JP2006324612A - Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder - Google Patents

Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder Download PDF

Info

Publication number
JP2006324612A
JP2006324612A JP2005158892A JP2005158892A JP2006324612A JP 2006324612 A JP2006324612 A JP 2006324612A JP 2005158892 A JP2005158892 A JP 2005158892A JP 2005158892 A JP2005158892 A JP 2005158892A JP 2006324612 A JP2006324612 A JP 2006324612A
Authority
JP
Japan
Prior art keywords
oxide film
deposited oxide
soft magnetic
silicon powder
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005158892A
Other languages
Japanese (ja)
Inventor
Muneaki Watanabe
宗明 渡辺
Ryoji Nakayama
亮治 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamet Corp
Original Assignee
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamet Corp filed Critical Diamet Corp
Priority to JP2005158892A priority Critical patent/JP2006324612A/en
Priority to CN2005800491939A priority patent/CN101142044B/en
Priority to EP05805498A priority patent/EP1852199B1/en
Priority to EP10172637.0A priority patent/EP2248617B1/en
Priority to PCT/JP2005/020204 priority patent/WO2006080121A1/en
Priority to US11/814,603 priority patent/US9269481B2/en
Priority to CA002598842A priority patent/CA2598842A1/en
Priority to EP12172935.4A priority patent/EP2502689B8/en
Publication of JP2006324612A publication Critical patent/JP2006324612A/en
Priority to US13/228,139 priority patent/US8481178B2/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deposited oxide film coated iron/silicon power where the surfaces of the iron/silicon powder are coated with a Mg-Si-Fe-O four-element deposited oxide film, and a composite soft magnetic material using the powder. <P>SOLUTION: The material is the deposited oxide film coated iron/silicon powder where the Mg-Si-Fe-O four-element deposited oxide film consisting of Mg, Si, Fe, and O is formed on the surfaces of the iron/silicon powder, the Mg-Si-Fe-O four-element deposited oxide film has a concentration gradient where the contents of Mg and O are increased towards the surface, and the content of Fe is decreased. Toward the outermost surface, an Si content is increased in the concentration gradient of Si. The Mg-Si-Fe-O four-element deposited oxide film has a crystalline MgO solid solved wustite type phase, and a metal Fe or an Fe-Si alloy is contained, thereby having a microcrystalline composition of average crystal particle size of 200 nm or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、Mg、Si、FeおよびOからなるMg−Si−Fe−O四元系堆積酸化膜が鉄シリコン粉末の表面に被覆されてなる堆積酸化膜被覆鉄シリコン粉末に関するものであり、さらにこの発明はこの堆積酸化膜被覆鉄シリコン粉末の圧粉焼成体からなるからなる複合軟磁性材に関するものであり、さらにこの発明は前記複合軟磁性材からなる各種電磁気部品のコアに関するものであり、さらにこの発明は前記コアを組み込んだ電気機器、特にリアクトルに関するものである。   The present invention relates to a deposited oxide film-covered iron silicon powder in which an Mg-Si-Fe-O quaternary deposited oxide film composed of Mg, Si, Fe and O is coated on the surface of the iron silicon powder, and The present invention relates to a composite soft magnetic material comprising a sintered compact of this deposited oxide film-coated iron silicon powder, and further relates to a core of various electromagnetic parts made of the composite soft magnetic material. Furthermore, the present invention relates to an electric device incorporating the core, particularly to a reactor.

一般に、各種電磁気回路部品に使用される軟磁性材は、鉄損が小さいことが要求されるため、電気抵抗を高くして渦電流損を低減させ、保磁力を小さくしてヒステリシス損を低減させることが必要であり、さらに、近年、電磁気回路の小型化、高応答化が求められているところから、磁束密度がより高いことも重要視されている。
かかる高比抵抗を有する軟磁性材料を製造するための原料粉末の一例として鉄シリコン粉末の表面にMg含有化成処理膜を被覆した化成処理膜被覆鉄シリコン粉末が知られている(特許文献1参照)。
特開2003−142310号公報
In general, soft magnetic materials used in various electromagnetic circuit components are required to have low iron loss. Therefore, electrical resistance is increased to reduce eddy current loss, and coercive force is reduced to reduce hysteresis loss. Furthermore, in recent years, since there has been a demand for miniaturization and high response of electromagnetic circuits, higher magnetic flux density is also regarded as important.
As an example of a raw material powder for producing such a soft magnetic material having a high specific resistance, a chemical conversion film-coated iron silicon powder in which the surface of the iron silicon powder is coated with a Mg-containing chemical conversion film is known (see Patent Document 1). ).
JP 2003-142310 A

しかし、これら従来のMg含有化成処理膜を被覆した化成処理膜被覆鉄シリコン粉末は、Mg含有化成処理膜が化学的方法により被覆されるため、鉄シリコン粉末に対する酸化膜の密着強度が弱くかつ酸化膜自体の強度が弱いので、従来の化成処理膜被覆鉄シリコン粉末をプレス成形し焼成することにより作製した複合軟磁性材はプレス成形中に化成処理膜が剥離したり破れるなどして十分な絶縁効果が発揮できず、また前記Mg含有化成処理膜が化学的方法により被覆された化成処理膜は高温歪取り焼成中に分解して抵抗が低下するものもあるなどして、十分な高比抵抗を有する複合軟磁性材が得られないという欠点があった。   However, these conventional chemical conversion film-coated iron silicon powders coated with the Mg-containing chemical conversion film have a low adhesion strength of the oxide film to the iron silicon powder and are oxidized because the Mg-containing chemical conversion film is coated by a chemical method. Since the strength of the film itself is weak, the composite soft magnetic material produced by press-molding and baking conventional chemical-treated film-coated iron silicon powder has sufficient insulation because the chemical-treated film peels off or breaks during press molding. The chemical conversion treatment film in which the effect cannot be exhibited and the Mg-containing chemical conversion treatment film is coated by a chemical method is decomposed during high-temperature strain-removal firing, and the resistance is lowered. There is a disadvantage that a composite soft magnetic material having the above cannot be obtained.

そこで、本発明者らは、プレス成形してもプレス成形時に鉄シリコン粉末表面に形成された絶縁膜が破れることが無くかつ絶縁膜が鉄シリコン粉末表面に強固に密着し、さらにプレス成形後に焼成を行っても鉄シリコン粉末表面の絶縁性が低下することのない絶縁膜被覆鉄シリコン粉末を得るべく研究を行った。   Therefore, the present inventors do not break the insulating film formed on the surface of the iron silicon powder at the time of press molding, and the insulating film adheres firmly to the surface of the iron silicon powder, and is fired after press molding. In order to obtain an iron-silicon powder coated with an insulating film, the insulation property on the surface of the iron-silicon powder does not deteriorate even if the process is performed.

その結果、表面酸化した鉄シリコン粉末(表面が自然酸化した鉄シリコン粉末および酸化処理することにより表面に酸化膜が形成された鉄シリコン粉末を含む。以下、同じ)にMg粉末を添加し混合して得られた混合粉末を不活性ガス雰囲気または真空雰囲気中で加熱した後、さらに必要に応じて酸化性雰囲気中で加熱する後酸化処理を施すと、鉄シリコン粉末の表面にMg、Si、FeおよびOからなるMg−Si−Fe−O四元系堆積酸化膜が形成された堆積酸化膜被覆鉄シリコン粉末が得られ、この堆積酸化膜被覆鉄シリコン粉末は、従来の鉄シリコン粉末の表面に化成処理膜が形成された化成処理膜被覆鉄シリコン粉末に比べてMg−Si−Fe−O四元系堆積酸化膜の鉄シリコン粉末に対する密着性が格段に優れることから、プレス成形中に絶縁皮膜であるMg−Si−Fe−O四元系堆積酸化膜が破壊されて鉄シリコン粉末同士が接触することが少なく、プレス成形後に高温歪取り焼成を行ってもMg−Si−Fe−O四元系堆積酸化膜の絶縁性が低下することなく高抵抗を維持することができるところから渦電流損失が低くなり、高温歪取り焼成を行った場合、より保磁力が低減できることからヒステリシス損失を低く抑えることができ、したがって、低鉄損を有する複合軟磁性材料が得られること、
(ロ)前記Mg−Si−Fe−O四元系堆積酸化膜は、表面に向ってMgおよびO含有量が増加しかつ表面に向ってFe含有量が減少する濃度勾配を有し、最表面近傍において最表面に近いほどSi含有量が増加する濃度勾配を有すること、
(ハ)前記Mg−Si−Fe−O四元系堆積酸化膜には、結晶質のMgO固溶ウスタイト型相が含まれていること
(ニ)前記Mg−Si−Fe−O四元系堆積酸化膜は結晶粒径が200nm以下の微細結晶組織を有すること、
(ホ)前記Mg−Si−Fe−O四元系堆積酸化膜には、金属FeまたはFe−Si合金が含まれること、などの知見が得られたのである。
As a result, Mg powder was added to and mixed with iron-silicon powder whose surface was oxidized (including iron-silicon powder whose surface was naturally oxidized and iron-silicon powder whose surface was oxidized by oxidation treatment; the same applies hereinafter). When the mixed powder obtained is heated in an inert gas atmosphere or a vacuum atmosphere and then further heated in an oxidizing atmosphere as necessary, and then subjected to an oxidation treatment, the surface of the iron silicon powder is subjected to Mg, Si, Fe A deposited oxide film-coated iron silicon powder in which a Mg—Si—Fe—O quaternary deposited oxide film composed of O and O is formed is obtained. This deposited oxide film coated iron silicon powder is formed on the surface of a conventional iron silicon powder. Since the adhesion of the Mg—Si—Fe—O quaternary deposited oxide film to the iron silicon powder is significantly better than the chemical conversion film coated iron silicon powder on which the chemical conversion film is formed, The Mg—Si—Fe—O quaternary deposited oxide film, which is an insulating film, is destroyed during molding and the iron silicon powder is less likely to come into contact with each other. Even if high temperature strain relief firing is performed after press molding, Mg—Si— Since the high resistance can be maintained without lowering the insulation of the Fe—O quaternary deposited oxide film, the eddy current loss is reduced, and the coercive force can be further reduced when high-temperature strain relief firing is performed. Hysteresis loss can be kept low, and thus a composite soft magnetic material having low iron loss can be obtained;
(B) The Mg—Si—Fe—O quaternary deposited oxide film has a concentration gradient in which the Mg and O contents increase toward the surface and the Fe content decreases toward the surface, and the outermost surface Having a concentration gradient in which the Si content increases as it is closer to the outermost surface in the vicinity,
(C) The Mg—Si—Fe—O quaternary deposited oxide film contains a crystalline MgO solid solution wustite type phase. (D) The Mg—Si—Fe—O quaternary deposited oxide film. The oxide film has a fine crystal structure with a crystal grain size of 200 nm or less,
(E) The knowledge that the Mg—Si—Fe—O quaternary deposited oxide film contains metal Fe or an Fe—Si alloy has been obtained.

