JP2000232014A - Manufacture of composite magnetic material - Google Patents

Manufacture of composite magnetic material

Info

Publication number
JP2000232014A
JP2000232014A JP11034044A JP3404499A JP2000232014A JP 2000232014 A JP2000232014 A JP 2000232014A JP 11034044 A JP11034044 A JP 11034044A JP 3404499 A JP3404499 A JP 3404499A JP 2000232014 A JP2000232014 A JP 2000232014A
Authority
JP
Japan
Prior art keywords
heat treatment
magnetic
composite magnetic
powder
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11034044A
Other languages
Japanese (ja)
Inventor
Shinya Matsutani
伸哉 松谷
Yuji Mido
勇治 御堂
Hiroshi Fujii
浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11034044A priority Critical patent/JP2000232014A/en
Publication of JP2000232014A publication Critical patent/JP2000232014A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide composite magnetic materials related to a metallic system power core with high performance to be used for a choke coil with a low core loss, high magnetic permeability, and satisfactory DC superimposing characteristics. SOLUTION: This composite magnetic material is obtained through compression molding the mixture of a magnetic powder with insulating materials, and then subjecting it to heat treatment. In this case, the heat treatment is carried out twice, and if the first heat treatment oxidizing atmosphere is defined as P1, and the second heat treatment oxidizing atmosphere is defined as P2, the relation P1>P2 is satisfied. Thus, a method for manufacturing the composite magnetic powder having low core loss and superior DC superimposing characteristics can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョークコイル等
に用いられる高性能な金属系複合磁性材料に関し、特に
磁芯用の軟磁性材料として用いられる複合磁性材料の製
造方法に関するものである。
The present invention relates to a high-performance metal-based composite magnetic material used for a choke coil and the like, and more particularly to a method for producing a composite magnetic material used as a soft magnetic material for a magnetic core.

【0002】[0002]

【従来の技術】近年、電気・電子機器の小型化が進み、
小型で高効率の磁性材料が要求されており、高周波で用
いられるチョークコイルとしては、フェライト磁芯や圧
粉磁芯が使用されている。これらのうち、フェライト磁
芯は飽和磁束密度が小さいという欠点を有している。こ
れに対して、金属磁性粉を成形して作製される圧粉磁芯
は、軟磁性フェライトに比べて著しく大きい飽和磁束密
度を有しているため小型化に有利であるが、透磁率およ
び電力損失についてはフェライトより優れているとはい
えず、そのためチョークコイルやインダクターに使用す
るコアでは、コア損失が大きい分コアの温度上昇が大き
くなるため、小型化が図りにくいものであった。
2. Description of the Related Art In recent years, miniaturization of electric and electronic devices has been progressing.
A small and highly efficient magnetic material is required, and a ferrite core or a dust core is used as a choke coil used at a high frequency. Among them, the ferrite core has a disadvantage that the saturation magnetic flux density is small. On the other hand, a dust core manufactured by molding a metal magnetic powder has an extremely large saturation magnetic flux density as compared with soft magnetic ferrite, which is advantageous for miniaturization. It cannot be said that the loss is superior to that of ferrite. Therefore, in a core used for a choke coil or an inductor, a large core loss causes a large temperature rise of the core, and thus it is difficult to reduce the size.

【0003】圧粉磁芯のコア損失は、通常ヒステリシス
損失と渦電流損失よりなるが、渦電流損失は、周波数の
二乗と渦電流が流れるサイズの二乗に比例して増大する
ので、磁性粉末表面に電気絶縁性樹脂等を覆うことによ
り渦電流の発生を抑制するようにしている。一方、ヒス
テリシス損失は、圧粉磁芯の成形密度をあげるために通
常5ton/cm2以上の成形圧力を加える必要があり、
そのため磁性体として歪みが増大するとともに透磁率が
劣化して、ヒステリシス損失が増大してしまうものであ
った。これを回避するために、必要に応じて歪みを解放
するために成形後熱処理を施すことが行われるが、高温
の熱処理が必要な場合は、磁性粉末を絶縁し、しかも粉
体同士の結着を保つために絶縁性の決着剤が不可欠であ
った。
The core loss of a dust core usually consists of hysteresis loss and eddy current loss, but eddy current loss increases in proportion to the square of the frequency and the square of the size at which the eddy current flows. The generation of eddy currents is suppressed by covering an electrically insulating resin or the like. On the other hand, the hysteresis loss usually requires applying a molding pressure of 5 ton / cm 2 or more in order to increase the molding density of the dust core.
For this reason, the strain increases as the magnetic material and the magnetic permeability deteriorates, and the hysteresis loss increases. In order to avoid this, a heat treatment is performed after molding to release the strain as necessary.However, if a high-temperature heat treatment is required, the magnetic powder is insulated and the powders are bonded together. Insulating fixers were indispensable to maintain the quality.

【0004】従来圧粉磁芯の結着剤として使用されるエ
ポキシ樹脂、フェノール樹脂、塩化ビニル樹脂等のほと
んど有機系樹脂あるいは無機系バインダーとして珪酸塩
系水ガラス、特開平1−215902号公報に記載のア
ルミナセメント、特開平6−299114号公報に記載
のポロシロキサン樹脂、特開平6−342714号公報
に記載のシリコーン樹脂および特開平8−45724号
公報に記載のシリコーン樹脂と有機チタン混合等が提案
されている。
Almost organic resins such as epoxy resins, phenolic resins, and vinyl chloride resins conventionally used as binders for dust cores or silicate water glasses as inorganic binders are disclosed in Japanese Patent Application Laid-Open No. 1-215902. Alumina cement described in JP-A-6-299114, a silicone resin described in JP-A-6-342714, and a silicone resin described in JP-A-8-45724 and a mixture of organic titanium and the like. Proposed.

