JPH06283191A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH06283191A
JPH06283191A JP5090824A JP9082493A JPH06283191A JP H06283191 A JPH06283191 A JP H06283191A JP 5090824 A JP5090824 A JP 5090824A JP 9082493 A JP9082493 A JP 9082493A JP H06283191 A JPH06283191 A JP H06283191A
Authority
JP
Japan
Prior art keywords
positive electrode
lead
antimony
negative electrode
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5090824A
Other languages
Japanese (ja)
Inventor
Ken Sawai
研 沢井
Katsuto Takahashi
克仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5090824A priority Critical patent/JPH06283191A/en
Publication of JPH06283191A publication Critical patent/JPH06283191A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve charging/discharging cycle life of a sealed lead-acid battery for absorbing oxygen gas formed during charging into a negative electrode, by using a positive electrode lattice consisting of a lead-antimony alloy, and by providing an organic high polymer having an ion exchanging functional group between a positive electrode plate and a negative electrode plate. CONSTITUTION:The diameter of the primary particle of silica very fine powder used for an electrolyte holder is 10-40nm, and the surface area is 20m<2>/g. A powder-form cation exchange resin of 200-400 mesh is used as an ion exchange resin, and the capacity of the exchange group of the resin is no less than 4.4meg/g-R. The lifetime is thus extended while the current decreasing is reduced. Since a lead-antimony alloy is used for a positive electrode lattice, degradation of positive electrode active material and the extension of the lattice are expected to be reduced. The movement of antimony from a positive electrode to a negative electrode is considered to be inhibited by the ion exchange resin. In the diagram indicating the result, the curves 1-3, of the curves indicating transition of discharging capacity and transition of the amount of reduced liquid, indicate the characteristic of the battery used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉式鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sealed lead acid battery.

【0002】[0002]

【従来の技術とその課題】現在、電池の充電中に発生す
る酸素ガスを負極で吸収させるタイプの密閉式鉛蓄電池
にはゲル式、リテーナ式、顆粒シリカ式がある。ゲル式
は正極板と負極板との間にゲル状のシリカを配置し、放
電に必要な硫酸電解液を保持している。リテーナ式は正
極板と負極板との間に微細ガラス繊維を素材とするマッ
ト状セパレータ(ガラスセパレータ)を挿入し、放電に
必要な硫酸電解液の保持と両極の隔離を行なっている。
顆粒シリカ式は正極板と負極板との間隙にシリカ微粉体
を充填、配置して放電に必要な硫酸を保持させる方式で
あり、電池のコストダウンと同時に電池寿命性能の改善
が期待されている。
2. Description of the Related Art At present, there are gel type, retainer type, and granular silica type sealed lead-acid batteries of the type in which the negative electrode absorbs oxygen gas generated during charging of the battery. In the gel type, gel silica is arranged between a positive electrode plate and a negative electrode plate to hold a sulfuric acid electrolyte necessary for discharging. In the retainer type, a mat-like separator (glass separator) made of fine glass fibers is inserted between the positive electrode plate and the negative electrode plate to hold a sulfuric acid electrolytic solution necessary for discharging and separate the two electrodes.
The granular silica method is a method of filling and arranging silica fine powder in the gap between the positive electrode plate and the negative electrode plate to retain the sulfuric acid required for discharge, and is expected to improve battery life performance at the same time as reducing battery cost. .

【0003】従来のゲル式、リテーナ式および顆粒シリ
カ式密閉式鉛蓄電池では、いずれも格子体にアンチモン
を含まない、鉛−カルシウム系合金を用いている。
In all of the conventional gel type, retainer type and granular silica type sealed lead-acid batteries, a lead-calcium alloy containing no antimony in the lattice is used.

