JP2952374B2 - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP2952374B2
JP2952374B2 JP1336119A JP33611989A JP2952374B2 JP 2952374 B2 JP2952374 B2 JP 2952374B2 JP 1336119 A JP1336119 A JP 1336119A JP 33611989 A JP33611989 A JP 33611989A JP 2952374 B2 JP2952374 B2 JP 2952374B2
Authority
JP
Japan
Prior art keywords
battery
electrode plate
mixture
silica powder
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1336119A
Other languages
Japanese (ja)
Other versions
JPH03196466A (en
Inventor
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP1336119A priority Critical patent/JP2952374B2/en
Publication of JPH03196466A publication Critical patent/JPH03196466A/en
Application granted granted Critical
Publication of JP2952374B2 publication Critical patent/JP2952374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の改良に関するものである。Description: TECHNICAL FIELD The present invention relates to an improvement in a sealed lead-acid battery.

従来の技術 電池の充電中に発生する酸素ガスを負極で吸収させる
タイプの密閉式鉛蓄電池にはリテーナ式とゲル式の二種
類がある。リテーナ式は正極板と負極板との間に微細ガ
ラス繊維を素材とするマット状セパレータ(ガラスセパ
レータ)を挿入し、これによって放電に必要な硫酸電解
液の保持と両極の隔離をおこなっており、近年ポータブ
ル機器やコンピュータの電源として広く用いられるよう
になってきた。しかし、リテーナ式はガラスセパレータ
が高価なことおよび充分な量の電解液を保持できないた
めに、低率放電では放電容量が電解液量で制限されると
いう欠点があり、この種の密閉式鉛蓄電池の普及の障害
となっている。
2. Description of the Related Art There are two types of sealed lead-acid batteries of a type in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a retainer type and a gel type. In the retainer type, a mat-like separator (glass separator) made of fine glass fiber is inserted between the positive electrode plate and the negative electrode plate, thereby holding the sulfuric acid electrolyte required for discharge and isolating both electrodes. In recent years, it has been widely used as a power source for portable devices and computers. However, the retainer type has the drawback that the glass separator is expensive and cannot hold a sufficient amount of electrolyte, so that the discharge capacity is limited by the amount of electrolyte at low rate discharge. Has become an obstacle to the spread of

一方、ゲル式はリテーナ式よりも安価であるが、電池
性能がリテーナ式よりも劣るという欠点がある。
On the other hand, the gel type is less expensive than the retainer type, but has a drawback that the battery performance is inferior to the retainer type.

リテーナ式およびゲル式の密閉式鉛蓄電池のこれらの
欠点を解消する新しい電解液保持体として二酸化珪素
(シリカ)の粉体を用いることを見いだした。このシリ
カの粉体、特にその造粒品を電解液保持体に用いた電池
は従来のリテーナ式よりも高率放電性能に優れ、ゲル式
電池よりも低率放電性能に優れているという特徴を有し
ている。
It has been found that a powder of silicon dioxide (silica) is used as a new electrolyte holder for overcoming these disadvantages of the closed-type lead-acid battery of the retainer type and the gel type. Batteries using this silica powder, especially the granulated product, as the electrolyte holder are characterized by superior high-rate discharge performance over conventional retainer-type batteries and low-rate discharge performance over gel-type batteries. Have.

発明が解決しようとする課題 しかし、このシリカ粉体を電解液保持体として用いる
場合、特に製造工程上の問題点が明らかになってきた。
その1つに硫酸電解液を注入するのに長時間を要すると
いう点がある。これはシリカ粉体の一次粒子が10〜40ミ
リミクロンと細かく、表面積が約100m2/gと大きいこと
に起因するものと考えられる。
Problems to be Solved by the Invention However, when this silica powder is used as an electrolyte holder, problems in the production process have become apparent.
One of them is that it takes a long time to inject the sulfuric acid electrolyte. This is considered to be due to the fact that the primary particles of the silica powder were as fine as 10 to 40 millimicrons and the surface area was as large as about 100 m 2 / g.