【0005】また、直流重畳特性を確保するために従来
のフェライト等の磁芯は、磁路を妨げる垂直方向に数1
00μmのギャップを設けることにより、直流重畳時の
インダクタンスL値の低下を低減している。しかし、こ
のような広いギャップは、うなり音の発生源となる他、
ギャップからの漏洩磁束が特に高周波数で巻線に銅損失
の著しい増加をもたらすものであった。一方、圧粉磁芯
は透磁率が低いためにギャップ無しで使用し、そのため
にうなり音また漏洩磁束による銅損失は小さい。
In order to ensure DC superimposition characteristics, a conventional magnetic core made of ferrite or the like has a number
By providing a gap of 00 μm, a decrease in the inductance L value at the time of DC superposition is reduced. However, such a wide gap is a source of beat noise,
Leakage flux from the gaps caused a significant increase in copper losses in the windings, especially at high frequencies. On the other hand, a dust core is used without a gap because of its low magnetic permeability, and therefore, copper loss due to beat noise and leakage magnetic flux is small.

【0006】[0006]

【発明が解決しようとする課題】しかし、磁気特性向上
のためには圧粉磁芯のさらなる高密度化が不可欠である
が、磁性粉体表面の絶縁性が破れ易く渦電流損失の増大
を招く。
However, in order to improve the magnetic properties, it is essential to further increase the density of the dust core, but the insulating properties of the magnetic powder surface are easily broken, resulting in an increase in eddy current loss. .

【0007】本発明は上記従来の欠点を除去し、低いコ
ア損失で透磁率が高くかつ良好な直流重畳特性を有する
複合磁性材料を提供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a composite magnetic material which eliminates the above-mentioned conventional disadvantages, has a low core loss, has a high magnetic permeability, and has good DC superimposition characteristics.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、磁性粉末と絶縁材からなる混合物を圧縮成
形した後に熱処理を施して得られる複合磁性材料であっ
て、熱処理を2回以上施すことを特徴とし、1回目の熱
処理酸素雰囲気P1、2回目の熱処理酸素雰囲気P2と
すると、P1>P2の関係を満足する製造方法である。
ここで、1回目の熱処理温度T1、2回目の熱処理温度
T2とすると、T1<T2の関係を満足する事が好まし
い。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a composite magnetic material obtained by subjecting a mixture comprising a magnetic powder and an insulating material to compression molding and then subjecting the mixture to heat treatment. The manufacturing method satisfies the relationship of P1> P2 when the first heat treatment oxygen atmosphere P1 and the second heat treatment oxygen atmosphere P2 are provided.
Here, assuming that the first heat treatment temperature T1 and the second heat treatment temperature T2, it is preferable that the relationship of T1 <T2 is satisfied.

【0009】本発明によれば、高い周波数でも低いコア
損失で透磁率が高くかつ良好な直流重畳特性を有する複
合磁性材料を得ることができる。
According to the present invention, it is possible to obtain a composite magnetic material having a high magnetic permeability with a low core loss even at a high frequency and a good DC superposition characteristic.

【0010】[0010]

【発明の実施の形態】本発明の請求項1記載の発明は、
磁性粉末と絶縁材からなる混合物を圧縮成形した後に熱
処理を施して得られる複合磁性材料であって、熱処理を
2回以上施し1回目の熱処理酸素雰囲気P1、2回目の
熱処理酸素雰囲気P2とすると、P1>P2の関係を満
足する事を特徴とする複合磁性材料の製造方法である。
そうすることによって、理由は必ずしも定かでないが高
密度成形でも成形体内の磁性粉金属表面が1回目の熱処
理時に酸化絶縁されるために渦電流損失を確実に低減し
ているものと思われる。
BEST MODE FOR CARRYING OUT THE INVENTION
A composite magnetic material obtained by compression-molding a mixture of a magnetic powder and an insulating material and then performing a heat treatment, wherein the heat treatment is performed two or more times to form a first heat treatment oxygen atmosphere P1 and a second heat treatment oxygen atmosphere P2, A method for producing a composite magnetic material, characterized by satisfying a relationship of P1> P2.
By doing so, the magnetic powder metal surface in the molded body is oxidized and insulated during the first heat treatment, but the eddy current loss is surely reduced even in the high-density molding, for unknown reasons.

【0011】請求項2に記載の発明は、1回目の熱処理
温度T1、2回目の熱処理温度T2とすると、T1<T
2の関係を満足する事を特徴とする請求項1記載の複合
磁性材料の製造方法である。こうすることにより、酸素
分圧が高い時に低温で、酸素分圧が低い時に高温で熱処
理することにより、1回目に絶縁被膜を形成し2回目の
熱処理で歪み取り熱処理が確実となり、渦電流損失およ
びヒステリシス損失が確実に低減できるためと考える。
According to a second aspect of the present invention, when the first heat treatment temperature T1 and the second heat treatment temperature T2 are set, T1 <T
2. The method for producing a composite magnetic material according to claim 1, wherein the relationship of 2 is satisfied. By doing so, heat treatment is performed at a low temperature when the oxygen partial pressure is high, and at a high temperature when the oxygen partial pressure is low, thereby forming an insulating film for the first time and performing a strain relief heat treatment in the second heat treatment. It is considered that the hysteresis loss can be reliably reduced.

【0012】請求項3に記載の発明は、1%≦P1≦3
0%、P2≦1%を特徴とする請求項1または2記載の
複合磁性材料の製造方法である。用いる磁性粉により異
なるが、1%≦P1≦30%は金属表面に絶縁被膜を形
成するのに適した酸素分圧と考えられ、P2≦1%は2
回目の熱処理で歪み取り熱処理時に磁性特性の劣化しな
い好ましい酸素分圧と考える。
According to a third aspect of the present invention, 1% ≦ P1 ≦ 3
3. The method for producing a composite magnetic material according to claim 1, wherein 0% and P2 ≦ 1%. Although it depends on the magnetic powder used, 1% ≦ P1 ≦ 30% is considered to be an oxygen partial pressure suitable for forming an insulating film on the metal surface, and P2 ≦ 1% is 2%.
This is considered to be a preferable oxygen partial pressure at which the magnetic properties are not degraded during the heat treatment for strain relief in the second heat treatment.