【0004】しかし、鉛−カルシウム系合金は深い放電
を含む充放電サイクルを行なった場合、放電時に格子−
活物質界面に緻密な絶縁体である硫酸鉛が生成して早期
に容量が低下したり、活物質である二酸化鉛粒子間の結
合が弱まり活物質が脱落しやすくなる。また、鉛−カル
シウム系合金は鉛−アンチモン系合金に比べて非常に軟
らかいために格子の伸びによるショートが発生し易い。
However, when a lead-calcium alloy is subjected to a charge / discharge cycle including deep discharge, the lead-calcium alloy has a lattice-like structure during discharge.
Lead sulfate, which is a dense insulator, is generated at the active material interface to reduce the capacity early, and the bond between the lead dioxide particles, which is the active material, is weakened and the active material is likely to fall off. In addition, since the lead-calcium alloy is much softer than the lead-antimony alloy, a short circuit due to lattice expansion is likely to occur.

【0005】正極格子体に鉛−アンチモン系合金を用い
ればアンチモンが格子−活物質界面に生成する腐食層を
多孔性にし、また二酸化鉛粒子間の結合力を強固にする
ために早期容量低下や活物質の脱落はなく、さらに格子
の伸びによるショートも起こりにくい。
If a lead-antimony alloy is used for the positive electrode lattice, the corrosion layer formed by the antimony at the lattice-active material interface becomes porous, and the binding force between the lead dioxide particles is strengthened, resulting in early capacity decrease and The active material does not fall off, and short-circuiting due to lattice expansion hardly occurs.

【0006】しかし、これらの電池で鉛−アンチモン系
合金を使用すると、アンチモンが充放電中に正極格子体
より溶出して電解液中を移動し、負極板上に析出して水
素過電圧を低下させるために水分解による水素発生量が
増加し、その結果密閉式鉛蓄電池では致命的なドライア
ップが起こって寿命となってしまう。顆粒シリカ式電池
の場合には正極板と負極板の間隙に充填されたシリカ微
粉体がアンチモンを吸着するが、吸着量が少ないために
やはり同様の現象が起こってしまう。このため従来の密
閉式鉛蓄電池では、正極格子に鉛−カルシウム系合金を
用いている。
However, when a lead-antimony alloy is used in these batteries, antimony elutes from the positive electrode grid during charge / discharge and moves in the electrolytic solution to deposit on the negative electrode plate to reduce hydrogen overvoltage. As a result, the amount of hydrogen generated due to water decomposition increases, and as a result, dead air is fatally dried up in the sealed lead-acid battery, leading to the end of its life. In the case of the granular silica battery, the silica fine powder filled in the gap between the positive electrode plate and the negative electrode plate adsorbs antimony, but the same phenomenon occurs due to the small adsorption amount. Therefore, in the conventional sealed lead-acid battery, a lead-calcium alloy is used for the positive electrode grid.

【0007】正極格子に鉛−アンチモン系合金を用い
て、正極から負極へのアンチモンの移動を防ぐことがで
きれば、サイクル寿命性能の優れた密閉式鉛蓄電池を作
製することができる。
If a lead-antimony alloy can be used in the positive electrode grid to prevent the transfer of antimony from the positive electrode to the negative electrode, a sealed lead acid battery with excellent cycle life performance can be manufactured.

【0008】[0008]

【課題を解決するための手段】本発明は上述した事柄に
鑑みて、正負極板の両方、あるいは正極板のみに鉛−ア
ンチモン系合金を使用した、優れた充放電サイクル寿命
を有する無保守形鉛蓄電池を提供するもので、その要旨
は鉛−アンチモン系合金よりなる正極格子を用い、かつ
正極板と負極板との間隙にイオン交換性官能基を有する
有機高分子(以下、イオン交換性樹脂と呼ぶ)を配置し
たことにある。
In view of the above matters, the present invention uses a lead-antimony alloy for both the positive and negative plates or only the positive plate, and is a maintenance-free type having an excellent charge-discharge cycle life. Provided is a lead-acid battery, the gist of which is a positive electrode grid made of a lead-antimony alloy, and an organic polymer having an ion-exchange functional group in the gap between the positive electrode plate and the negative electrode plate (hereinafter referred to as an ion-exchange resin). Called)).