この発明は、かかる知見に基づいてなされたものであって、
(1)鉄シリコン粉末の表面に、Mg、Si、FeおよびOからなるMg−Si−Fe−O四元系堆積酸化膜が形成されている堆積酸化膜被覆鉄シリコン粉末、
(2)前記Mg−Si−Fe−O四元系堆積酸化膜は、表面に向ってMgおよびO含有量が増加しかつ表面に向ってFe含有量が減少する濃度勾配を有し、さらに最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有する前記(1)記載の堆積酸化膜被覆鉄シリコン粉末、
(3)前記Mg−Si−Fe−O四元系堆積酸化膜には、結晶質のMgO固溶ウスタイト型相が含まれている前記(1)または(2)記載の堆積酸化膜被覆鉄シリコン粉末、
(4)前記Mg−Si−Fe−O四元系堆積酸化膜には、金属FeまたはFe−Si合金が含まれている前記(1)、(2)または(3)記載の堆積酸化膜被覆鉄シリコン粉末、
(5)前記Mg−Si−Fe−O四元系堆積酸化膜は、平均結晶粒径:200nm以下の微細結晶組織を有する前記(1)、(2)、(3)または(4)記載の堆積酸化膜被覆鉄シリコン粉末、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) A deposited oxide film-coated iron silicon powder in which a Mg—Si—Fe—O quaternary deposited oxide film made of Mg, Si, Fe and O is formed on the surface of the iron silicon powder;
(2) The Mg—Si—Fe—O quaternary deposited oxide film has a concentration gradient in which the Mg and O contents increase toward the surface and the Fe content decreases toward the surface. The deposited oxide film-coated iron silicon powder according to (1), which has a Si concentration gradient in which the Si content increases as the surface is closer to the outermost surface in the vicinity of the surface,
(3) The deposited oxide film-covered iron silicon according to (1) or (2), wherein the Mg—Si—Fe—O quaternary deposited oxide film contains a crystalline MgO solute wustite phase. Powder,
(4) The deposited oxide film coating according to (1), (2), or (3), wherein the Mg—Si—Fe—O quaternary deposited oxide film contains metal Fe or an Fe—Si alloy. Iron silicon powder,
(5) The Mg-Si-Fe-O quaternary deposited oxide film has an average crystal grain size: 200 nm or less and has a fine crystal structure (1), (2), (3) or (4) It is characterized by deposited oxide film-coated iron silicon powder.

前記(1)、(2)、(3)、(4)または(5)記載のこの発明の堆積酸化膜被覆鉄シリコン粉末を製造する際に使用する鉄シリコン粉末は、Si:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鉄シリコン粉末が使用され、この成分組成は一般に知られている成分組成である。したがって、この発明は、
(6)前記鉄シリコン粉末は、Si:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する前記(1)、(2)、(3)、(4)または(5)記載の堆積酸化膜被覆鉄シリコン粉末、に特徴を有するものである。
The iron silicon powder used when producing the deposited oxide film-coated iron silicon powder of the present invention described in (1), (2), (3), (4) or (5) is Si: 0.1 An iron silicon powder having a component composition containing 10% by mass and the balance consisting of Fe and inevitable impurities is used, and this component composition is a generally known component composition. Therefore, the present invention
(6) The iron silicon powder contains Si: 0.1 to 10% by mass, and the remainder has a component composition composed of Fe and inevitable impurities (1), (2), (3), (4) Or, it is characterized by the deposited oxide film-coated iron silicon powder described in (5).

前記(1)、(2)、(3)、(4)、(5)および(6)記載のこの発明の堆積酸化膜被覆鉄シリコン粉末を製造するには、前記成分組成を有する表面に酸化膜を有する鉄シリコン粉末にMg粉末を添加し混合して得られた混合粉末を温度:150〜1100℃、圧力:1×10−12〜1×10−1MPaの不活性ガス雰囲気または真空雰囲気中で加熱した後、さらに必要に応じて酸化性雰囲気中で長時間加熱する後酸化処理を施すことにより得られる。
前記表面に酸化膜を有する鉄シリコン粉末は、水アトマイズ、ガスアトマイズまたはガス水アトマイズすることにより得られたSi:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有する鉄シリコン粉末を大気中に放置するだけで得られるが、酸化処理することによっても得られる。ガスアトマイズやガス水アトマイズして得られた鉄シリコン粉末は球形に近いために比較的高抵抗を有する複合軟磁性材を得るのに適しており、一方、水アトマイズして得られた鉄シリコン粉末は粉末表面形状が凹凸を有するために比較的高強度の複合軟磁性材を得るのに適している。
In order to produce the deposited oxide film-coated iron silicon powder according to the present invention described in (1), (2), (3), (4), (5) and (6), the surface having the component composition is oxidized. Inert gas atmosphere or vacuum atmosphere of mixed powder obtained by adding and mixing Mg powder to iron silicon powder having a film, temperature: 150 to 1100 ° C., pressure: 1 × 10 −12 to 1 × 10 −1 MPa After heating in, it is obtained by subjecting it to an oxidation treatment after further heating in an oxidizing atmosphere for a long time if necessary.
The iron silicon powder having an oxide film on the surface contains Si: 0.1 to 10% by mass obtained by water atomization, gas atomization or gas water atomization, and the balance is composed of Fe and inevitable impurities. It can be obtained simply by leaving the iron silicon powder in the atmosphere, but it can also be obtained by oxidation treatment. The iron silicon powder obtained by gas atomization or gas water atomization is close to a sphere, so it is suitable for obtaining a composite soft magnetic material having a relatively high resistance. On the other hand, the iron silicon powder obtained by water atomization is Since the surface shape of the powder has irregularities, it is suitable for obtaining a relatively high strength composite soft magnetic material.

ここで「堆積酸化膜」という用語は、通常は真空蒸発やスパッタされた皮膜構成原子が例えば基板上に堆積した酸化皮膜を示すが、この発明の鉄シリコン粉末の表面に形成されているMg−Si−Fe−O四元系堆積酸化膜は、表面酸化した鉄シリコン粉末の表面酸化膜がMgと反応して当該鉄シリコン粉末表面に形成された皮膜を示す。そして、この鉄シリコン粉末の表面に形成されている堆積酸化膜の膜厚は、圧粉成形した複合軟磁性材の高磁束密度と高比抵抗を得るために、5nm〜500nmの範囲内にあることが好ましい。膜厚が5nmより薄いと圧粉成形した複合軟磁性材の比抵抗が充分でなく渦電流損が増加するので好ましくなく、一方、膜厚が500nmより厚いと圧粉成形した複合軟磁性材の磁束密度が低下して好ましくないからである。さらに好ましい膜厚は5nm〜200nmの範囲内である。   Here, the term “deposited oxide film” usually refers to an oxide film in which atoms constituting a film evaporated by vacuum evaporation or sputtering are deposited on a substrate, for example, and Mg− formed on the surface of the iron silicon powder of the present invention. The Si—Fe—O quaternary deposited oxide film is a film formed on the surface of the iron silicon powder by reacting the surface oxide film of the surface oxidized iron silicon powder with Mg. The film thickness of the deposited oxide film formed on the surface of the iron silicon powder is in the range of 5 nm to 500 nm in order to obtain the high magnetic flux density and high specific resistance of the compacted composite soft magnetic material. It is preferable. If the film thickness is less than 5 nm, the specific resistance of the powder-molded composite soft magnetic material is not sufficient and the eddy current loss increases. On the other hand, if the film thickness is thicker than 500 nm, it is not preferable. This is because the magnetic flux density is lowered, which is not preferable. A more preferable film thickness is in the range of 5 nm to 200 nm.

この発明の堆積酸化膜被覆鉄シリコン粉末の表面に形成されているMg−Si−Fe−O四元系堆積酸化膜は、表面に向ってMgおよびO含有量が増加しかつ表面に向ってFe含有量が減少する濃度勾配を有することにより前記Mg−Si−Fe−O四元系堆積酸化膜の鉄シリコン粉末に対する密着性が向上し、さらに金属FeまたはFe−Si合金が含まれことにより前記Mg−Si−Fe−O四元系堆積酸化膜の鉄シリコン粉末に対する密着性が向上し、したがって、かかるMg−Si−Fe−O四元系堆積酸化膜を有するこの発明の堆積酸化膜被覆鉄シリコン粉末は、圧縮成形などの工程において膜が破損または剥離することが無く、高抵抗を有する複合軟磁性材が得られるものと考えられる。
この発明の堆積酸化膜被覆鉄シリコン粉末の表面に形成されているMg−Si−Fe−O四元系堆積酸化膜には結晶質のMgO固溶ウスタイト型相が含まれていることが好ましい。前記結晶質のMgO固溶ウスタイト型相はNaCl型結晶構造を有することが最も好ましい。
この発明の堆積酸化膜被覆鉄シリコン粉末の表面に形成されているMg−Si−Fe−O四元系堆積酸化膜は、その結晶粒が微細であるほど好ましく、結晶粒径が200nm以下の微細結晶組織を有する事が好ましい。この様な微細結晶組織を有することにより、圧粉成形時の粉末の変形に微結晶堆積酸化膜が追従して被覆の破れを防止することができ、焼成時にも鉄シリコン粉末同士の接触結合を防止することができ、また、高温歪取り焼成を行っても酸化物が安定で絶縁性低下が防止でき高抵抗で渦電流損失が低くなる。結晶粒径が200nmより大きいと圧粉成形した複合軟磁性材の磁束密度が低下するようになるので好ましくない。さらに好ましい結晶粒径は50nm以下である。
The Mg—Si—Fe—O quaternary deposited oxide film formed on the surface of the deposited oxide film-coated iron silicon powder of the present invention has an increased Mg and O content toward the surface and Fe toward the surface. By having a concentration gradient in which the content decreases, the adhesion of the Mg-Si-Fe-O quaternary deposited oxide film to the iron silicon powder is improved, and further, the metal Fe or Fe-Si alloy is contained, thereby The adhesion of the Mg—Si—Fe—O quaternary deposited oxide film to the iron silicon powder is improved, and therefore the deposited oxide coated iron of this invention having such an Mg—Si—Fe—O quaternary deposited oxide film is provided. Silicon powder is considered to be a composite soft magnetic material having high resistance without film breakage or peeling in a process such as compression molding.
The Mg—Si—Fe—O quaternary deposited oxide film formed on the surface of the deposited oxide film coated iron silicon powder of the present invention preferably contains a crystalline MgO solid solution wustite type phase. The crystalline MgO solid solution wustite type phase most preferably has a NaCl type crystal structure.
The Mg-Si-Fe-O quaternary deposited oxide film formed on the surface of the deposited oxide film-coated iron silicon powder of the present invention is preferably as fine as the crystal grains, and the crystal grain size is as fine as 200 nm or less. It preferably has a crystal structure. By having such a fine crystal structure, it is possible for the microcrystalline deposited oxide film to follow the deformation of the powder during compacting and prevent the coating from being broken. In addition, even if high temperature strain relief firing is performed, the oxide is stable and the insulating property can be prevented from being lowered, and the eddy current loss is reduced with high resistance. If the crystal grain size is larger than 200 nm, the magnetic flux density of the compacted composite soft magnetic material is lowered, which is not preferable. A more preferable crystal grain size is 50 nm or less.