【0013】請求項4に記載の発明は、150℃≦T1
≦500℃、500℃≦T2≦900℃を特徴とする請
求項1または2記載の複合磁性材料の製造方法である。
こうすることにより、有機結着剤、潤滑剤等に含まれる
C成分が1回目の熱処理時に確実に飛ぶことにより、成
形体内の絶縁が確実になり、渦電流損失をより低減でき
ていると考える。
According to a fourth aspect of the present invention, there is provided the method according to the fourth aspect, wherein
3. The method according to claim 1, wherein ≦ 500 ° C., 500 ° C. ≦ T2 ≦ 900 ° C.
By doing so, it is considered that the C component contained in the organic binder, the lubricant, and the like surely flies during the first heat treatment, so that the insulation in the molded body is ensured and the eddy current loss can be further reduced. .

【0014】請求項5に記載の発明は、磁性粉末Aとス
ペーシング材Bからなる混合物を圧縮成形した際に得ら
れる複合磁性材料であって、スペーシング材Bにより磁
性粉末A同士の隣り合う距離δが、磁性粉末の平均粒径
をdとすると、10-3≦δ/d≦10-1である関係を全
体の磁性粉末の70%以上で満足していることを特徴と
する請求項1記載の複合磁性材料の製造方法である。磁
性粉末A同士に必要最低限のスペース長を確保するため
にスペーシング材Bを用いて制御する事で、全体として
は磁気スペース分布幅を狭めることができ高透磁率を維
持したまま、優れた重畳特性を実現できる。
According to a fifth aspect of the present invention, there is provided a composite magnetic material obtained by compression-molding a mixture comprising a magnetic powder A and a spacing material B, wherein the magnetic powders A are adjacent to each other by the spacing material B. The distance δ satisfies the relationship of 10 −3 ≦ δ / d ≦ 10 −1 for at least 70% of the entire magnetic powder, where d is the average particle size of the magnetic powder. 2. A method for producing a composite magnetic material according to item 1. By controlling using the spacing material B to secure the minimum necessary space length between the magnetic powders A, the width of the magnetic space distribution can be narrowed as a whole, and excellent magnetic permeability can be maintained while maintaining high magnetic permeability. Superimposition characteristics can be realized.

【0015】請求項6に記載の発明は、磁性粉末Aとし
て、Fe系、FeSi系、FeAlSi系、FeNi
系、パーメンジュール、アモルファス、ナノ微結晶の強
磁性体のうち少なくとも1種類以上を含み、磁性粉末A
の平均粒径が100μm以下の請求項1記載の複合磁性
材料の製造方法である。これらの金属磁性体は、飽和磁
束密度、透磁率ともに高く、アトマイズ粉、粉砕粉等で
安易に手に入り高性能な複合磁性材料が得られる。ま
た、磁性粉末Aの平均粒径が100μm以下とすること
で、渦電流の低減に効果的である。
[0015] The invention according to claim 6 is characterized in that, as the magnetic powder A, Fe-based, FeSi-based, FeAlSi-based, FeNi
Magnetic powder containing at least one of ferromagnetic materials of the system, permendur, amorphous, and nano-microcrystalline.
2. The method for producing a composite magnetic material according to claim 1, wherein the average particle size of the composite magnetic material is 100 μm or less. These metallic magnetic materials have both high saturation magnetic flux density and high magnetic permeability, and can be easily obtained with atomized powder, pulverized powder and the like, and a high-performance composite magnetic material can be obtained. Further, when the average particle size of the magnetic powder A is 100 μm or less, it is effective in reducing eddy current.

【0016】以下、本発明の一実施の形態について説明
する。
Hereinafter, an embodiment of the present invention will be described.

【0017】(実施の形態1)金属磁性粉はFeAlS
i系合金、Si−9%、Al−5%、残部Feの平均粒
径50μmのアトマイズ粉を用いた。
(Embodiment 1) The metal magnetic powder is FeAlS
Atomized powder having an average particle size of 50 μm of an i-based alloy, Si-9%, Al-5%, and the balance Fe was used.

【0018】混合工程 金属磁性粉末100重量部に対し結着剤としてブチラー
ル樹脂2重量部と結着剤溶解用溶剤としてエタノール1
重量部を混合攪拌機にて混合した。
Mixing Step 2 parts by weight of butyral resin as a binder and 100 parts of ethanol as a solvent for dissolving the binder are added to 100 parts by weight of the metal magnetic powder.
Parts by weight were mixed with a mixing stirrer.

【0019】造粒工程 混合工程終了後、その混合物から溶剤を脱気乾燥する。
乾燥後の混合物を粉砕し成形機に導入出来る流動性を確
保するために造粒し、造粒粉を作製した。また、造粒粉
の流動性を向上させるために潤滑剤として、ステアリン
酸0.1重量部を添加した。
Granulation Step After the mixing step, the solvent is degassed and dried from the mixture.
The dried mixture was pulverized and granulated in order to ensure fluidity that can be introduced into a molding machine to produce granulated powder. Further, stearic acid 0.1 part by weight was added as a lubricant in order to improve the fluidity of the granulated powder.

【0020】成形工程 この造粒粉を一軸プレスにて、12t/cm2の加圧力で
3秒間加圧成形し、外径25mm、内径15mm、厚み約1
0mmのトロイダル形状の成形体を得た。
Forming Step The granulated powder is pressed by a uniaxial press under a pressure of 12 t / cm 2 for 3 seconds, and has an outer diameter of 25 mm, an inner diameter of 15 mm and a thickness of about 1 mm.
A 0 mm toroidal shaped body was obtained.