【0009】[0009]

【作用】まず、イオン交換性樹脂のアンチモン吸着力を
調べた。比較のために顆粒シリカ、 TiO2 (ルチル型)
も同時に試験した。試験は、アンチモンを含む比重1.30
の希硫酸中にシリカ微粉体、 TiO2 (ルチル型)、イオ
ン交換性樹脂を添加し、一定時間攪拌し、希硫酸中のア
ンチモン減少量を調べそれを吸着量とする方法で行なっ
た。結果を表1に示す。
[Operation] First, the antimony adsorption power of the ion exchange resin was examined. Granular silica, TiO 2 (rutile type) for comparison
Also tested at the same time. The test has a specific gravity of 1.30 including antimony
Silica fine powder, TiO 2 (rutile type), and ion-exchange resin were added to the diluted sulfuric acid, and the mixture was stirred for a certain period of time, and the amount of antimony reduction in the diluted sulfuric acid was examined and used as the adsorption amount. The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】一般に正方晶の結晶構造をもつ金属酸化物
は、溶液中のアンチモンを吸着することが知られてお
り、特に TiO2 (ルチル型)やシリカ微粉体はβ-PbO2
よりも高いアンチモン吸着力を持つ。しかしアンチモン
の吸着量が少なく、正極格子体より溶出するアンチモン
を吸着しきれない。特に TiO2 (ルチル型)は高価であ
るためにアンチモン移動を阻止できるだけの量を電池内
に添加すると大幅なコストアップとなってしまう。
It is generally known that a metal oxide having a tetragonal crystal structure adsorbs antimony in a solution, and particularly TiO 2 (rutile type) and silica fine powder are β-PbO 2
Has a higher antimony adsorption power. However, the amount of antimony adsorbed is small, and antimony eluted from the positive electrode grid cannot be adsorbed. In particular, since TiO 2 (rutile type) is expensive, adding a sufficient amount to prevent antimony migration into the battery will result in a significant cost increase.

【0012】一方、イオン交換性樹脂は、これらの材料
よりはるかに高いアンチモン吸着力を有しており、少量
でも多量のアンチモンを吸着できる。正極格子に鉛−ア
ンチモン系合金を用いることで、正極板の早期容量低下
や活物質の脱落や格子の伸びを防ぐことができ、正極板
と負極板の間にイオン交換性樹脂を配置すれば、アンチ
モンを極間で捕捉して前述したような水分解の増加を引
き起こさないので、密閉式鉛蓄電池の最大の特徴である
無保守、無補水という特徴は損なわれない。
On the other hand, the ion-exchangeable resin has much higher antimony adsorption power than these materials, and can adsorb a large amount of antimony even in a small amount. By using a lead-antimony alloy for the positive electrode grid, it is possible to prevent the capacity of the positive electrode plate from decreasing early, the active material from falling off, and the elongation of the grid to be prevented.If an ion-exchangeable resin is placed between the positive electrode plate and the negative electrode plate, antimony Since it does not cause an increase in water decomposition as described above by capturing between the electrodes, the characteristics of the sealed lead-acid battery, which are the main features of no maintenance and no rehydration, are not impaired.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0014】一次粒子が10〜40nm、表面積が約1
20m2 /gのシリカ微粉体を電解液保持体とした顆粒
シリカ式密閉電池を用い、イオン交換性樹脂として交換
基容量4.4meq/g-R 以上、200〜400メッシュの
粉末状のカチオン交換樹脂を用いて試験を行なった。
The primary particles are 10 to 40 nm and the surface area is about 1.
Using a granular silica-type sealed battery having a 20 m 2 / g silica fine powder as an electrolyte holder, a powdered cation exchange resin having an exchange group capacity of 4.4 meq / gR or more and 200 to 400 mesh is used as an ion exchange resin. Was used to carry out the test.