前記(1)〜(5)記載の堆積酸化膜被覆鉄シリコン粉末を製造する際に使用する前記(6)記載の鉄シリコン粉末の平均粒径は5〜500μmの範囲内にある粉末を使用することが好ましい。その理由は、平均粒径が5μmより小さすぎると、粉末の圧縮性が低下し、粉末の体積割合が低くなるために磁束密度の値が低下するので好ましくなく、一方、平均粒径が500μmより大きすぎると、粉末内部の渦電流が増大して高周波における透磁率が低下することによるものである。前記(1)〜(4)の堆積酸化膜被覆鉄シリコン粉末を製造する際に使用する鉄シリコン粉末の一層好ましい平均粒径は5〜100μmである。   The iron silicon powder described in (6) used when producing the deposited oxide film-coated iron silicon powder described in (1) to (5) uses a powder having an average particle size in the range of 5 to 500 μm. It is preferable. The reason is that if the average particle size is less than 5 μm, the compressibility of the powder is lowered, and the volume ratio of the powder is lowered, so the value of the magnetic flux density is lowered. On the other hand, the average particle size is less than 500 μm. If it is too large, the eddy current inside the powder increases and the magnetic permeability at high frequency decreases. A more preferable average particle diameter of the iron silicon powder used when producing the deposited oxide film-coated iron silicon powder of (1) to (4) is 5 to 100 μm.

この発明の堆積酸化膜被覆鉄シリコン粉末を圧粉成形し、得られた圧粉成形体を温度:500〜1000℃で燒成することにより複合軟磁性材を作製することができる。
また、この発明の堆積酸化膜被覆鉄シリコン粉末を有機絶縁材料または無機材料と共に圧粉焼成することにより比抵抗および強度が向上した複合軟磁性材とすることができる。この場合、有機絶縁材料では、エポキシ樹脂やフッ素樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂、フェノキシ樹脂、ユリア樹脂、イソシアネート樹脂、アクリル樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂(以下、PPS樹脂という)等を用いることができるが、これら有機絶縁材料の内でもシリコーン樹脂、ポリイミド樹脂またはPPS樹脂が特に好ましい。バインダの硬度を調整するための柔軟剤や、バインダと粉末との密着性を高めるためにカップリング剤を適宜添加することが良い。圧密時の粉末のすべりを改善し、堆積膜の絶縁を確保するためにステアリン酸、各種ステアリン酸塩などの潤滑剤を添加しても良い。また、複合軟磁性材の強度を向上させるには、適宜無機絶縁材料のガラスバインダを加えても良い。
A composite soft magnetic material can be produced by compacting the deposited oxide film-coated iron silicon powder of the present invention and molding the resulting compacted body at a temperature of 500 to 1000 ° C.
Moreover, the composite soft magnetic material having improved specific resistance and strength can be obtained by compacting and firing the deposited oxide film-coated iron silicon powder of the present invention together with an organic insulating material or an inorganic material. In this case, as organic insulating materials, epoxy resin, fluorine resin, phenol resin, urethane resin, silicone resin, polyester resin, phenoxy resin, urea resin, isocyanate resin, acrylic resin, polyimide resin, polyphenylene sulfide resin (hereinafter referred to as PPS resin). Among these organic insulating materials, silicone resin, polyimide resin or PPS resin is particularly preferable. A softening agent for adjusting the hardness of the binder and a coupling agent may be suitably added to enhance the adhesion between the binder and the powder. Lubricants such as stearic acid and various stearates may be added to improve powder sliding during consolidation and to ensure insulation of the deposited film. In order to improve the strength of the composite soft magnetic material, a glass binder of an inorganic insulating material may be added as appropriate.

したがって、この発明は、
(7)前記(1)、(2)、(3)、(4)、(5)または(6)記載の堆積酸化膜被覆鉄シリコン粉末の圧粉焼成体からなる複合軟磁性材、
(8)前記(1)、(2)、(3)、(4)、(5)または(6)記載の堆積酸化膜被覆鉄シリコン粉末粒子間にシリコーン樹脂、ポリイミド樹脂またはPPS樹脂の絶縁材料が介在してなる圧粉焼成体からなる複合軟磁性材、に特徴を有するものである。
この発明の前記(1)、(2)、(3)、(4)、(5)または(6)記載の堆積酸化膜被覆鉄シリコン粉末で作製した複合軟磁性材は、鉄シリコン粒子相とこの鉄シリコン粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト型相を含有するMg−Si−Fe−O四元系酸化物を含むことが好ましい。前記結晶質のMgO固溶ウスタイト型相はNaCl型結晶構造を有することが最も好ましい。したがって、この発明は、
(9)鉄シリコン粒子相とこの鉄シリコン粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト型相を含有するMg−Si−Fe−O四元系酸化物を含む前記(7)または(8)記載の複合軟磁性材、に特徴を有するものである。
Therefore, the present invention
(7) A composite soft magnetic material comprising a powder fired body of the deposited oxide film-coated iron silicon powder according to (1), (2), (3), (4), (5) or (6),
(8) Insulating material of silicone resin, polyimide resin or PPS resin between the deposited oxide film-coated iron silicon powder particles according to (1), (2), (3), (4), (5) or (6) It is characterized by a composite soft magnetic material made of a sintered compact with green powder interposed therebetween.
The composite soft magnetic material made of the deposited oxide film-coated iron silicon powder according to (1), (2), (3), (4), (5) or (6) of the present invention has an iron silicon particle phase. It is preferable that the grain boundary phase includes an Mg—Si—Fe—O quaternary oxide containing a crystalline MgO solid solution wustite type phase. The crystalline MgO solid solution wustite type phase most preferably has a NaCl type crystal structure. Therefore, the present invention
(9) An Mg—Si—Fe—O quaternary system comprising an iron silicon particle phase and a grain boundary phase surrounding the iron silicon particle phase, wherein the grain boundary phase contains a crystalline MgO solid solution wustite type phase The composite soft magnetic material according to the above (7) or (8) containing an oxide is characterized.

この発明の堆積酸化膜被覆鉄シリコン粉末を用いて作製した複合軟磁性材は高密度、高強度、高比抵抗および高磁束密度を有し、この複合軟磁性材は、高磁束密度で高周波低鉄損の特徴を有する事から、この特徴を生かした各種電磁気回路部品の材料として使用できる。前記電磁気回路部品のコア材としては、磁心、電動機コア,発電機コア、ソレノイドコア、イグニッションコア、リアクトルコア、トランスコア、チョークコイルコアまたは磁気センサコアなどがある。そして、この発明の堆積酸化膜被覆鉄シリコン粉末を用いた高抵抗を有する複合軟磁性材からなる電磁気回路部品を組み込んだ電気機器には、電動機、発電機、ソレノイド、インジェクタ、電磁駆動弁、インバータ、コンバータ、変圧器、継電器、磁気センサシステム等があり、電気機器の高効率高性能化や小型軽量化を行うことができる。
近年、一般家電や自動車、産業機器の分野において環境問題から省エネルギー対策が進められており、電気回路部品の高効率化が望まれているが、この中で、自動車用の電源の昇圧や降圧などの電圧変換や、インピーダンス調整、フィルター用電源部品としてリアクトルが知られており、このリアクトルには、小型、低損失のために高い飽和磁化と高抵抗で低保磁力の軟磁性材料が用いられている。直流重畳特性を向上させるには透磁率が安定していることが望ましく、このリアクトルのコアにはギャップが設けられており、入力電流が使用範囲内で変動しても一定のインダクタンスが得られるように設計されている。
この発明の堆積酸化膜被覆鉄シリコン粉末の圧粉焼成体、またはこの発明の堆積酸化膜被覆鉄シリコン粉末粒子間にシリコーン樹脂、ポリイミド樹脂またはPPS樹脂の絶縁材料を介在させた圧粉焼成体からなる複合軟磁性材をコア材としたリアクトルは、高温歪取り焼成を行っても絶縁を確保すると同時に保磁力が低減する特徴があるため、高周波数領域と中低周波数領域で損失が低減され、優れた交流特性を有する。この為、自動車用電源の昇圧や降圧などの電圧変換やインピーダンス調整、フィルター用電源等に小型、低損失、低騒音で直流重畳特性に優れたリアクトルとして用いることができる。
The composite soft magnetic material produced using the deposited oxide film-coated iron silicon powder of the present invention has high density, high strength, high specific resistance and high magnetic flux density. This composite soft magnetic material has high magnetic flux density and low frequency. Since it has a feature of iron loss, it can be used as a material for various electromagnetic circuit components utilizing this feature. Examples of the core material of the electromagnetic circuit component include a magnetic core, a motor core, a generator core, a solenoid core, an ignition core, a reactor core, a transformer core, a choke coil core, and a magnetic sensor core. In addition, an electric device incorporating an electromagnetic circuit component made of a composite soft magnetic material having a high resistance using the deposited oxide film-coated iron silicon powder of the present invention includes an electric motor, a generator, a solenoid, an injector, an electromagnetically driven valve, an inverter There are converters, transformers, relays, magnetic sensor systems, etc., which can improve the efficiency, performance, size and weight of electrical equipment.
In recent years, energy saving measures have been promoted in the fields of general household appliances, automobiles, and industrial equipment due to environmental problems, and higher efficiency of electric circuit parts is desired. A reactor is known as a power supply component for voltage conversion, impedance adjustment, and filtering, and this reactor uses a soft magnetic material with high saturation magnetization, high resistance, and low coercivity for its small size and low loss. Yes. In order to improve the DC superimposition characteristics, it is desirable that the magnetic permeability is stable. A gap is provided in the core of the reactor so that a constant inductance can be obtained even if the input current fluctuates within the operating range. Designed to.
From the compacted calcined product of the deposited oxide film-coated iron silicon powder of the present invention or the compacted calcined product in which the insulating material of silicone resin, polyimide resin or PPS resin is interposed between the deposited oxide film coated iron silicon powder particles of the present invention. Reactor with a composite soft magnetic material as a core material has the feature that coercive force is reduced at the same time as ensuring insulation even when high temperature strain relief firing is performed, so that loss is reduced in high frequency region and medium and low frequency region, Excellent AC characteristics. For this reason, it can be used as a reactor having a small size, low loss, low noise and excellent direct current superposition characteristics for voltage conversion such as step-up and step-down of an automobile power supply, impedance adjustment, filter power supply, and the like.

