JPH0676854A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH0676854A
JPH0676854A JP4253756A JP25375692A JPH0676854A JP H0676854 A JPH0676854 A JP H0676854A JP 4253756 A JP4253756 A JP 4253756A JP 25375692 A JP25375692 A JP 25375692A JP H0676854 A JPH0676854 A JP H0676854A
Authority
JP
Japan
Prior art keywords
battery
silica powder
sealed lead
acid battery
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4253756A
Other languages
Japanese (ja)
Inventor
Masaaki Shiomi
塩見  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP4253756A priority Critical patent/JPH0676854A/en
Publication of JPH0676854A publication Critical patent/JPH0676854A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a sealed lead-acid battery having an improved discharge capacity and reduced internal resistance. CONSTITUTION:Silica powder is filled and arranged between electrode plates and around an electrode plate group, and sulfuric acid electrolyte is impregnated and held in the silica powder, a separator, and positive and negative electrode plates in a sealed lead-acid battery. The silica powder has the grain diameter of 10-200mum, and the volume of holes having the diameter of 0.006-0.1mum is set to 23% or below of the total. fine hole volume in the filled state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池、特にそ
の電解液保持体の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery, and more particularly to improvement of an electrolytic solution holder for the battery.

【0002】[0002]

【従来の技術とその課題】電池の充電中に発生する酸素
ガスを負極で吸収させるタイプの密閉形鉛蓄電池には従
来リテーナ式とゲル式の2種類があった。リテーナ式は
正極板と負極板との間に微細ガラス繊維を主体とするマ
ット状のセパレータ(ガラスセパレータ)を挿入し、こ
れによって放電に必要な硫酸電解液の保持と両極の隔離
とをおこなっており、無保守、無漏液、ポジションフリ
ー等の特徴を生かして、近年、ポータブル機器やコンピ
ューターのバックアップ電源として広く用いられてい
る。
2. Description of the Related Art Conventional sealed lead-acid batteries of the type in which the negative electrode absorbs oxygen gas generated during charging of the battery have conventionally been classified into two types: retainer type and gel type. The retainer type inserts a mat-shaped separator (glass separator) mainly composed of fine glass fibers between the positive electrode plate and the negative electrode plate, which holds the sulfuric acid electrolyte necessary for discharge and separates both electrodes. In recent years, it has been widely used as a backup power source for portable devices and computers, taking advantage of its features such as no maintenance, no leakage, and position-free.

【0003】しかし、ガラスセパレータは特殊な方法で
製造される直径1ミクロン前後の微細ガラス繊維を抄造
してマット状としたもので、一般的に用いられる鉛蓄電
池用のセパレータに比べかなり高価なことや、安定した
電池性能を得るためには極板群を強く圧迫して組み込ま
なければならないので電池の組立が困難となり、必然的
に電池の製造コストが高くなるという欠点があった。
However, the glass separator is made of a fine glass fiber having a diameter of about 1 micron, which is manufactured by a special method, into a mat, and is considerably expensive as compared with a commonly used separator for a lead storage battery. Also, in order to obtain stable battery performance, it is necessary to strongly squeeze and incorporate the electrode plate group, which makes it difficult to assemble the battery and inevitably increases the manufacturing cost of the battery.

【0004】また、硫酸電解液を保持させることができ
るのは正、負極板および極板間に挿入したガラスセパレ
ータだけであって、開放形の液式鉛蓄電池のように極板
群の周囲に電解液を配置できないので、電池反応が電解
液量で制限され、液式電池よりも電池性能が劣るという
欠点があった。
Further, the sulfuric acid electrolyte can be held only by the positive and negative electrode plates and the glass separator inserted between the electrode plates, and is surrounded by the electrode plate group like an open type lead acid battery. Since the electrolytic solution cannot be arranged, the battery reaction is limited by the amount of the electrolytic solution, and the battery performance is inferior to that of the liquid battery.

【0005】一方、ゲル式はリテーナ式よりも安価であ
るが、電池性能がリテーナ式より劣り、使用中に一部の
ゲルが壊れてしまい、寿命性能が良くないという欠点が
あった。
On the other hand, although the gel type is less expensive than the retainer type, it has a drawback that the battery performance is inferior to that of the retainer type and some gel is broken during use, resulting in poor life performance.