【0021】熱処理工程 その後、(表1)に示すような熱処理条件でサンプルを
作製した。なお、温度保持時間はどの熱処理も0.5時
間とした。
Heat treatment step Thereafter, a sample was prepared under heat treatment conditions shown in (Table 1). Note that the temperature holding time was 0.5 hour for all heat treatments.

【0022】このようにして得られたサンプルについて
透磁率、コア損失、直流重畳を測定した。透磁率は、L
CRメーターで周波数10kHzで測定し、コア損失は交
流B−Hカーブ測定機を用いて測定周波数50kHz、測
定磁束密度0.1Tで測定を行い、直流重畳特性は測定
周波数50kHzで直流磁界が1600A/mの時の透磁
率を示している。
The magnetic permeability, core loss, and DC superposition of the sample thus obtained were measured. The permeability is L
The core loss was measured at a frequency of 10 kHz with a CR meter, the core loss was measured at a measurement frequency of 50 kHz with a measurement magnetic flux density of 0.1 T using an AC B-H curve measuring instrument, and the DC superposition characteristic was 1600 A / The magnetic permeability at the time of m is shown.

【0023】評価結果を(表1)に示す。The evaluation results are shown in (Table 1).

【0024】[0024]

【表1】 [Table 1]

【0025】ここで高調波歪み対策用チョークコイル
は、電流測定周波数50kHz、測定磁束密度0.1Tで
コア損失1000kW/m3以下、透磁率は60以上、
直流重畳は70%以上が選定の基準となる。
Here, the choke coil for harmonic distortion countermeasures has a current measurement frequency of 50 kHz, a measured magnetic flux density of 0.1 T, a core loss of 1000 kW / m 3 or less, a magnetic permeability of 60 or more,
The selection criterion is 70% or more for DC superposition.

【0026】(表1)より、熱処理を2回実施し、さら
に1回目の熱処理酸素濃度P1、2回目の熱処理酸素濃
度P2とすると、P1>P2の関係を満足しているもの
は、低損失な事が分かる。また、1回目の熱処理温度T
1、2回目の熱処理温度T2とするとT1<T2の関係
を満足する事がより好ましく。また、1%≦P1≦30
%、P2≦1%を満たす事がより好ましく。150℃≦
T1≦500℃、500℃≦T2≦900℃を満たす事
がより好ましいことが分かる。
As shown in Table 1, if the heat treatment is performed twice and the first heat treatment oxygen concentration P1 and the second heat treatment oxygen concentration P2 are satisfied, the one satisfying the relationship of P1> P2 has a low loss. I understand that. In addition, the first heat treatment temperature T
Assuming that the first and second heat treatment temperatures are T2, it is more preferable to satisfy the relationship of T1 <T2. Also, 1% ≦ P1 ≦ 30
%, And P2 ≦ 1% is more preferably satisfied. 150 ℃ ≦
It is found that it is more preferable to satisfy T1 ≦ 500 ° C. and 500 ° C. ≦ T2 ≦ 900 ° C.

【0027】従来圧粉磁芯は、成形前まで金属粉表面に
結着剤や酸化被膜等で絶縁されていても、高密度成形す
る過程において絶縁性が破壊されるため渦電流損失が増
大し必ずしも低損失化できなかったと考えられる。本発
明は、高密度成形体の状態で1回目の熱処理時に金属粉
表面に酸化被膜を形成し、2回目の熱処理で歪み取り熱
処理が確実となり、渦電流損失およびヒステリシス損失
が確実に低減できるため低損失化していると考える。用
いる磁性粉により異なるが、1%≦P1≦30%は金属
表面に絶縁被膜を形成するのに適した酸素分圧と考えら
れ、またP2≦1%は2回目の熱処理で歪み取り熱処理
時に磁気特性が劣化しない好ましい酸素分圧と考える。
また、こうすることにより、有機結着剤、潤滑剤等に含
まれるC成分等が1回目の酸化雰囲気での熱処理時に飛
ぶことにより、磁気特性の劣化を妨げることができる効
果もあると考える。また、2回目の熱処理後に3回目以
降の熱処理を施しても、熱処理温度がT2以上の高温で
ない限り、この効果を妨げるものでないことは言うまで
もない。
Even if the conventional dust core is insulated on the surface of the metal powder with a binder or an oxide film before molding, the insulating property is destroyed in the process of high-density molding, so that the eddy current loss increases. It is considered that the loss could not always be reduced. According to the present invention, an oxide film is formed on the surface of the metal powder at the first heat treatment in the state of a high-density compact, and the heat treatment for strain removal is ensured by the second heat treatment, so that eddy current loss and hysteresis loss can be reliably reduced. We think that the loss has been reduced. Although it depends on the magnetic powder used, 1% ≦ P1 ≦ 30% is considered to be the oxygen partial pressure suitable for forming an insulating film on the metal surface, and P2 ≦ 1% is the magnetic pressure during the strain removal heat treatment in the second heat treatment. This is considered to be a preferable oxygen partial pressure that does not deteriorate the characteristics.
In addition, it is considered that this has the effect of preventing the C component and the like contained in the organic binder, the lubricant, and the like from flying during the first heat treatment in an oxidizing atmosphere, thereby preventing deterioration of magnetic characteristics. Needless to say, even if the third and subsequent heat treatments are performed after the second heat treatment, this effect is not impaired as long as the heat treatment temperature is not higher than T2.