この発明の堆積酸化膜被覆鉄シリコン粉末を使用して複合軟磁性材を製造すると、高比抵抗を有することから低渦電流損失を有し、さらに保磁力が低いことから低ヒステリシス損失を有する複合軟磁性材を低コストで安定して作製することができ、電気・電子産業上優れた効果をもたらすものである。   When a composite soft magnetic material is produced using the deposited oxide film-coated iron silicon powder of the present invention, it has a low specific eddy current loss because of its high specific resistance, and further has a low hysteresis loss because of its low coercive force. A soft magnetic material can be stably produced at low cost, and brings about excellent effects in the electric and electronic industries.

実施例1
原料粉末として、Si:3質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粒径:70μmを有するガス水アトマイズ鉄シリコン粉末を用意し、さらに平均粒径:50μmのMg粉末を用意した。
前記ガス水アトマイズ鉄シリコン粉末は表面に自然酸化して形成された酸化膜が形成されていた。この鉄シリコン粉末にMg粉末を鉄シリコン粉末:Mg粉末=99.8質量%:0.2質量%の割合で添加し混合して混合粉末を作製し、得られた混合粉末を温度:650℃、圧力:2.7×10−4MPa、1時間保持したのち、さらに大気中、温度:200℃、1時間保持することにより鉄シリコン粉末の表面に堆積酸化膜が被覆されている本発明堆積酸化膜被覆鉄シリコン粉末を作製した。
この堆積酸化膜被覆鉄シリコン粉末における堆積酸化膜の深さ方向のMg、Si、OおよびFeの濃度分布をオージェ電子分光装置を用て調べ、その結果を図1のグラフに示す。図1のグラフは堆積膜の深さ方向の分析結果を示しており、図1のグラフにおいて、縦軸はオージェ電子のピーク強度を示しており、一方、横軸は堆積膜のエッチング時間を示しており、エッチング時間が長いほど堆積膜の内部の深い位置を示している。図1から、MgおよびOは表面から内部に向って減少しておりかつFeは内部に向って増加している濃度勾配を有し、さらにSiは最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することが解る。
また、この堆積酸化膜被覆鉄シリコン粉末の表面に形成されている堆積酸化膜をX線光電子分光装置により分析を行い、結合エネルギーを解析したところ、金属FeまたはFe−Si合金が含まれていることが解った。
さらに本発明堆積膜被覆鉄シリコン粉末の表面に形成された堆積膜の電子線回折図形から、Mg−Si−Fe−O四元系堆積酸化膜には結晶質のMgO固溶ウスタイト型相を含有することが解った。
従って、この発明の堆積酸化膜被覆鉄シリコン粉末の表面に形成されている堆積酸化膜は、Mg、Si、FeおよびOからなるMg−Si−Fe−O四元系堆積酸化膜であって、このMg−Si−Fe−O四元系堆積酸化膜はMgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有し、最表面に近いほどSi含有量が増加するSiの濃度勾配を有すること、金属FeまたはFe−Si合金が含まれていること、Mg−Si−Fe−O四元系堆積酸化膜は結晶質のMgO固溶ウスタイト型相を含有することなどが分かる。さらに、堆積酸化膜被覆鉄シリコン粉末における堆積酸化膜の組織を電子顕微鏡で観察し、その堆積酸化膜の厚さと最大結晶粒径を測定し結果、堆積酸化膜の平均厚さは40nm、最大結晶粒径は10nmであった。
Example 1
As a raw material powder, gas water atomized iron silicon powder containing Si: 3% by mass, the remainder having a composition composed of Fe and inevitable impurities, and having an average particle size: 70 μm is prepared, and further an average particle size: 50 μm Mg powder was prepared.
The gas water atomized iron silicon powder had an oxide film formed by natural oxidation on the surface. Mg powder is added to this iron silicon powder at a ratio of iron silicon powder: Mg powder = 99.8% by mass: 0.2% by mass to prepare a mixed powder, and the resulting mixed powder has a temperature of 650 ° C. , Pressure: 2.7 × 10 −4 MPa, held for 1 hour, and further kept in the atmosphere at a temperature of 200 ° C. for 1 hour to deposit the deposited oxide film on the surface of the iron silicon powder. An oxide-coated iron silicon powder was prepared.
The concentration distribution of Mg, Si, O, and Fe in the depth direction of the deposited oxide film in the deposited oxide film-coated iron silicon powder was examined using an Auger electron spectrometer, and the result is shown in the graph of FIG. The graph of FIG. 1 shows the analysis result in the depth direction of the deposited film. In the graph of FIG. 1, the vertical axis shows the peak intensity of Auger electrons, while the horizontal axis shows the etching time of the deposited film. The longer the etching time, the deeper the position inside the deposited film. From FIG. 1, Mg and O have a concentration gradient that decreases from the surface toward the inside and Fe increases toward the inside, and that Si is closer to the outermost surface in the vicinity of the outermost surface, the Si content Can be seen to have an increasing Si concentration gradient.
Further, when the deposited oxide film formed on the surface of the deposited oxide film-coated iron silicon powder was analyzed by an X-ray photoelectron spectrometer and the binding energy was analyzed, it contained metal Fe or Fe-Si alloy. I understood that.
Further, from the electron diffraction pattern of the deposited film formed on the surface of the deposited film-coated iron silicon powder of the present invention, the Mg-Si-Fe-O quaternary deposited oxide film contains a crystalline MgO solid solution wustite phase. I understood that
Therefore, the deposited oxide film formed on the surface of the deposited oxide film-coated iron silicon powder of the present invention is a Mg—Si—Fe—O quaternary deposited oxide film composed of Mg, Si, Fe and O, This Mg-Si-Fe-O quaternary deposited oxide film has a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside, and is close to the outermost surface. The Si concentration gradient increases as the Si content increases, the metal Fe or Fe—Si alloy is included, and the Mg—Si—Fe—O quaternary deposited oxide film is a crystalline MgO solid solution wustite. It can be seen that it contains a mold phase. Furthermore, the structure of the deposited oxide film in the deposited silicon oxide-coated iron silicon powder was observed with an electron microscope, and the thickness of the deposited oxide film and the maximum crystal grain size were measured. As a result, the average thickness of the deposited oxide film was 40 nm and the maximum crystal The particle size was 10 nm.

このようにして得られた本発明堆積酸化膜被覆鉄シリコン粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状圧粉焼成体からなる複合軟磁性材を作製し、この板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数10kHzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。さらに本発明堆積膜被覆鉄シリコン粉末を用いた複合軟磁性材を透過電子顕微鏡で観察したところ、鉄粒子相とこの鉄粒子相を包囲する粒界相が観察され、前記粒界相から得られた電子線回折図形から、粒界相には結晶質のMgO固溶ウスタイト型相を含有することが解った。   The thus obtained deposited oxide film-coated iron silicon powder of the present invention is put into a mold and press-molded to obtain a plate-like green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness and an outer diameter. A ring-shaped green compact having dimensions of 35 mm, an inner diameter of 25 mm, and a height of 5 mm was formed, and the obtained green compact was fired in a nitrogen atmosphere at a temperature of 600 ° C. for 30 minutes, A composite soft magnetic material made of a plate-shaped and ring-shaped powdered fired body was prepared, the specific resistance of the composite soft magnetic material made of this plate-shaped powdered fired body was measured, and the results are shown in Table 1. A composite soft magnetic material made of a powder sintered body is wound, and the magnetic flux density, coercive force, and iron loss when the magnetic flux density is 0.1 T and the frequency is 10 kHz, and when the magnetic flux density is 1.0 T and the frequency is 400 Hz. Measure magnetic properties such as It is shown in 1. Furthermore, when the composite soft magnetic material using the deposited silicon iron powder of the present invention was observed with a transmission electron microscope, an iron particle phase and a grain boundary phase surrounding the iron particle phase were observed and obtained from the grain boundary phase. From the electron diffraction pattern, it was found that the grain boundary phase contains a crystalline MgO solid solution wustite type phase.

従来例1
実施例1で用意した鉄シリコン粉末の表面にMg含有化成処理膜を化学的に形成した従来化成処理膜被覆鉄シリコン粉末を作製し、この従来化成処理膜被覆鉄シリコン粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:600℃、30分保持の条件で焼成を行い、板状およびリング状圧粉焼成体からなる複合軟磁性材を作製し、板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数10kHzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Conventional Example 1
A conventional chemical conversion film-coated iron silicon powder in which an Mg-containing chemical conversion film was chemically formed on the surface of the iron silicon powder prepared in Example 1 was prepared, and this conventional chemical conversion film-coated iron silicon powder was placed in a mold, Press forming to form a plate-shaped green compact having dimensions of 55 mm in length, 10 mm in width, and 5 mm in thickness, and a ring-shaped green compact having dimensions of 35 mm in outer diameter, 25 mm in inner diameter, and 5 mm in height. The obtained green compact is fired in a nitrogen atmosphere at a temperature of 600 ° C. and held for 30 minutes to produce a composite soft magnetic material composed of a plate-shaped and ring-shaped green powder fired body. The specific resistance of the composite soft magnetic material made of the powder fired body was measured, and the results are shown in Table 1. Further, the composite soft magnetic material made of the ring-shaped powder fired body was wound, and the magnetic flux density, coercive force, and When magnetic flux density is 0.1T and frequency is 10kHz Iron loss and magnetic flux density 1.0 T, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 1.