【0006】そこでこれらの欠点を解消するために、微
細ガラス繊維を用いるリテーナ式でもなく、ゲル状の電
解液を用いるゲル式でもない密閉形鉛蓄電池が提案され
ている。すなわち、電解液保持材として高い多孔度と大
きい比表面積を有する粉体、たとえばシリカ粉体を使用
するもので、正極板と負極板との間隙および極板群の周
囲に上記粉体を充填し、極板およびシリカ粉体に電解液
を含浸・保持させた構成の密閉形鉛蓄電池である。シリ
カ粉体はホワイト・カーボンと呼ばれ、大量に生産、販
売されている安価な材料であり、耐酸性や電解液の保持
力も優れているので、このタイプの密閉形鉛蓄電池の電
解液保持材に用いる粉体として優れた素材であるといえ
る。
In order to solve these drawbacks, therefore, there has been proposed a sealed lead-acid battery which is neither a retainer type using fine glass fibers nor a gel type using a gel electrolyte. That is, a powder having a high porosity and a large specific surface area, for example, silica powder is used as the electrolyte holding material, and the above powder is filled in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate group. The sealed lead-acid battery has a structure in which an electrode plate and silica powder are impregnated and held with an electrolytic solution. Silica powder, which is called white carbon, is an inexpensive material that is produced and sold in large quantities and has excellent acid resistance and electrolyte retention, so it is the electrolyte retention material for this type of sealed lead-acid battery. It can be said that it is an excellent material as a powder used for.

【0007】このようなシリカ粉体を電解液保持体とし
て使用する密閉形鉛蓄電池においても従来の密閉形鉛電
池と同様の問題がある。すなわちそれは開放形液式電池
に比べて電解液中の硫酸イオンの移動が遅いために、放
電容量が少なくなるという問題である。
[0007] The sealed lead-acid battery using such silica powder as the electrolyte holder also has the same problem as the conventional sealed lead-acid battery. That is, it is a problem that the discharge capacity decreases because the sulfate ions in the electrolytic solution move more slowly than in the open-type liquid battery.

【0008】[0008]

【課題を解決するための手段】本発明は上記の問題点を
解決するもので、その要旨とするところは極板間および
極板群の周囲に粒子の直径が10〜200μmで、0.
006〜0.1μmの孔の容積が全細孔容積の0〜23
%になるシリカ粉体を充填、配置し、放電に必要かつ充
分な量の硫酸電解液を上記粉体、隔離体および正負極板
に含浸、保持させることにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and the gist of the present invention is that the diameter of the particles is 10 to 200 μm between the electrode plates and around the electrode plate group.
The pore volume of 006-0.1 μm is 0-23 of the total pore volume.
% Silica powder is filled and arranged, and the above-mentioned powder, separator and positive and negative electrode plates are impregnated and held with a sufficient amount of sulfuric acid electrolytic solution necessary for discharging.

【0009】[0009]

【実施例】以下に本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0010】鉛−カルシウム系合金よりなる正極および
負極格子体に通常のペーストを充填し熟成した後、正極
板4枚と負極板5枚の構成の極板群を作製し、電槽内に
挿入した後、蓋付けを行なった。。
After filling the positive and negative electrode grids made of lead-calcium alloy with a normal paste and aging, an electrode plate group consisting of four positive electrode plates and five negative electrode plates was prepared and inserted into a battery case. After that, a lid was attached. .

【0011】ついで、表1に示す、平均粒子径が2、1
0、100、200、300μmで、直径が0.006
から0.1μmの孔(以後、ミクロポアと呼ぶ)の容積
が全細孔容積の0、11、23、34、50%を占める
シリカ微粉体を準備して、これを電池内に振動等により
極板間および極板群の周囲に充填した後、電解液を注液
し、所定の充電を行なって、電解液の硫酸比重を1.3
0(20℃)にした。
The average particle diameters shown in Table 1 are 2, 1
0, 100, 200, 300 μm, diameter 0.006
To 0.1 μm pores (hereinafter referred to as micropores) occupy 0, 11, 23, 34, and 50% of the total pore volume, and silica fine powder is prepared, and the silica fine powder is charged in a battery by vibration or the like. After filling between the plates and around the electrode plate group, the electrolytic solution is poured and the battery is charged for a predetermined time so that the sulfuric acid specific gravity of the electrolytic solution becomes 1.3.
It was set to 0 (20 degreeC).

