムベーハー Corrosion-resistant permanent magnets and intravascular blood pumps containing these magnets
CN113611471A (en) * 2021-07-08 2021-11-05 广东省科学院新材料研究所 Metal magnetic powder core and preparation method thereof
US11538616B2 (en) 2018-08-22 2022-12-27 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
JP7388150B2 (en) 2019-11-26 2023-11-29 セイコーエプソン株式会社 Particle coating method
US11967454B2 (en) 2016-11-02 2024-04-23 Abiomed Europe Gmbh Intravascular blood pump comprising corrosion resistant permanent magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501176A (en) * 2001-07-18 2005-01-13 ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド Insulating and functionalizing metal-containing fine particles with conformal ultrathin film
WO2005013294A1 (en) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core, transformer core, motor core, and method for producing dust core
JP2005050918A (en) * 2003-07-30 2005-02-24 Toyota Central Res & Dev Lab Inc Reactor, reactor core and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501176A (en) * 2001-07-18 2005-01-13 ザ・リージエンツ・オブ・ザ・ユニバーシテイ・オブ・コロラド Insulating and functionalizing metal-containing fine particles with conformal ultrathin film
WO2005013294A1 (en) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core, transformer core, motor core, and method for producing dust core
JP2005050918A (en) * 2003-07-30 2005-02-24 Toyota Central Res & Dev Lab Inc Reactor, reactor core and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181923A (en) * 2007-01-23 2008-08-07 Fuji Electric Device Technology Co Ltd Magnetic component and manufacturing method thereof
JP2009164402A (en) * 2008-01-08 2009-07-23 Fuji Electric Device Technology Co Ltd Manufacturing method of dust core
US10272491B2 (en) 2013-11-12 2019-04-30 Denso Corporation Soft magnetic member and manufacturing method of soft magnetic member
GB2545243A (en) * 2015-12-10 2017-06-14 Rolls Royce Plc Method of manufacturing a magnetically graded material
GB2545243B (en) * 2015-12-10 2017-12-13 Rolls Royce Plc Method of manufacturing a magnetically graded material
US10483037B2 (en) 2015-12-10 2019-11-19 Rolls-Royce Plc Method of manufacturing a magnetically graded material
US11967454B2 (en) 2016-11-02 2024-04-23 Abiomed Europe Gmbh Intravascular blood pump comprising corrosion resistant permanent magnet
JP2021523570A (en) * 2018-05-08 2021-09-02 アビオメド オイローパ ゲーエムベーハー Corrosion-resistant permanent magnets and intravascular blood pumps containing these magnets
US11538616B2 (en) 2018-08-22 2022-12-27 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
JP2021048176A (en) * 2019-09-17 2021-03-25 株式会社村田製作所 Magnetic material core, inductor and method for manufacturing inductor
JP2021048175A (en) * 2019-09-17 2021-03-25 株式会社村田製作所 Magnetic material core, inductor and method for manufacturing inductor
JP7342551B2 (en) 2019-09-17 2023-09-12 株式会社村田製作所 Magnetic core and inductor and inductor manufacturing method
JP7354711B2 (en) 2019-09-17 2023-10-03 株式会社村田製作所 Magnetic core and inductor and inductor manufacturing method
JP7388150B2 (en) 2019-11-26 2023-11-29 セイコーエプソン株式会社 Particle coating method
US11846020B2 (en) 2019-11-26 2023-12-19 Seiko Epson Corporation Particle coating method
JP2021093406A (en) * 2019-12-06 2021-06-17 株式会社タムラ製作所 Method of manufacturing dust core
JP7194098B2 (en) 2019-12-06 2022-12-21 株式会社タムラ製作所 Method for manufacturing dust core
US20210213524A1 (en) * 2020-01-15 2021-07-15 Seiko Epson Corporation Method for producing powder magnetic core and powder magnetic core
CN111755196A (en) * 2020-07-08 2020-10-09 广东泛瑞新材料有限公司 High-corrosion-resistance iron-silicon-chromium alloy soft magnetic material and preparation method thereof
CN113096907A (en) * 2021-03-10 2021-07-09 广东省科学院材料与加工研究所 Metal magnetic powder core and preparation method thereof
CN113611471A (en) * 2021-07-08 2021-11-05 广东省科学院新材料研究所 Metal magnetic powder core and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006351946A (en) Method for manufacturing soft magnetic compact
JPWO2003015109A1 (en) Ferrite-coated fine metal particle compression molded composite magnetic material and method for producing the same
JP5710427B2 (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP6215163B2 (en) Method for producing composite magnetic material
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
EP2696356A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
CN107658090B (en) Soft magnetic metal powder magnetic core and reactor provided with same
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2014131054A (en) Magnetic material
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP2013106016A (en) Alcoholic solution and sintered magnet
TW200845056A (en) Soft magnetic alloy powder, compact, and inductance element
WO2018179812A1 (en) Dust core
JP2009164401A (en) Manufacturing method of dust core
JP2008297606A (en) Method for manufacturing metal powder for dust core and dust core
JP2009158802A (en) Manufacturing method of dust core
JP2009164317A (en) Method for manufacturing soft magnetism composite consolidated core
JP2009054709A (en) Dust core and manufacturing method therefor
JP2009295613A (en) Method of manufacturing dust core
JP2005068526A (en) Method of producing composite magnetic particle powder molded body
JP2015026749A (en) Soft magnetic powder, powder-compact magnetic core, and soft magnetic alloy
JPH05222483A (en) Production of iron nitride based high density sintered compact
JP2013004657A (en) Manufacturing method of magnetic component
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2006128307A (en) Manufacturing method of soft magnetic compact

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110121