実施例2
実施例1で作製した本発明堆積酸化膜被覆鉄シリコン粉末にシリコーン樹脂を1質量%添加し混合して得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空雰囲気中、温度:800℃、30分保持の条件で焼成を行い、板状およびリング状圧粉焼成体からなる複合軟磁性材を作製し、板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数10kHzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。さらにこの複合軟磁性材を透過電子顕微鏡で観察したところ、鉄粒子相とこの鉄粒子相を包囲する粒界相が観察され、前記粒界相から得られた電子線回折図形から、粒界相には結晶質のMgO固溶ウスタイト型相を含有することが解った。
Example 2
The mixed powder obtained by adding 1% by mass of a silicone resin to the deposited oxide film-coated iron silicon powder of the present invention produced in Example 1 and putting it in a mold was press-molded and longitudinal: 55 mm, lateral: 10 mm, A plate-shaped green compact having a thickness of 5 mm and a ring-shaped green compact having dimensions of an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm, and the obtained green compact in a vacuum atmosphere The composite soft magnetic material made of a plate-shaped and ring-shaped powder fired body is fired under the conditions of temperature: 800 ° C. and held for 30 minutes, and the specific resistance of the composite soft magnetic material made of a plate-like powder fired body The results are shown in Table 1. Further, the composite soft magnetic material made of the ring-shaped green compact is wound, and the magnetic flux density, the coercive force, the magnetic flux density is 0.1 T, and the iron is at a frequency of 10 kHz. Loss and magnetic flux density 1.0T, frequency 400Hz Measuring the magnetic properties such as iron loss of time. The results are shown in Table 1. Furthermore, when this composite soft magnetic material was observed with a transmission electron microscope, an iron particle phase and a grain boundary phase surrounding the iron particle phase were observed. From the electron beam diffraction pattern obtained from the grain boundary phase, the grain boundary phase was observed. Was found to contain crystalline MgO solid solution wustite type phase.

従来例2
従来例1で作製した鉄シリコン粉末の表面にMg含有化成処理膜を化学的に形成した従来化成処理膜被覆鉄シリコン粉末にシリコーン樹脂を1質量%添加し混合して得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を真空雰囲気中、温度:800℃、30分保持の条件で焼成を行い、板状およびリング状圧粉焼成体からなる複合軟磁性材を作製し、板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数10kHzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Conventional example 2
A mixed powder obtained by adding 1% by mass of a silicone resin to a conventional chemical conversion film-coated iron silicon powder obtained by chemically forming a Mg-containing chemical conversion film on the surface of the iron silicon powder produced in the conventional example 1 is mixed with gold. It is put into a mold, press-molded, and a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and ring-shaped pressure having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm The powder compact is molded, and the resulting green compact is fired in a vacuum atmosphere at a temperature of 800 ° C. for 30 minutes to produce a composite soft magnetic material comprising a plate-shaped and ring-shaped green compact. The specific resistance of the composite soft magnetic material made of a plate-like powder fired body was measured, and the results are shown in Table 1. Further, the composite soft magnetic material made of a ring-like powder fired body was wound, and the magnetic flux density, Coercive force, magnetic flux density 0.1T, frequency 10 Iron loss and magnetic flux density 1.0T when the Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 1.

実施例3
実施例1で作製した本発明堆積酸化膜被覆鉄シリコン粉末にポリイミド樹脂を1質量%添加し混合して得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:550℃、30分保持の条件で熱硬化させ、板状およびリング状圧粉焼成体からなる複合軟磁性材を作製し、板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示した。さらにこの複合軟磁性材を透過電子顕微鏡で観察したところ、鉄粒子相とこの鉄粒子相を包囲する粒界相が観察され、前記粒界相から得られた電子線回折図形から、粒界相には結晶質のMgO固溶ウスタイト型相を含有することが解った。
さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度1.5T、周波数50Hzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Example 3
A mixed powder obtained by adding 1% by mass of polyimide resin to the iron oxide silicon powder coated with the present invention produced in Example 1 and mixing the mixture is put into a mold and press-molded to obtain a length of 55 mm, a width of 10 mm, A plate-shaped green compact having a thickness of 5 mm and a ring-shaped green compact having dimensions of an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm, and the obtained green compact in a nitrogen atmosphere , Temperature: 550 ° C., heat-cured under the condition of holding for 30 minutes to produce a composite soft magnetic material composed of a plate-shaped and ring-shaped powder fired body, and a specific resistance of the composite soft magnetic material composed of a plate-shaped powder fired body The results are shown in Table 1. Furthermore, when this composite soft magnetic material was observed with a transmission electron microscope, an iron particle phase and a grain boundary phase surrounding the iron particle phase were observed. From the electron beam diffraction pattern obtained from the grain boundary phase, the grain boundary phase was observed. Was found to contain crystalline MgO solid solution wustite type phase.
Further, the composite soft magnetic material made of a ring-shaped powder compact is wound, and the magnetic flux density, the coercive force, the magnetic flux density 1.5T, the iron loss when the frequency is 50 Hz, and the magnetic flux density 1.0T and the frequency 400 Hz. The magnetic properties such as iron loss were measured, and the results are shown in Table 1.

従来例3
従来例1で作製した鉄シリコン粉末の表面にMg含有化成処理膜を化学的に形成した従来化成処理膜被覆鉄シリコン粉末にポリイミド樹脂を1質量%添加し混合して得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:550℃、30分保持の条件で熱硬化させ、板状およびリング状圧粉焼成体からなる複合軟磁性材を作製し、板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数10kHzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Conventional example 3
The mixed powder obtained by adding 1% by mass of polyimide resin to the conventional chemical conversion film-coated iron silicon powder in which the Mg-containing chemical conversion film was chemically formed on the surface of the iron silicon powder produced in Conventional Example 1 was mixed with gold. It is put into a mold, press-molded, and a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and ring-shaped pressure having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm The powder compact is molded, and the resulting green compact is heat-cured in a nitrogen atmosphere at a temperature of 550 ° C. for 30 minutes to produce a composite soft magnetic material composed of plate-shaped and ring-shaped powder compacts. The specific resistance of the composite soft magnetic material made of a plate-like powder fired body was measured, and the results are shown in Table 1. Further, the composite soft magnetic material made of a ring-like powder fired body was wound, and the magnetic flux density, Coercive force, magnetic flux density 0.1T, frequency 10 Iron loss and magnetic flux density 1.0T when the Hz, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 1.

実施例4
実施例1で作製した本発明堆積酸化膜被覆鉄シリコン粉末にPPS樹脂を1質量%添加し混合して得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成し、板状およびリング状圧粉焼成体からなる複合軟磁性材を作製し、板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示した。さらにこの複合軟磁性材を透過電子顕微鏡で観察したところ、鉄粒子相とこの鉄粒子相を包囲する粒界相が観察され、前記粒界相から得られた電子線回折図形から、粒界相には結晶質のMgO固溶ウスタイト型相を含有することが解った。
さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数10kHzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Example 4
The mixed powder obtained by adding 1% by mass of PPS resin to the deposited oxide film-coated iron silicon powder of the present invention produced in Example 1 and putting it in a mold was press-molded and longitudinal: 55 mm, lateral: 10 mm, A plate-shaped green compact having a thickness of 5 mm and a ring-shaped green compact having dimensions of an outer diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm, and the obtained green compact in a nitrogen atmosphere The composite soft magnetic material made of a plate-like and ring-shaped powder fired body is fired under the conditions of temperature: 500 ° C. and held for 30 minutes, and the specific resistance of the composite soft magnetic material made of the plate-like powder fired body is The measurement results are shown in Table 1. Furthermore, when this composite soft magnetic material was observed with a transmission electron microscope, an iron particle phase and a grain boundary phase surrounding the iron particle phase were observed. From the electron beam diffraction pattern obtained from the grain boundary phase, the grain boundary phase was observed. Was found to contain crystalline MgO solid solution wustite type phase.
Further, a composite soft magnetic material made of a ring-shaped green compact is wound, and magnetic flux density, coercive force, magnetic flux density of 0.1 T, iron loss at a frequency of 10 kHz, magnetic flux density of 1.0 T, and a frequency of 400 Hz The magnetic properties such as iron loss were measured, and the results are shown in Table 1.

従来例4
従来例1で作製した鉄シリコン粉末の表面にMg含有化成処理膜を化学的に形成した従来化成処理膜被覆鉄シリコン粉末にPPS樹脂を1質量%添加し混合して得られた混合粉末を金型に入れ、プレス成形して縦:55mm、横:10mm、厚さ:5mmの寸法を有する板状圧粉体および外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング形状圧粉体を成形し、得られた圧粉体を窒素雰囲気中、温度:500℃、30分保持の条件で焼成し、板状およびリング状の圧粉焼成体からなる複合軟磁性材を作製し、板状圧粉焼成体からなる複合軟磁性材の比抵抗を測定してその結果を表1に示し、さらにリング状圧粉焼成体からなる複合軟磁性材に巻き線を施し、磁束密度、保磁力、並びに磁束密度0.1T、周波数10kHzの時の鉄損および磁束密度1.0T、周波数400Hzの時の鉄損などの磁気特性を測定し、それらの結果を表1に示した。
Conventional example 4
The mixed powder obtained by adding 1% by mass of PPS resin to the conventional chemical conversion treatment film-coated iron silicon powder obtained by chemically forming the Mg-containing chemical conversion treatment film on the surface of the iron silicon powder produced in the conventional example 1 is made of gold. It is put into a mold, press-molded, and a plate-shaped green compact having dimensions of length: 55 mm, width: 10 mm, thickness: 5 mm, and ring-shaped pressure having dimensions of outer diameter: 35 mm, inner diameter: 25 mm, height: 5 mm The powder is molded, and the resulting green compact is fired in a nitrogen atmosphere at a temperature of 500 ° C. for 30 minutes to produce a composite soft magnetic material composed of a plate-shaped and ring-shaped green compact. The specific resistance of the composite soft magnetic material made of a plate-like powder fired body was measured, and the results are shown in Table 1. Further, the composite soft magnetic material made of a ring-like powder fired body was wound, and the magnetic flux density, Coercive force, magnetic flux density 0.1T, frequency 10kHz Iron loss and magnetic flux density 1.0T of time, the magnetic properties such as iron loss at a frequency 400Hz was measured. The results are shown in Table 1.