【0028】(実施の形態2)金属磁性粉はFeAlS
i系合金、Si−9%、Al−5%、残部Feの平均粒
径70μmのアトマイズ粉を用い、スペーシング材とし
て粒径5μmのAl2 3を用いた。
(Embodiment 2) The metal magnetic powder is FeAlS
Average grain size of i-based alloy, Si-9%, Al-5%, balance Fe
Using atomized powder with a diameter of 70μm as a spacing material
Al with a particle size of 5 μmTwoO ThreeWas used.

【0029】混合工程 金属磁性粉末100重量部に対し結着剤としてブチラー
ル樹脂2重量部と、スペーシング材1重量部になるよう
に混合攪拌機にて混合した。
Mixing Step With 100 parts by weight of the metallic magnetic powder, 2 parts by weight of butyral resin as a binder and 1 part by weight of a spacing material were mixed by a mixing stirrer.

【0030】造粒工程 混合工程終了後、その混合物から溶剤を脱気乾燥する。
乾燥後の混合物を粉砕し成形機に導入出来る流動性を確
保するために造粒し、造粒粉を作製した。また、造粒粉
の流動性を向上させるために潤滑剤として、ステアリン
酸0.1重量部を添加した。
Granulation Step After the mixing step, the solvent is degassed and dried from the mixture.
The dried mixture was pulverized and granulated in order to ensure fluidity that can be introduced into a molding machine to produce granulated powder. Further, stearic acid 0.1 part by weight was added as a lubricant in order to improve the fluidity of the granulated powder.

【0031】成形工程 この造粒粉を一軸プレスにて、成形圧力を調整してδ/
dを変更し、外径25mm、内径15mm、厚み約10mmの
トロイダル形状の成形体を得た。
Forming Step This granulated powder is adjusted by δ /
By changing d, a toroidal shaped body having an outer diameter of 25 mm, an inner diameter of 15 mm, and a thickness of about 10 mm was obtained.

【0032】熱処理工程 熱処理温度はT1=400℃、P1=20%、T2=7
00、P2≦0.01%になるように、それぞれの保持
時間は0.5時間とした。
Heat Treatment Step The heat treatment temperature is T1 = 400 ° C., P1 = 20%, T2 = 7
Each holding time was set to 0.5 hour so that 00 and P2 ≦ 0.01%.

【0033】このようにして得られたサンプルについて
透磁率、コア損失、直流重畳を測定した。透磁率は、L
CRメーターで周波数10kHzで測定し、コア損失は交
流B−Hカーブ測定機を用いて測定周波数50kHz、測
定磁束密度0.1Tで測定を行い、直流重畳特性は測定
周波数50kHzで直流磁界が1600A/mの時の透磁
率を示している。
The magnetic permeability, core loss, and DC bias of the sample thus obtained were measured. The permeability is L
The core loss was measured at a frequency of 10 kHz with a CR meter, the core loss was measured at a measurement frequency of 50 kHz with a measurement magnetic flux density of 0.1 T using an AC B-H curve measuring instrument, and the DC superposition characteristic was 1600 A / The magnetic permeability at the time of m is shown.

【0034】評価結果を(表2)に示す。The evaluation results are shown in (Table 2).

【0035】[0035]

【表2】 [Table 2]

【0036】ここで高調波歪み対策用チョークコイル
は、電流測定周波数50kHz、測定磁束密度0.1Tで
コア損失1000kW/m3以下、透磁率は60以上、
直流重畳は70%以上が選定の基準となる。なお、δ/
dはSIMSとXMAを用い、いずれも70%以上満足
しその値を示している。
Here, the choke coil for harmonic distortion countermeasures has a current measurement frequency of 50 kHz, a measured magnetic flux density of 0.1 T, a core loss of 1000 kW / m 3 or less, a magnetic permeability of 60 or more,
The selection criterion is 70% or more for DC superposition. Note that δ /
d is a value obtained by using SIMS and XMA and satisfying 70% or more in both cases.

【0037】(表2)の結果より明らかなように、良好
な直流重畳特性と透磁率を両立するためには、10-3
δ/d≦10-1である関係を満足していることがより好
ましい事が分かる。
As is clear from the results of Table 2, in order to achieve both good DC bias characteristics and magnetic permeability, 10 −3
It can be seen that it is more preferable to satisfy the relationship of δ / d ≦ 10 −1 .

【0038】ここで、一般に磁性粉末の真の透磁率をμ
r、磁芯の実効透磁率をμeとすると、次の式のような
関係が示される。
Here, generally, the true magnetic permeability of the magnetic powder is expressed as μ
Assuming that r and the effective magnetic permeability of the magnetic core are μe, the following equation is obtained.

【0039】μe≒μr/(1+μr・δ/d) δ/dの下限は、最低限必要な直流重畳特性より決ま
り、δ/d上限は必要な透磁率で決まってくる。良好な
特性を実現するためには10-3≦δ/d≦10-1であ
る。
Μe ≒ μr / (1 + μr · δ / d) The lower limit of δ / d is determined by the minimum necessary DC superposition characteristic, and the upper limit of δ / d is determined by the required magnetic permeability. In order to realize good characteristics, 10 −3 ≦ δ / d ≦ 10 −1 .

【0040】本発明は、スペーシング材の種類、粒径、
粒度分布等を変化させることで、δを制御し複合磁性材
料の透磁率、直流重畳特性を制御することができる。ス
ペーシング材として無機物に限らず、有機物、金属でも
可能であり、またその組合わせによっても複合磁性材料
の透磁率、直流重畳特性を制御することができることは
言うまでもない。
According to the present invention, the type of the spacing material, the particle size,
By changing the particle size distribution and the like, it is possible to control δ to control the magnetic permeability and the DC bias characteristics of the composite magnetic material. Not only inorganic materials but also organic materials and metals can be used as the spacing material. Needless to say, the magnetic permeability and the DC superimposition characteristics of the composite magnetic material can be controlled by a combination thereof.