【0015】[0015]

【表2】 [Table 2]

【0016】比較を行なうために、表2に示すように正
極格子合金として鉛−アンチモン系合金および鉛−カル
シウム系合金を用い、電解液保持体としてシリカ微粉体
を用いた電池を作製した。なお、負極格子には、鉛−カ
ルシウム系合金を用いた。これらの電池を用いてJIS
D−5301の寿命試験を行ない、放電容量の推移およ
び減液量を調べた。結果を図1に示す。放電容量は、試
験前の容量を100%として比較したものであり、減液
量は試験前を0%として液減少量を重量%で示した。
For comparison, a battery was prepared using lead-antimony-based alloys and lead-calcium-based alloys as the positive electrode grid alloy and silica fine powder as the electrolytic solution holder as shown in Table 2. A lead-calcium alloy was used for the negative electrode grid. JIS using these batteries
A life test of D-5301 was performed to examine the transition of discharge capacity and the amount of liquid reduction. The results are shown in Fig. 1. The discharge capacity was compared with the capacity before the test as 100%, and the liquid reduction amount was shown as 0% before the test and the liquid reduction amount was shown by weight%.

【0017】No.2の電池は、寿命が最も短く、減液
量も多かった。これは正極格子より溶出したアンチモン
が負極板上に析出して水分解が増加し、電解液量が減少
したことがその原因である。No.3の電池では減液量
は少ないもののNo.1の電池に比べ寿命が短かった。
これは、アンチモンを含まないために正極活物質が劣化
し易かったことおよび鉛−カルシウム系合金は鉛−アン
チモン系合金に比べて軟らかいために格子が伸びてショ
ートが起こったことなどが寿命原因となっている。
No. The battery of No. 2 had the shortest life and had a large amount of liquid reduction. This is because antimony eluted from the positive electrode grid is deposited on the negative electrode plate to increase water decomposition and reduce the amount of the electrolytic solution. No. No. 3 battery has a small amount of liquid reduction, The battery had a shorter life than the No. 1 battery.
This is because the positive electrode active material was likely to deteriorate because it did not contain antimony, and the lead-calcium alloy was softer than the lead-antimony alloy, so the lattice extended and a short circuit occurred. Has become.

【0018】これらに対して、本発明品であるNo.1
の正極格子に鉛−アンチモン系合金を用い、正負極間に
イオン交換性樹脂を配置した電池では、寿命回数が最も
長く減液量も非常に少ないという結果が得られた。これ
は、正極格子に鉛−アンチモン系合金を用いているため
に正極活物質の劣化や格子の伸びが少なかったこと、ま
たイオン交換性樹脂がアンチモンの正極から負極への移
動を阻止したために減液量が少なくなったことなどがそ
の理由である。
On the other hand, the products of the present invention No. 1
In the battery using the lead-antimony alloy in the positive electrode grid and the ion-exchange resin disposed between the positive and negative electrodes, the result was that the number of lifespan was longest and the amount of liquid reduction was very small. This is because the deterioration of the positive electrode active material and the elongation of the lattice were small due to the use of a lead-antimony alloy in the positive electrode grid, and the ion exchange resin prevented the transfer of antimony from the positive electrode to the negative electrode. The reason is that the liquid volume has decreased.

【0019】本実施例ではイオン交換性樹脂として交換
基容量0.8以上、200〜400メッシュの粉末状の
カチオン交換樹脂を用いたが、アニオン交換樹脂を用い
ても同様の効果を得ることができる。また、正極格子に
鉛−アンチモン系合金、電解液保持体にゲル状シリカを
用いたゲル式およびガラスマットを用いたリテーナ式鉛
蓄電池、また正極板にクラッド式極板を用いたクラッド
式密閉鉛蓄電池についても、正負極板間にイオン交換性
樹脂を配置することで本実施例と同じ効果、すなわち減
液量が少なく長寿命という性能が期待できる。
In this example, a powdered cation exchange resin having an exchange group capacity of 0.8 or more and a mesh size of 200 to 400 was used as the ion exchange resin, but the same effect can be obtained by using the anion exchange resin. it can. In addition, a lead-antimony alloy is used for the positive electrode grid, a gel-type lead-acid battery that uses a gel-type silica gel for the electrolyte holder, and a retainer-type lead-acid battery that uses a glass mat. Also for the storage battery, by disposing the ion-exchange resin between the positive and negative electrode plates, the same effect as that of the present embodiment, that is, the performance of a small amount of reduced liquid and a long life can be expected.