Figure 2006324612
Figure 2006324612

表1に示される結果から、実施例1で作製した本発明堆積酸化膜被覆鉄シリコン粉末の圧粉焼成体である複合軟磁性材は、従来例1で作製した従来化成処理膜被覆鉄シリコン粉末の圧粉焼成体である複合軟磁性材と比べて、密度については大差は無いが、実施例1で作製した本発明堆積酸化膜被覆鉄シリコン粉末を使用して作製した複合軟磁性材は、従来例1で作製した従来化成処理膜被覆鉄シリコン粉末の圧粉焼成体である複合軟磁性材に比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   From the results shown in Table 1, the composite soft magnetic material, which is a compact sintered body of the deposited oxide film-coated iron silicon powder of the present invention produced in Example 1, is the conventional chemical conversion film-coated iron silicon powder produced in Conventional Example 1. Compared with the composite soft magnetic material that is a compact sintered body, the composite soft magnetic material prepared using the deposited silicon oxide powder of the present invention prepared in Example 1 was used. Compared to the composite soft magnetic material which is a compact sintered body of the conventional chemical conversion film-coated iron silicon powder produced in Conventional Example 1, the magnetic flux density is high, the coercive force is small, and the specific resistance is remarkably high, so iron loss It can be seen that the characteristics are such that the iron loss decreases especially as the frequency increases.

さらに、実施例2で作製した本発明堆積酸化膜被覆鉄シリコン粉末の粒子間にシリコーン樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材は、従来例2で作製した従来化成処理膜被覆鉄シリコン粉末の粒子間にシリコーン樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材と比べて、密度については大差は無いが、実施例2で作製した本発明堆積酸化膜被覆鉄シリコン粉末の粒子間にシリコーン樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材は、従来例2で作製した従来化成処理膜被覆鉄シリコン粉末の粒子間にシリコーン樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材と比べて、磁束密度が高く、保磁力が小さく、さらに比抵抗が格段に高く、そのため鉄損が格段に小さく、特に周波数が大きくなるほど鉄損が小さくなるなどの特性を有することが分かる。   Further, the composite soft magnetic material, which is a compacted sintered body in which a silicone resin insulating material is interposed between particles of the deposited oxide film-coated iron silicon powder of the present invention produced in Example 2, is the conventional chemical conversion treatment produced in Conventional Example 2. Compared with the composite soft magnetic material, which is a sintered compact with a silicon resin insulating material between the particles of the film-coated iron silicon powder, the density is not much different, but the present deposited oxide film produced in Example 2 The composite soft magnetic material, which is a compact sintered body in which a silicone resin insulating material is interposed between particles of coated iron silicon powder, insulates the silicone resin between particles of the conventional chemical conversion film coated iron silicon powder prepared in Conventional Example 2. Compared with the composite soft magnetic material, which is a compact sintered body with the material interposed, the magnetic flux density is high, the coercive force is small, and the specific resistance is remarkably high, so the iron loss is remarkably small, especially the higher the frequency, the iron Loss It found to have characteristics such as made fence.

さらに、実施例3で作製した本発明堆積酸化膜被覆鉄シリコン粉末の粒子間にポリイミド樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材と従来例3で作製した従来化成処理膜被覆鉄シリコン粉末の粒子間にポリイミド樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材と比べ、さらに実施例4で作製した本発明堆積酸化膜被覆鉄シリコン粉末の粒子間にPPS樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材と従来例4で作製した従来化成処理膜被覆鉄シリコン粉末の粒子間にPPS樹脂の絶縁材が介在した圧粉焼成体である複合軟磁性材と比べても同様の結果を示すことがわかる。   Further, a composite soft magnetic material, which is a sintered compact with a polyimide resin insulating material interposed between particles of the present invention deposited oxide film-coated iron silicon powder produced in Example 3, and a conventional chemical conversion treatment film produced in Conventional Example 3 Compared with the composite soft magnetic material, which is a sintered compact with a polyimide resin insulating material between the coated iron silicon powder particles, the PPS between the particles of the present deposited oxide film coated iron silicon powder produced in Example 4 It is a powder fired body in which a PPS resin insulation material is interposed between particles of a composite soft magnetic material, which is a powder fired body in which a resin insulating material is interposed, and a conventional chemical conversion film-coated iron silicon powder produced in Conventional Example 4. It can be seen that similar results are obtained even when compared with the composite soft magnetic material.

実施例5
実施例1で作製した本発明堆積酸化膜被覆鉄シリコン粉末にシラン系カップリング剤の前処理を施した後、1.0質量%シリコーン樹脂を有機溶剤に希釈して添加した後200℃で乾燥して混合粉末を作製した。この混合粉末に0.1質量%ステアリン酸亜鉛を添加し混合した粉末を成形し、外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング圧粉体、外径:50mm、内径:25mm、高さ:25mmの寸法を有するリング状圧粉体を作製し、これら圧粉体を真空雰囲気中、850℃で歪取焼成して、小外径リング状圧粉焼成体および大外径リング状圧粉焼成体からなる複合軟磁性材を作製した。これら複合軟磁性材を透過電子顕微鏡で観察したところ、鉄粒子相とこの鉄粒子相を包囲する粒界相が観察され、前記粒界相から得られた電子線回折図形から、粒界相には結晶質のMgO固溶ウスタイト型相を含有することが解った。
小外径リング状圧粉焼成体に巻線を施し、直流磁気特性および0.1T、10kHzの鉄損を測定してその結果を表2に示した。この小外径リング状圧粉焼成体で20A直流重畳時の20kHzにおけるインダクタンスを測定することにより交流の透磁率を求め、その結果を表2に示した。
次に、大外径リング状圧粉焼成体を用いて巻線を施し、インダクタンスがほぼ一定になるリアクトルを作製した。一般的なアクティブフィルタ付きのスイッチング電源に、このリアクトルを接続し、入力電力1000Wおよび1500Wに対する出力電力の効率(%)を測定しその結果を表2に示した。
Example 5
After the pretreatment of the silane coupling agent was performed on the iron oxide powder coated with the present invention deposited oxide film prepared in Example 1, 1.0 mass% silicone resin was diluted with an organic solvent and then dried at 200 ° C. Thus, a mixed powder was produced. A powder obtained by adding 0.1% by mass of zinc stearate to this mixed powder and forming a mixed powder is molded into a ring compact having an outer diameter: 35 mm, an inner diameter: 25 mm, and a height: 5 mm, outer diameter: 50 mm, inner diameter A ring-shaped green compact having dimensions of 25 mm and a height of 25 mm was produced, and these green compacts were subjected to strain relief firing in a vacuum atmosphere at 850 ° C. A composite soft magnetic material made of a fired body having a diameter ring-shaped powder compact was produced. When these composite soft magnetic materials were observed with a transmission electron microscope, an iron particle phase and a grain boundary phase surrounding the iron particle phase were observed. From the electron diffraction pattern obtained from the grain boundary phase, the grain boundary phase was changed to the grain boundary phase. Was found to contain a crystalline MgO solid solution wustite type phase.
Winding was applied to the small outer diameter ring-shaped powder fired body, and the DC magnetic characteristics and the iron loss of 0.1 T and 10 kHz were measured. The results are shown in Table 2. The magnetic permeability of AC was determined by measuring the inductance at 20 kHz when 20 A DC was superimposed on this small outer diameter ring-shaped powder fired body, and the results are shown in Table 2.
Next, winding was performed using a large-diameter ring-shaped green compact, and a reactor having substantially constant inductance was produced. The reactor was connected to a general switching power supply with an active filter, and the efficiency (%) of the output power with respect to the input power of 1000 W and 1500 W was measured. The results are shown in Table 2.