【0012】なお、本試験に用いたシリカ粉体は、シリ
カ粉体を高温で焼成することにより製作し、その焼成温
度や焼成時間を変えることによりミクロポアの容積割合
を変えている。この方法以外にもシリカ粉体の一次粒子
を成長させて、一次粒子を大きくしたり、バインダーを
まぜて造粒するなどの方法によって製作することもでき
る。
The silica powder used in this test is manufactured by firing the silica powder at a high temperature, and the volume ratio of the micropores is changed by changing the firing temperature and firing time. In addition to this method, primary particles of silica powder may be grown to increase the size of primary particles, or a binder may be mixed for granulation.

【0013】[0013]

【表1】 その後、弁の装着を行なって、上述した各種のシリカを
用いた密閉式鉛電池を製作した。なお、これらのシリカ
粉体の粒子径は各種の孔径を持つ篩を用いて測定した。
また孔の直径は水銀圧入式ポロシメーターを用いて測定
した。これらの電池は容量試験を10サイクルおこなっ
た後、内部抵抗測定器(1KHzの周波数で電池抵抗を
測定する装置)にて電池の内部抵抗を測定した。第1図
に10サイクル目の放電持続時間を、また第2図には電
池の内部抵抗を示す。
[Table 1] After that, the valve was attached to manufacture a sealed lead-acid battery using the above-mentioned various types of silica. The particle diameters of these silica powders were measured using a sieve having various pore sizes.
The pore diameter was measured using a mercury porosimetry porosimeter. After carrying out a capacity test for 10 cycles on these batteries, the internal resistance of the batteries was measured by an internal resistance measuring device (a device for measuring the battery resistance at a frequency of 1 KHz). FIG. 1 shows the discharge duration at the 10th cycle, and FIG. 2 shows the internal resistance of the battery.

【0014】粒子径が10μmから200μmの範囲の
シリカでは、ミクロポア量が0%から23%までの範囲
では放電容量が多く、しかも内部抵抗が小さかった。電
解液保持材であるシリカ粉体は一般に一次粒子が凝集し
たもので、一次粒子間の隙間と凝集体同志の間隙という
2種類の孔を持っている。前者は0.1μm以下の孔
で、後者はそれよりも大きな孔である。
With silica having a particle size in the range of 10 μm to 200 μm, the discharge capacity was large and the internal resistance was small in the range of micropore amount from 0% to 23%. Silica powder, which is an electrolyte solution holding material, is generally an aggregate of primary particles, and has two types of pores, a gap between primary particles and a gap between aggregates. The former is a hole of 0.1 μm or less, and the latter is a larger hole.

【0015】鉛電池は電解液である硫酸が活物質の一つ
であり、硫酸の移動速度の大小によって、電池性能が大
きく左右されることが知られている。この電池では硫酸
の移動速度はシリカ粉体の孔径分布によって決まってく
る。つまりシリカ粉体に小さな孔が多いと、小さな孔は
電解液を保持しやすいために硫酸の移動速度が小さくな
って、放電容量の低下および内部抵抗の増加が生じる。
逆に小さな孔が少ないと、硫酸を保持する力が弱まっ
て、硫酸の移動速度が向上して、電池性能が向上すると
考えられる。本発明の電池において0.1μm以下の孔
の容積を23%より少なくすると電池性能が向上したの
は、このためと思われる。
It is known that sulfuric acid, which is an electrolytic solution, is one of the active materials in a lead battery, and the battery performance greatly depends on the moving speed of sulfuric acid. In this battery, the moving speed of sulfuric acid is determined by the pore size distribution of silica powder. That is, when the silica powder has many small holes, the small holes easily hold the electrolytic solution, so that the moving speed of sulfuric acid becomes small and the discharge capacity is lowered and the internal resistance is increased.
On the contrary, when the number of small holes is small, the force for holding sulfuric acid is weakened, the moving speed of sulfuric acid is improved, and the battery performance is considered to be improved. This is considered to be the reason why the battery performance was improved by reducing the volume of pores of 0.1 μm or less in the battery of the present invention to less than 23%.

【0016】一方、粒子径が2μmと、最も小さなシリ
カを充填した電池Aはミクロポア径が変わっても概ね容
量が少なく、内部抵抗も小さかった。これはシリカの粒
子径が小さすぎるために凝集したシリカ粒子間の孔の径
が小さくなりすぎて、電解液を保持する力が強すぎるも
のと思われる。逆に粒子径が300μmと最も大きなシ
リカを用いた電池Eも放電容量が少なく、内部抵抗も高
くなった。この電池を解体すると電解液の成層化が起こ
っていた。つまりこれは粒子径が大きすぎるために粒子
間の孔径が大きくなりすぎて、電解液を保持できなかっ
たためと思われる。
On the other hand, the battery A having a particle size of 2 μm, which was filled with the smallest silica, had a small capacity and a low internal resistance even if the micropore size was changed. It is considered that this is because the diameter of the pores between the aggregated silica particles is too small because the particle size of silica is too small, and the force for holding the electrolytic solution is too strong. On the contrary, the battery E using the largest particle having a particle size of 300 μm also has a small discharge capacity and a high internal resistance. When this battery was disassembled, stratification of the electrolytic solution had occurred. In other words, this is probably because the particle size was too large and the pore size between particles became too large to hold the electrolytic solution.