【0020】[0020]

【発明の効果】上述の実施例からも明らかなように、本
発明による密閉式鉛蓄電池は鉛−アンチモン系合金より
成る正極格子を用い、かつ正極板と負極板との間隙にイ
オン交換性樹脂を配置するという方法で従来の密閉式鉛
蓄電池の短所を克服することができ、その工業的価値は
甚だ大なるものである。
As is apparent from the above embodiments, the sealed lead-acid battery according to the present invention uses the positive electrode grid made of the lead-antimony alloy and has the ion-exchange resin in the gap between the positive electrode plate and the negative electrode plate. It is possible to overcome the disadvantages of the conventional sealed lead-acid battery by arranging, and its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】サイクル寿命試験中の容量推移および減液量を
示した図
FIG. 1 is a diagram showing a change in capacity and a liquid reduction amount during a cycle life test.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充電中に発生する酸素ガスを負極で吸収
させる密閉式鉛蓄電池において、鉛−アンチモン系合金
よりなる正極格子を用い、かつ正極板と負極板との間隙
に、イオン交換性官能基を有する有機高分子を配置した
ことを特徴とする密閉式鉛蓄電池。
1. A sealed lead-acid battery in which oxygen gas generated during charging is absorbed by a negative electrode, a positive electrode grid made of a lead-antimony alloy is used, and an ion-exchangeable functional group is provided in a gap between the positive electrode plate and the negative electrode plate. A sealed lead-acid battery in which an organic polymer having a group is arranged.
JP5090824A 1993-03-25 1993-03-25 Sealed lead-acid battery Pending JPH06283191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5090824A JPH06283191A (en) 1993-03-25 1993-03-25 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5090824A JPH06283191A (en) 1993-03-25 1993-03-25 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH06283191A true JPH06283191A (en) 1994-10-07

Family

ID=14009346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5090824A Pending JPH06283191A (en) 1993-03-25 1993-03-25 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH06283191A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910130A1 (en) * 1997-10-17 1999-04-21 Japan Storage Battery Company Limited Lead acid battery
JP2016189296A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910130A1 (en) * 1997-10-17 1999-04-21 Japan Storage Battery Company Limited Lead acid battery
JP2016189296A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid battery

Similar Documents

Publication Publication Date Title
JP3185508B2 (en) Sealed lead-acid battery
JP2009170234A (en) Control valve type lead-acid battery
JP3952483B2 (en) Sealed lead acid battery
JP2003051334A (en) Sealed lead-acid battery
JP2004055323A (en) Control valve type lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JPH0756811B2 (en) Sealed lead acid battery
JP2004014283A (en) Valve regulated lead battery
JPWO2011077640A1 (en) Control valve type lead acid battery
JPH06283190A (en) Sealed lead-acid battery
JP2995780B2 (en) Sealed lead-acid battery
JPS61165956A (en) Sealed type lead acid battery
JPH02165570A (en) Closed lead battery
JPH01149376A (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPS6322428B2 (en)
JPH042059A (en) Clad type lead acid battery of sealed structure
JPH06295739A (en) Sealed lead-acid battery
JP2002343359A (en) Sealed type lead storage battery
JPH0787095B2 (en) Sealed clad lead acid battery
JPH04337256A (en) Sealed lead-acid battery
JPH10270030A (en) Sealed lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPS58158874A (en) Lead storage battery