実施例6
原料粉末として、Si:6.5質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粒径:55μmを有する粉末形状が球形に近いガス水アトマイズ鉄シリコン粉末を用意し、さらに平均粒径:40μmのMg粉末を用意した。このガス水アトマイズ鉄シリコン粉末を大気中、220℃、1時間保持の条件で粉末表面の酸化処理を行い、この酸化処理したガス水アトマイズ鉄シリコン粉末にMg粉末をガス水アトマイズ鉄シリコン粉末:Mg粉末=99.6:0.4割合で添加混合して混合粉末を作製し、この混合粉末を温度:600℃、圧力:1×10−5MPa、1.5時間保持することによりガス水アトマイズ鉄シリコン粉末の表面に堆積酸化膜が被覆されている本発明堆積酸化膜鉄シリコン粉末を作製した。
この堆積酸化膜被覆鉄シリコン粉末における堆積酸化膜の深さ方向のMg、Si、OおよびFeの濃度分布をオージェ電子分光装置を用て調べた結果、MgおよびOは表面から内部に向って減少しておりかつFeは内部に向って増加している濃度勾配を有し、さらにSiは最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することが解った。
また、この堆積酸化膜被覆鉄シリコン粉末の表面に形成されている堆積酸化膜をX線光電子分光装置により分析を行い、結合エネルギーを解析したところ、金属FeまたはFe−Si合金が含まれていることが解った。
従って、この発明の堆積酸化膜被覆鉄シリコン粉末の表面に形成されている堆積酸化膜は、Mg、Si、FeおよびOからなるMg−Si−Fe−O四元系堆積酸化膜であって、このMg−Si−Fe−O四元系堆積酸化膜はMgおよびOが表面から内部に向って減少しておりかつFeが内部に向って増加している濃度勾配を有し、最表面に近いほどSi含有量が増加するSiの濃度勾配を有すること、、金属FeまたはFe−Si合金が含まれていることが分かる。さらに、堆積酸化膜被覆鉄シリコン粉末における堆積酸化膜の組織を電子顕微鏡で観察し、その堆積酸化膜の厚さと最大結晶粒径を測定し結果、堆積酸化膜の平均厚さは60nm、最大結晶粒径は20nmであった。
この本発明堆積酸化膜鉄シリコン粉末にシラン系カップリング剤の前処理を施した後、1.0質量%シリコーン樹脂を有機溶剤に希釈して添加した後250℃で乾燥して混合粉末を作製した。この混合粉末に0.1質量%ステアリン酸亜鉛を添加し混合した粉末を成形し、外径:35mm、内径:25mm、高さ:5mmの寸法を有するリング圧粉体、外径:50mm、内径:25mm、高さ:25mmの寸法を有するリング状圧粉体を作製し、これら圧粉体を真空雰囲気中、850℃で歪取焼成して小外径リング状圧粉焼成体および大外径リング状圧粉焼成体からなる複合軟磁性材を作製した。これら複合軟磁性材を透過電子顕微鏡で観察したところ、鉄粒子相とこの鉄粒子相を包囲する粒界相が観察され、前記粒界相から得られた電子線回折図形から、粒界相には結晶質のMgO固溶ウスタイト型相を含有することが解った。
小外径リング状圧粉焼成体に巻線を施して直流磁気特性および0.1T、10kHzの鉄損を測定し、その結果を表2に示した。この小外径リング状圧粉焼成体で20A直流重畳時の20kHzにおけるインダクタンスを測定し、交流の透磁率を求め、その結果を表2に示した。
次に、大外径リング状圧粉焼成体に巻線を施してインダクタンスがほぼ一定になるリアクトルを作製した。一般的なアクティブフィルタ付きのスイッチング電源に、このリアクトルを接続し、入力電力1000Wおよび1500Wに対する出力電力の効率(%)を測定し、その結果を表2に示した。
Example 6
As a raw material powder, prepared is a gas water atomized iron silicon powder containing Si: 6.5% by mass, the balance being a component composition consisting of Fe and inevitable impurities, and having an average particle size of 55 μm and a nearly spherical shape. Further, Mg powder having an average particle diameter of 40 μm was prepared. The gas water atomized iron silicon powder is oxidized in the atmosphere at 220 ° C. for 1 hour, and the powder surface is oxidized. The oxidized gas water atomized iron silicon powder is treated with Mg powder as gas water atomized iron silicon powder: Mg. Powder = 99.6: 0.4 is added and mixed to prepare a mixed powder, and this mixed powder is maintained at a temperature of 600 ° C, a pressure of 1 x 10-5 MPa, and 1.5 hours of gas water atomization. The deposited oxide film iron silicon powder of the present invention in which the deposited oxide film was coated on the surface of the iron silicon powder was produced.
As a result of investigating the concentration distribution of Mg, Si, O and Fe in the depth direction of the deposited oxide film in this deposited oxide film-coated iron silicon powder using an Auger electron spectrometer, Mg and O decreased from the surface toward the inside. In addition, Fe has a concentration gradient increasing toward the inside, and Si has a concentration gradient of Si in which the Si content increases near the outermost surface in the vicinity of the outermost surface.
Further, when the deposited oxide film formed on the surface of the deposited oxide film-coated iron silicon powder was analyzed by an X-ray photoelectron spectrometer and the binding energy was analyzed, it contained metal Fe or Fe-Si alloy. I understood that.
Therefore, the deposited oxide film formed on the surface of the deposited oxide film-coated iron silicon powder of the present invention is a Mg—Si—Fe—O quaternary deposited oxide film composed of Mg, Si, Fe and O, This Mg-Si-Fe-O quaternary deposited oxide film has a concentration gradient in which Mg and O decrease from the surface toward the inside and Fe increases toward the inside, and is close to the outermost surface. It can be seen that the Si concentration gradient increases as the Si content increases, and that the metal Fe or Fe—Si alloy is included. Further, the structure of the deposited oxide film in the deposited silicon oxide-coated iron silicon powder was observed with an electron microscope, and the thickness of the deposited oxide film and the maximum crystal grain size were measured. As a result, the average thickness of the deposited oxide film was 60 nm and the maximum crystal The particle size was 20 nm.
The present deposited oxide silicon iron powder is pretreated with a silane coupling agent, 1.0% by weight silicone resin is diluted in an organic solvent, and then dried at 250 ° C. to produce a mixed powder. did. A powder obtained by adding 0.1% by mass of zinc stearate to this mixed powder and molding the mixture, is formed into a ring compact having an outer diameter: 35 mm, an inner diameter: 25 mm, and a height: 5 mm, outer diameter: 50 mm, inner diameter A ring-shaped green compact having a size of 25 mm and a height of 25 mm was prepared, and these green compacts were strained and fired at 850 ° C. in a vacuum atmosphere to obtain a small outer ring-shaped green compact and a large outer diameter. A composite soft magnetic material made of a ring-shaped green compact was produced. When these composite soft magnetic materials were observed with a transmission electron microscope, an iron particle phase and a grain boundary phase surrounding the iron particle phase were observed. From the electron diffraction pattern obtained from the grain boundary phase, Was found to contain a crystalline MgO solid solution wustite type phase.
Winding was applied to the small outer ring-shaped green compact and the DC magnetic characteristics and the iron loss of 0.1T and 10 kHz were measured. The results are shown in Table 2. With this small outer ring-shaped green compact, the inductance at 20 kHz when 20 A DC was superimposed was measured to determine the AC permeability, and the results are shown in Table 2.
Next, a coil having a large outer diameter ring-shaped powder compact was wound to produce a reactor having substantially constant inductance. This reactor was connected to a general switching power supply with an active filter, and the efficiency (%) of the output power with respect to the input power of 1000 W and 1500 W was measured. The results are shown in Table 2.

従来例5
実施例で用意したSi:3質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有し、平均粒径:70μmを有するガス水アトマイズ鉄シリコン粉末にシラン系カップリング剤の前処理を施した後、1.0質量%シリコーン樹脂、0.2質量%MgO粉末を混合し混合粉末を作製した。得られた混合粉末を圧粉成形し、得られた圧粉体を真空雰囲気中、850℃で歪取焼成して実施例5と同じ形状および寸法を有する圧粉焼成体を作製した。
小外径リング状圧粉焼成体に巻線を施し直流磁気特性および0.1T、10kHzの鉄損を測定し、その結果を表2に示した。この小外径リング状圧粉焼成体で20A直流重畳時の20kHzにおけるインダクタンスを測定し、交流の透磁率を求め、その結果を表2に示した。
次に、大外径リング状圧粉焼成体に巻線を施してインダクタンスがほぼ一定になるようにリアクトルを作製した。一般的なアクティブフィルタ付きのスイッチング電源に、このリアクトルを接続し、入力電力1000Wおよび1500Wに対する出力電力の効率(%)を測定しその結果を表2に示した。
Conventional Example 5
Si prepared in Example: 3% by mass, pre-treatment of silane coupling agent on gas water atomized iron silicon powder having a component composition consisting of Fe and inevitable impurities, and having an average particle size of 70 μm Then, 1.0% by mass silicone resin and 0.2% by mass MgO powder were mixed to prepare a mixed powder. The obtained mixed powder was compacted, and the obtained compact was strain-fired and fired at 850 ° C. in a vacuum atmosphere to produce a compact fired body having the same shape and dimensions as in Example 5.
Winding was applied to a small outer diameter ring-shaped powder fired body to measure DC magnetic characteristics and iron loss of 0.1 T and 10 kHz. The results are shown in Table 2. With this small outer diameter ring-shaped powder fired body, the inductance at 20 kHz when 20 A DC was superimposed was measured to determine the AC permeability, and the results are shown in Table 2.
Next, a winding was applied to the large-diameter ring-shaped green compact to produce a reactor so that the inductance was substantially constant. The reactor was connected to a general switching power supply with an active filter, and the efficiency (%) of the output power with respect to the input power of 1000 W and 1500 W was measured. The results are shown in Table 2.

Figure 2006324612
Figure 2006324612

表2に示される結果から、本発明堆積酸化膜被覆鉄シリコン粉末の圧粉焼成体からなる実施例5〜6の複合軟磁性材は、鉄シリコン粉末を使用して作製した従来例5の複合軟磁性材と比べて、保磁力が低く、鉄損が小さく、直流重畳特性が良好なこと、並びに実施例5〜6の複合軟磁性材を用いて作製したリアクトルに接続したスイッチング電源は、従来例5で作製した複合軟磁性材を用いて作製したリアクトルに接続したスイッチング電源と比べて、効率が向上することから、本発明堆積酸化膜被覆鉄シリコン粉末粒子間にシリコーン樹脂が介在した圧粉焼成体の複合軟磁性材からなるコアを有するリアクトルはその特性が一層向上することがわかる。   From the results shown in Table 2, the composite soft magnetic materials of Examples 5 to 6 comprising the sintered compact of iron silicon powder deposited oxide film of the present invention are composites of Conventional Example 5 prepared using iron silicon powder. Compared to soft magnetic materials, the coercive force is low, the iron loss is small, the DC superposition characteristics are good, and the switching power supply connected to the reactor manufactured using the composite soft magnetic materials of Examples 5 to 6 Compared with the switching power supply connected to the reactor manufactured using the composite soft magnetic material manufactured in Example 5, the efficiency is improved, so that the silicon powder is interposed between the deposited oxide film-coated iron silicon powder particles of the present invention. It can be seen that the characteristics of the reactor having the core made of the sintered composite soft magnetic material are further improved.

堆積酸化膜の深さ方向のMg、Si、OおよびFeの濃度分布をオージェ電子分光装置を用て調べた結果を示すグラフである。It is a graph which shows the result of having investigated the density | concentration distribution of Mg, Si, O, and Fe of the depth direction of a deposited oxide film using the Auger electron spectrometer.