【0017】なお、本発明では電解液保持材として粉体
という用語を用いたが、本発明に使用したシリカの粒子
径の大きさから考えると顆粒という言葉を用いた方が適
切かもしれない。
In the present invention, the term "powder" is used as the electrolytic solution holding material, but it may be more appropriate to use the term "granule" in consideration of the particle size of the silica used in the present invention.

【0018】[0018]

【発明の効果】以上記述したように、平均粒子径が10
〜200μmで、直径が0.006〜0.1μmの孔の
容積が全細孔容積の23%以下である本発明によるシリ
カ粉体を電解液保持材に用いることによって、放電容量
の向上および内部抵抗の低減を行なうことができ、その
工業的価値は非常に大きい。
As described above, the average particle size is 10
By using the silica powder according to the present invention, which has a volume of pores having a diameter of 0.006 to 0.1 μm and a diameter of 0.006 to 0.1 μm of 23% or less of the total pore volume, as an electrolyte holding material, the discharge capacity is improved and Resistance can be reduced and its industrial value is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリカ粉体のミクロポア径と放電容量との関係
を示す特性図
FIG. 1 is a characteristic diagram showing the relationship between the micropore diameter of silica powder and the discharge capacity.

【図2】シリカ粉体のミクロポア径と電池の内部抵抗と
の関係を示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the micropore diameter of silica powder and the internal resistance of the battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 極板間および極板群の周囲にシリカ粉体
を充填、配置し、放電に必要かつ充分な量の硫酸電解液
を上記粉体、隔離体および正・負極板に含浸、保持さ
せ、電池の充電中に発生する酸素ガスを負極で吸収させ
る密閉形鉛蓄電池であって、該シリカ粉体は粒子の直径
が10μm以上200μm以下であって、充填状態にお
いて直径0.006μm〜0.1μmの孔の容積が全細
孔容積の23%以下であることを特徴とした密閉形鉛電
池。
1. A silica powder is filled and arranged between the electrode plates and around the electrode plate group, and the powder, the separator and the positive and negative electrode plates are impregnated with a sufficient amount of sulfuric acid electrolytic solution necessary for discharging. A sealed lead-acid battery that holds and absorbs oxygen gas generated during charging of the battery with a negative electrode, wherein the silica powder has a particle diameter of 10 μm or more and 200 μm or less, and a diameter of 0.006 μm in a filled state. A sealed lead-acid battery characterized in that the volume of 0.1 μm pores is 23% or less of the total pore volume.
JP4253756A 1992-08-27 1992-08-27 Sealed lead-acid battery Pending JPH0676854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4253756A JPH0676854A (en) 1992-08-27 1992-08-27 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4253756A JPH0676854A (en) 1992-08-27 1992-08-27 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0676854A true JPH0676854A (en) 1994-03-18

Family

ID=17255709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253756A Pending JPH0676854A (en) 1992-08-27 1992-08-27 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0676854A (en)

Similar Documents

Publication Publication Date Title
JP3555177B2 (en) Sealed lead-acid battery
JP3388265B2 (en) Lead-acid battery separator
JPH06260208A (en) Sealed lead-acid battery
JPH0676854A (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JPH02165570A (en) Closed lead battery
JP3482671B2 (en) Sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JPH01124958A (en) Sealed lead-acid battery
JPS6211466B2 (en)
JPH02158063A (en) Sealed lead-storage battery
JP2952374B2 (en) Sealed lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JP2995780B2 (en) Sealed lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JPH02158062A (en) Sealed lead-storage battery
JPH06295739A (en) Sealed lead-acid battery
JPH01253155A (en) Sealed lead-acid battery
JPH0432158A (en) Closed lead acid battery
JPH06140031A (en) Sealed lead-acid battery
JPS62170173A (en) Sealed lead-acid battery
JPH05198310A (en) Sealed lead-acid battery
JPH01248457A (en) Sealed lead-acid battery
JPS62157673A (en) Lead storage battery