【0041】(実施の形態3)使用した金属磁性粉の純
鉄は純度99.6%、Fe−Al−Siはセンダスト組
成であるSi−9%、Al−5%、残部Fe、Fe−S
iはSi−3.5%、残部Fe、Fe−NiはNi−7
8.5%、残部Fe、パーメンジュールはCo−50
%、残部Feのアトマイズ粉であり、Fe基アモルファ
ス粉はFe−Si−B合金、ナノ微結晶磁性粉はFe−
Si−B−Cu合金を液体急冷法でリボンを作製後、粉
砕して粉体を得た。
(Embodiment 3) Pure magnetic metal powder used has purity of 99.6%, Fe-Al-Si has Sendust composition of 9% Si, 5% Al, balance Fe, Fe-S
i is Si-3.5%, balance Fe, Fe-Ni is Ni-7
8.5%, balance Fe, permendur is Co-50
%, The balance being Fe atomized powder, Fe-based amorphous powder is Fe-Si-B alloy, nano-microcrystalline magnetic powder is Fe-
A ribbon was prepared from the Si-B-Cu alloy by a liquid quenching method and then pulverized to obtain a powder.

【0042】混合工程 金属磁性粉末100重量部に対し結着剤としてシリコン
樹脂1.5重量部を混合攪拌機にて混合した。
Mixing Step 1.5 parts by weight of a silicone resin as a binder were mixed with 100 parts by weight of the metal magnetic powder using a mixing stirrer.

【0043】造粒工程 混合工程終了後、その混合物から溶剤を脱気乾燥する。
乾燥後の混合物を粉砕し成形機に導入出来る流動性を確
保するために造粒し、造粒粉を作製した。また、造粒粉
の流動性を向上させるために潤滑剤として、ステアリン
酸亜鉛0.1重量部を添加した。
Granulation Step After the mixing step, the solvent is degassed and dried from the mixture.
The dried mixture was pulverized and granulated in order to ensure fluidity that can be introduced into a molding machine to produce granulated powder. Further, 0.1 part by weight of zinc stearate was added as a lubricant in order to improve the fluidity of the granulated powder.

【0044】成形工程 この造粒粉を一軸プレスにて、15t/cm2の加圧力で
3秒間加圧成形し、外径25mm、内径15mm、厚み約1
0mmのトロイダル形状の成形体を得た。
Forming Step This granulated powder is pressed under a uniaxial press with a pressing force of 15 t / cm 2 for 3 seconds, and has an outer diameter of 25 mm, an inner diameter of 15 mm and a thickness of about 1 mm.
A 0 mm toroidal shaped body was obtained.

【0045】熱処理工程 熱処理温度はT1=350℃、P1=20%、T2=6
00、P2≦0.005%になるように、それぞれの保
持時間は0.5時間とした。
Heat Treatment Step The heat treatment temperature is T1 = 350 ° C., P1 = 20%, T2 = 6
Each holding time was 0.5 hour so that 00, P2 ≦ 0.005%.

【0046】(表3)に示すような平均粒径の軟磁性粉
を用いてサンプルを作製した。このようにして得られた
サンプルについて透磁率、コア損失、直流重畳を測定し
た。透磁率は、LCRメーターで周波数10kHzで測定
し、コア損失は交流B−Hカーブ測定機を用いて測定周
波数50kHz、測定磁束密度0.1Tで測定を行い、直
流重畳特性は測定周波数50kHzで直流磁界が1600
A/mの時の透磁率を示している。
Samples were prepared using soft magnetic powder having an average particle size as shown in Table 3. The magnetic permeability, core loss, and direct current superposition of the sample thus obtained were measured. The magnetic permeability is measured at a frequency of 10 kHz with an LCR meter, the core loss is measured at a measurement frequency of 50 kHz with a measurement magnetic flux density of 0.1 T using an AC B-H curve measuring instrument, and the DC superposition characteristic is measured at a measurement frequency of 50 kHz. Magnetic field is 1600
The magnetic permeability at A / m is shown.

【0047】評価結果を(表3)に示す。The evaluation results are shown in (Table 3).

【0048】[0048]

【表3】 [Table 3]

【0049】ここで高調波歪み対策用チョークコイル
は、電流測定周波数50kHz、測定磁束密度0.1Tで
コア損失1000kW/m3以下、透磁率は60以上、
直流重畳は70%以上が選定の基準となる。
Here, the choke coil for harmonic distortion countermeasures has a current measurement frequency of 50 kHz, a measured magnetic flux density of 0.1 T, a core loss of 1000 kW / m 3 or less, a magnetic permeability of 60 or more,
The selection criterion is 70% or more for DC superposition.

【0050】(表3)の結果よりどの軟磁性材料も、良
好な特性を示していることが分かる。なお実施例以外の
磁性粉末あるいは組成比であっても、磁性粉末Aとして
Fe系、Fe−Si系、Fe−Al−Si系、Fe−N
i系、パーメンジュール、アモルファス、ナノ微結晶の
強磁性体のうち少なくとも一種類以上を含有する混合粉
末、あるいは合金、固溶体でも同様の効果があることは
言うまでもない。これらの金属磁性体は、飽和磁束密
度、透磁率ともに高く、また製造方法たとえばアトマイ
ズ粉法、粉砕粉法、超急冷法等の製造方法にはよらず同
様な効果がある。またこれ以外の磁性材料でも、また、
球状、偏平状等の粉体形状によらず同様な効果があるこ
とは言うまでもない。また、渦電流損失は、周波数の二
乗と渦電流が流れるサイズの二乗に比例して増大するた
めに、磁性粉末の表面を絶縁体で覆えば、渦電流は金属
磁性粉体の粒径に依存するため、平均粒径100μm以
下であることが好ましい。
From the results shown in Table 3, it can be seen that all the soft magnetic materials show good characteristics. In addition, even if the magnetic powder or the composition ratio is other than the examples, the magnetic powder A may be Fe-based, Fe-Si-based, Fe-Al-Si-based, Fe-N
Needless to say, a mixed powder containing at least one of i-type, permendur, amorphous, and nano-crystalline ferromagnetic materials, or an alloy or a solid solution has the same effect. These metallic magnetic materials have a high saturation magnetic flux density and a high magnetic permeability, and have the same effects irrespective of the production method such as the atomized powder method, the pulverized powder method, and the super-quenching method. In addition, other magnetic materials,
It goes without saying that the same effect is obtained regardless of the powder shape such as a spherical shape and a flat shape. Since the eddy current loss increases in proportion to the square of the frequency and the square of the size of the eddy current flowing, if the surface of the magnetic powder is covered with an insulator, the eddy current depends on the particle size of the metal magnetic powder. Therefore, the average particle size is preferably 100 μm or less.