Claims (28)

鉄シリコン粉末の表面に、Mg、Si、FeおよびOからなるMg−Si−Fe−O四元系堆積酸化膜が形成されていることを特徴とする堆積酸化膜被覆鉄シリコン粉末。 A deposited oxide film-coated iron silicon powder, characterized in that a Mg-Si-Fe-O quaternary deposited oxide film composed of Mg, Si, Fe and O is formed on the surface of the iron silicon powder. 前記Mg−Si−Fe−O四元系堆積酸化膜は、表面に向ってMgおよびO含有量が増加しかつ表面に向ってFe含有量が減少する濃度勾配を有し、さらに最表面近傍において最表面に近いほどSi含有量が増加するSiの濃度勾配を有することを特徴とする請求項1記載の堆積酸化膜被覆鉄シリコン粉末。 The Mg—Si—Fe—O quaternary deposited oxide film has a concentration gradient in which the Mg and O contents increase toward the surface and the Fe content decreases toward the surface, and in the vicinity of the outermost surface. 2. The deposited oxide film-coated iron silicon powder according to claim 1, which has a Si concentration gradient in which the Si content increases as it is closer to the outermost surface. 前記Mg−Si−Fe−O四元系堆積酸化膜には、結晶質のMgO固溶ウスタイト型相が含まれていることを特徴とする請求項1または2記載の堆積酸化膜被覆鉄シリコン粉末。 3. The deposited oxide film-coated iron silicon powder according to claim 1, wherein the Mg-Si-Fe-O quaternary deposited oxide film contains a crystalline MgO solid solution wustite type phase. . 前記Mg−Si−Fe−O四元系堆積酸化膜には、金属FeまたはFe−Si合金が含まれていることを特徴とする請求項1、2または3記載の堆積酸化膜被覆鉄シリコン粉末。 4. The deposited oxide film-coated iron silicon powder according to claim 1, wherein the Mg—Si—Fe—O quaternary deposited oxide film contains metal Fe or an Fe—Si alloy. 5. . 前記Mg−Si−Fe−O四元系堆積酸化膜は、平均結晶粒径:200nm以下の微細結晶組織を有することを特徴とする請求項1、2、3または4記載の堆積酸化膜被覆鉄シリコン粉末。 5. The deposited oxide film-coated iron according to claim 1, wherein the Mg—Si—Fe—O quaternary deposited oxide film has a fine crystal structure with an average crystal grain size of 200 nm or less. Silicon powder. 前記鉄シリコン粉末は、Si:0.1〜10質量%を含有し、残部がFeおよび不可避不純物からなる成分組成を有することを特徴とする請求項1、2、3、4または5記載の堆積酸化膜被覆鉄シリコン粉末。 The said iron silicon powder contains Si: 0.1-10 mass%, The remainder has a component composition which consists of Fe and an unavoidable impurity, The deposition of Claim 1, 2, 3, 4 or 5 characterized by the above-mentioned. Oxide coated iron silicon powder. 請求項1、2、3、4、5または6記載の堆積酸化膜被覆鉄シリコン粉末の圧粉焼成体からなることを特徴とする複合軟磁性材。 A composite soft magnetic material comprising a powder fired body of the deposited oxide film-coated iron silicon powder according to claim 1, 2, 3, 4, 5 or 6. 請求項1、2、3、4、5または6記載の堆積酸化膜被覆鉄シリコン粉末の粒子間にシリコーン樹脂、ポリイミド樹脂またはPPS樹脂の絶縁材料が介在してなる圧粉焼成体からなることを特徴とする複合軟磁性材。 It consists of a compacted sintered body in which an insulating material such as a silicone resin, a polyimide resin or a PPS resin is interposed between particles of the deposited oxide film-coated iron silicon powder according to claim 1, 2, 3, 4, 5 or 6. Characteristic composite soft magnetic material. 鉄シリコン粒子相とこの鉄シリコン粒子相を包囲する粒界相からなり、前記粒界相には結晶質のMgO固溶ウスタイト型相を含有するMg−Si−Fe−O四元系酸化物を含むことを特徴とする請求項7または8記載の複合軟磁性材。 It consists of an iron silicon particle phase and a grain boundary phase surrounding the iron silicon particle phase, and the grain boundary phase contains an Mg-Si-Fe-O quaternary oxide containing a crystalline MgO solid solution wustite type phase. The composite soft magnetic material according to claim 7, wherein the composite soft magnetic material is contained. 請求項7、8または9記載の複合軟磁性材からなることを特徴とするリアクトル用コア。 A reactor core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項10記載のコアを有するリアクトル。 A reactor having the core according to claim 10. 請求項7、8または9記載の複合軟磁性材からなる電動機用コア。 An electric motor core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項12記載のコアを有する電動機。 An electric motor having the core according to claim 12. 請求項7、8または9記載の複合軟磁性材からなる発電機用コア。 A generator core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項14記載のコアを有する発電機。 A generator having a core according to claim 14. 請求項7、8または9記載の複合軟磁性材からなるソレノイド用コア。 A solenoid core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項16記載のコアを有するソレノイド。 A solenoid having a core according to claim 16. 請求項7、8または9記載の複合軟磁性材からなるイグニッション用コア。 An ignition core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項18記載のコアを有するイグニッション。 An ignition having a core according to claim 18. 請求項7、8または9記載の複合軟磁性材からなるトランス用コア。 A transformer core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項20記載のコアを有するトランス。 A transformer having the core according to claim 20. 請求項7、8または9記載の複合軟磁性材からなるチョークコイル用コア。 A choke coil core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項22記載のコアを有するチョークコイル。 A choke coil having the core according to claim 22. 請求項7、8または9記載の複合軟磁性材からなる磁気センサ用コア。 A magnetic sensor core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項24記載のコアを有する磁気センサ。 A magnetic sensor having a core according to claim 24. 請求項7、8または9記載の複合軟磁性材からなる磁心。 A magnetic core comprising the composite soft magnetic material according to claim 7, 8 or 9. 請求項26記載の磁心を有する請求項11、13、15、17、19、21、23または25記載の電磁気回路部品。 The electromagnetic circuit component according to claim 11, 13, 15, 17, 19, 21, 23, or 25 having the magnetic core according to claim 26. 請求項27記載の電磁気回路部品を組み込んだ電気機器。 An electric device incorporating the electromagnetic circuit component according to claim 27.
JP2005158892A 2005-01-25 2005-05-31 Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder Withdrawn JP2006324612A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005158892A JP2006324612A (en) 2005-04-20 2005-05-31 Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder
CN2005800491939A CN101142044B (en) 2005-01-25 2005-11-02 Iron powder coated with mg-containing oxide film
EP05805498A EP1852199B1 (en) 2005-01-25 2005-11-02 Mg-CONTAINING OXIDE COATED IRON POWDER
EP10172637.0A EP2248617B1 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
PCT/JP2005/020204 WO2006080121A1 (en) 2005-01-25 2005-11-02 Mg-CONTAINING OXIDE COATED IRON POWDER
US11/814,603 US9269481B2 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
CA002598842A CA2598842A1 (en) 2005-01-25 2005-11-02 Iron powder coated with mg-containing oxide film
EP12172935.4A EP2502689B8 (en) 2005-01-25 2005-11-02 Iron powder coated with Mg-containing oxide film
US13/228,139 US8481178B2 (en) 2005-01-25 2011-09-08 Iron powder coated with Mg-containing oxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005122679 2005-04-20
JP2005158892A JP2006324612A (en) 2005-04-20 2005-05-31 Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder

Publications (1)

Publication Number Publication Date
JP2006324612A true JP2006324612A (en) 2006-11-30

Family

ID=37544033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158892A Withdrawn JP2006324612A (en) 2005-01-25 2005-05-31 Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder

Country Status (1)

Country Link
JP (1) JP2006324612A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117484A (en) * 2007-11-02 2009-05-28 Tamura Seisakusho Co Ltd Method of manufacturing dust core and dust core
WO2009096138A1 (en) * 2008-01-31 2009-08-06 Honda Motor Co., Ltd. Soft magnetic material and process for producing the soft magnetic material
JP2018152382A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Dust core
JP2018152383A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Dust core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117484A (en) * 2007-11-02 2009-05-28 Tamura Seisakusho Co Ltd Method of manufacturing dust core and dust core
WO2009096138A1 (en) * 2008-01-31 2009-08-06 Honda Motor Co., Ltd. Soft magnetic material and process for producing the soft magnetic material
JP2009206483A (en) * 2008-01-31 2009-09-10 Honda Motor Co Ltd Soft magnetic material and its production process
CN102067251B (en) * 2008-01-31 2013-06-26 本田技研工业株式会社 Soft magnetic material and process for producing the soft magnetic material
JP2018152382A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Dust core
JP2018152383A (en) * 2017-03-09 2018-09-27 Tdk株式会社 Dust core

Similar Documents

Publication Publication Date Title
US11011305B2 (en) Powder magnetic core, and coil component
US9269481B2 (en) Iron powder coated with Mg-containing oxide film
JP6071211B2 (en) Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method
US7556838B2 (en) Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core
JP4430607B2 (en) Method for producing surface high Si layer coated iron powder
CN106663513B (en) Magnetic core, the manufacturing method of magnetic core and coil component
JP2007123703A (en) SOFT MAGNETIC POWDER COATED WITH Si OXIDE FILM
KR20110079789A (en) Powder magnetic core and production method thereof
JP2009060050A (en) High specific resistance and low loss composite soft magnetic material, and manufacturing method thereof
Cheng et al. Ultra-low core loss FeSiAl soft magnetic composites with in-situ double oxidation layers of outer Fe3O4 layer and inner super-thin Al2O3/SiO2 hybrid layer
JP2006324612A (en) Composite soft magnetic material consisting of deposited oxide film-coated iron/silicon powder and sintered green compact of its powder
JP4480015B2 (en) Laminated oxide film coated iron powder
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
US7041148B2 (en) Coated ferromagnetic particles and compositions containing the same
JP4761835B2 (en) Mg-containing iron oxide coated iron powder
Slovenský et al. Preparation and characterization of fe based soft magnetic composites coated by SiO2 layer prepared by Stöber method
EP1675137A1 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
JP2006241504A (en) Stacked oxide film-coated iron powder
WO2007052772A1 (en) Fe-Si TYPE IRON-BASED SOFT MAGNETIC POWDER COATED WITH OXIDE DEPOSIT FILM AND PROCESS FOR PRODUCING THE SAME
JP4761836B2 (en) Mg-containing iron oxide coated iron powder
JP4480628B2 (en) Composite soft magnetic powder and method for producing the same
JP4748772B2 (en) Oxide film-coated iron powder and method for producing the same
JP2006339356A (en) Compound soft magnetic powder and its production process
JP5027390B2 (en) Deposited film-coated iron powder
JP2005303007A (en) Soft magnetic material, dust core, and method of manufacturing soft magnetic material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805