【0051】[0051]

【発明の効果】以上の説明から明らかなように本発明
は、コア損失が低く透磁率が高くかつ良好な直流重畳特
性を有する複合磁性材料を提供することができる。
As is apparent from the above description, the present invention can provide a composite magnetic material having low core loss, high magnetic permeability, and good DC superimposition characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4K018 AA24 AA26 AA30 BB04 CA12 DA21 DA35 FA08 KA43 KA61 5E041 AA02 AA04 AA07 AA11 BD03 CA02 HB05 HB11 NN06 NN17 NN18  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Fujii 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) 4K018 AA24 AA26 AA30 BB04 CA12 DA21 DA35 FA08 KA43 KA61 5E041 AA02 AA04 AA07 AA11 BD03 CA02 HB05 HB11 NN06 NN17 NN18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁性粉末と絶縁材からなる混合物を圧縮
成形した後に熱処理を施して得られる複合磁性材料であ
って、熱処理を2回以上施すことを特徴とし、1回目の
熱処理酸素濃度P1、2回目の熱処理酸素濃度P2とす
ると、P1>P2の関係を満足する事を特徴とする複合
磁性材料の製造方法。
1. A composite magnetic material obtained by subjecting a mixture comprising a magnetic powder and an insulating material to compression molding and then performing a heat treatment, wherein the heat treatment is performed twice or more, wherein the first heat treatment oxygen concentration P1, A method for producing a composite magnetic material, wherein a relationship of P1> P2 is satisfied when a second heat treatment oxygen concentration is P2.
【請求項2】 1回目の熱処理温度T1、2回目の熱処
理温度T2とすると、T1<T2の関係を満足する事を
特徴とする請求項1記載の複合磁性材料の製造方法。
2. The method of manufacturing a composite magnetic material according to claim 1, wherein a relationship of T1 <T2 is satisfied when a first heat treatment temperature T1 and a second heat treatment temperature T2 are satisfied.
【請求項3】 1%≦P1≦30%、P2≦1%を特徴
とする請求項1または2記載の複合磁性材料の製造方
法。
3. The method for producing a composite magnetic material according to claim 1, wherein 1% ≦ P1 ≦ 30% and P2 ≦ 1%.
【請求項4】 150℃≦T1≦500℃、500℃≦
T2≦900℃を特徴とする請求項1または2記載の複
合磁性材料の製造方法。
4. 150 ° C. ≦ T1 ≦ 500 ° C., 500 ° C. ≦
3. The method for producing a composite magnetic material according to claim 1, wherein T2 ≦ 900 ° C.
【請求項5】 磁性粉末Aとスペーシング材Bからなる
混合物を圧縮成形した際に得られる複合磁性材料であっ
て、スペーシング材Bにより磁性粉末A同士の隣り合う
距離δが、磁性粉末の平均粒径をdとすると、10-3
δ/d≦10-1である関係を全体の磁性粉末の70%以
上で満足していることを特徴とする請求項1記載の複合
磁性材料の製造方法。
5. A composite magnetic material obtained when a mixture comprising a magnetic powder A and a spacing material B is compression-molded, wherein a distance δ between adjacent magnetic powders A by the spacing material B is equal to or less than a value of the magnetic powder. Assuming that the average particle size is d, 10 −3
2. The method for producing a composite magnetic material according to claim 1 , wherein the relationship of δ / d ≦ 10 −1 is satisfied by 70% or more of the whole magnetic powder.
【請求項6】 磁性粉末Aとして、Fe系、FeSi
系、FeAlSi系、FeNi系、パーメンジュール、
アモルファス、ナノ微結晶の強磁性体のうち少なくとも
1種類以上を含み、磁性粉末Aの平均粒径が100μm
以下の請求項1記載の複合磁性材料の製造方法。
6. The magnetic powder A may be Fe-based, FeSi
System, FeAlSi system, FeNi system, permendur,
The magnetic powder A contains at least one of an amorphous and nano-crystalline ferromagnetic material, and has an average particle diameter of 100 μm.
A method for producing a composite magnetic material according to claim 1 below.
JP11034044A 1999-02-12 1999-02-12 Manufacture of composite magnetic material Pending JP2000232014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11034044A JP2000232014A (en) 1999-02-12 1999-02-12 Manufacture of composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11034044A JP2000232014A (en) 1999-02-12 1999-02-12 Manufacture of composite magnetic material

Publications (1)

Publication Number Publication Date
JP2000232014A true JP2000232014A (en) 2000-08-22

Family

ID=12403328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11034044A Pending JP2000232014A (en) 1999-02-12 1999-02-12 Manufacture of composite magnetic material

Country Status (1)

Country Link
JP (1) JP2000232014A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293277A1 (en) * 2001-09-18 2003-03-19 Sony Corporation Method for producing magnetic particle, magnetic particle and magnetic material
JP2007134591A (en) * 2005-11-11 2007-05-31 Nec Tokin Corp Composite magnetic material, dust core using the same and magnetic element
CN1331168C (en) * 2002-10-25 2007-08-08 霍加纳斯股份有限公司 Heat treatment of soft magnetic components
JP2010028131A (en) * 2003-12-29 2010-02-04 Hoganas Ab Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member
US7871474B2 (en) 2005-07-01 2011-01-18 Mitsubishi Steel Mfg. Co. Ltd. Method for manufacturing of insulated soft magnetic metal powder formed body
US8035569B2 (en) * 2006-08-11 2011-10-11 Mitsui Chemicals, Inc. Antenna core and antenna
CN103219120A (en) * 2012-01-18 2013-07-24 株式会社神户制钢所 Method for manufacturing dust core and dust core obtained by the method
CN103240411A (en) * 2013-05-20 2013-08-14 哈尔滨工业大学 Production methods of inorganic-organic insulation layer soft magnetic composites
EP2219195A4 (en) * 2007-11-07 2016-08-03 Diamet Corp High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
WO2018080129A1 (en) * 2016-10-27 2018-05-03 주식회사 아모센스 Core for current transformer and manufacturing method for same
CN110102761A (en) * 2019-06-11 2019-08-09 株洲新科硬质合金有限公司 A kind of micropore hard alloy material preparation method
CN111161935A (en) * 2018-11-07 2020-05-15 山东精创磁电产业技术研究院有限公司 Sintering method of soft magnetic composite material with high strength, high magnetic conductivity and high saturation magnetic flux density
JP7377076B2 (en) 2019-11-19 2023-11-09 株式会社タムラ製作所 Manufacturing method of powder magnetic core

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1293277A1 (en) * 2001-09-18 2003-03-19 Sony Corporation Method for producing magnetic particle, magnetic particle and magnetic material
US6992155B2 (en) 2001-09-18 2006-01-31 Sony Corporation Method for producing magnetic particle, magnetic particle and magnetic material
US7745004B2 (en) 2001-09-18 2010-06-29 Sony Corporation Polymer-coated magnetic particle and magnetic material for absorbing electromagnetic waves
CN1331168C (en) * 2002-10-25 2007-08-08 霍加纳斯股份有限公司 Heat treatment of soft magnetic components
JP2010028131A (en) * 2003-12-29 2010-02-04 Hoganas Ab Powder composition, soft magnetic constituent member, and manufacturing method of soft magnetic complex constituent member
US7871474B2 (en) 2005-07-01 2011-01-18 Mitsubishi Steel Mfg. Co. Ltd. Method for manufacturing of insulated soft magnetic metal powder formed body
JP2007134591A (en) * 2005-11-11 2007-05-31 Nec Tokin Corp Composite magnetic material, dust core using the same and magnetic element
US8035569B2 (en) * 2006-08-11 2011-10-11 Mitsui Chemicals, Inc. Antenna core and antenna
EP2219195A4 (en) * 2007-11-07 2016-08-03 Diamet Corp High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
CN103219120B (en) * 2012-01-18 2016-02-10 株式会社神户制钢所 The manufacture method of compressed-core and the compressed-core obtained by this manufacture method
CN103219120A (en) * 2012-01-18 2013-07-24 株式会社神户制钢所 Method for manufacturing dust core and dust core obtained by the method
CN103240411A (en) * 2013-05-20 2013-08-14 哈尔滨工业大学 Production methods of inorganic-organic insulation layer soft magnetic composites
WO2018080129A1 (en) * 2016-10-27 2018-05-03 주식회사 아모센스 Core for current transformer and manufacturing method for same
CN109983552A (en) * 2016-10-27 2019-07-05 阿莫善斯有限公司 Manufacturing method for the core of current transformer and the core
CN109983552B (en) * 2016-10-27 2021-07-16 阿莫善斯有限公司 Core for current transformer and method of manufacturing the core
US11322300B2 (en) 2016-10-27 2022-05-03 Amosense Co., Ltd Method for manufacturing a core for a current transformer
CN111161935A (en) * 2018-11-07 2020-05-15 山东精创磁电产业技术研究院有限公司 Sintering method of soft magnetic composite material with high strength, high magnetic conductivity and high saturation magnetic flux density
CN110102761A (en) * 2019-06-11 2019-08-09 株洲新科硬质合金有限公司 A kind of micropore hard alloy material preparation method
CN110102761B (en) * 2019-06-11 2021-03-09 株洲新科硬质合金有限公司 Preparation method of microporous hard alloy material
JP7377076B2 (en) 2019-11-19 2023-11-09 株式会社タムラ製作所 Manufacturing method of powder magnetic core

Similar Documents

Publication Publication Date Title
US7682695B2 (en) Dust core with specific relationship between particle diameter and coating thickness, and method for producing same
US7871474B2 (en) Method for manufacturing of insulated soft magnetic metal powder formed body
EP0872856B1 (en) Magnetic core and method of manufacturing the same
JP2001011563A (en) Manufacture of composite magnetic material
JP3624681B2 (en) Composite magnetic material and method for producing the same
JP5522173B2 (en) Composite magnetic body and method for producing the same
JP2007299871A (en) Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2000232014A (en) Manufacture of composite magnetic material
JP2003217919A (en) Dust core and high-frequency reactor using the same
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JP2009185312A (en) Composite soft magnetic material, dust core using the same, and their production method
JP2009158802A (en) Manufacturing method of dust core
JPH11260618A (en) Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
JP4171002B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
JP2005213621A (en) Soft magnetic material and powder magnetic core
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP2009099732A (en) Soft magnetic metal particle with insulating oxide coating
JP7417830B2 (en) Manufacturing method of composite magnetic material
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JPH10208923A (en) Composite magnetic material and production thereof
JP2001057307A (en) Composite magnetic material
JP2004146563A (en) Compound magnetic material