課題を解決するための手段 本発明は上述した問題点を解決するもので、生産性に
優れ、安価でかつ放電性能に優れた密閉式鉛蓄電池を提
供するもので、その要旨とするところは電池の充填中に
発生する酸素ガスを負極で吸収させる密閉式鉛電池にお
いて、正極板と負極板の間に隔離体を挿入してなる極板
群を電槽内に収納するとともに、正極板と負極板との間
隙および極板群の周囲にシリカ粉体と親水性を有する短
繊維との混合物を充填、配置し、放電に必要かつ充分な
量の硫酸電解液を該混合物に含浸、保持させることを特
徴とする密閉式鉛電池にある。
Means for Solving the Problems The present invention solves the above-mentioned problems, and provides a sealed lead-acid battery that is excellent in productivity, inexpensive, and excellent in discharge performance. In a sealed lead-acid battery in which oxygen gas generated during the filling of a negative electrode is absorbed by a negative electrode, a group of electrodes formed by inserting a separator between a positive electrode plate and a negative electrode plate is housed in a battery case, and the positive electrode plate and the negative electrode plate are The mixture of silica powder and hydrophilic short fibers is filled and arranged around the gap and around the electrode plate group, and the mixture is impregnated and held with a sufficient amount of sulfuric acid electrolyte necessary for discharge. In sealed lead batteries.

以下本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.

実施例 Pb−Ca−Sn合金よりなる正極および負極格子体に通常
の正極および負極ペーストをそれぞれ充填したのち、熟
成を施して未化成極板を作製した。ついでこれらの正極
および負極未化成極板を用い、第1図に示す隔離体を両
極板の間に挿入して極板群を作製した。図に示した隔離
体は耐酸性の合成樹脂をE字形に成形したもので、鉛直
方向の隔離棒には波形をつけたものを用いたが、このほ
か例えば帯状のガラスマットやガラスセパレータでもよ
い。すなわち耐酸性を有しかつ両極を隔離できるもので
あればよい。このようにして作製した極板群を電槽内に
挿入し、極板群の上部からシリカ粉体と親水性を有する
短繊維との混合物を振動を加えながら充填した。ここで
シリカ粉体はメタアクリル酸メチルをバインダーとして
造粒し、100〜200ミクロンに分級したものである。ま
た、親水性を有する短繊維としてはここで繊維径13ミク
ロン、繊維長1mmを用い、混合物全体に対し10重量%混
合した。シリカ粉体とガラス短繊維との混合物を充填し
たのち蓋を接着し、排気弁を装着し本発明電池Aを作製
した。比較のために親水性を有する短繊維を含まないシ
リカ粉体だけを充填した従来電池Bも作製した。ここで
作製した電池は公称容量4.5Ahである。これらの電池に
所定量の硫酸電解液を注入した。この電解液の注入に要
した時間はシリカ粉体だけを充填した従来電池Bが28分
であったのに対し、シリカ粉体とガラス短繊維との混合
物を充填した本発明電池Aでは4.3分で、注液に要する
時間を大幅に短縮することができた。これはガラス繊維
が親水性を有しているためにガラス繊維を仲介してシリ
カ粉体に電解液が浸透していったものと考えられる。
Example A positive electrode and a negative electrode grid made of a Pb-Ca-Sn alloy were filled with ordinary positive and negative electrode pastes, respectively, and then aged to produce an unformed electrode plate. Next, using these positive and negative electrode unformed electrode plates, the separator shown in FIG. 1 was inserted between the two electrode plates to prepare an electrode plate group. The separator shown in the figure is made of an acid-resistant synthetic resin formed into an E-shape, and a vertical separating rod having a corrugated shape is used. . That is, any material having acid resistance and capable of separating both electrodes may be used. The electrode group thus produced was inserted into a battery case, and a mixture of silica powder and hydrophilic short fibers was filled from above the electrode group while applying vibration. Here, the silica powder is granulated using methyl methacrylate as a binder and classified to 100 to 200 microns. As the short fibers having hydrophilicity, a fiber diameter of 13 μm and a fiber length of 1 mm were used, and 10% by weight was mixed with respect to the whole mixture. After filling the mixture of the silica powder and the glass short fibers, the lid was adhered, and an exhaust valve was attached to the battery A of the present invention. For comparison, a conventional battery B filled with only silica powder containing no hydrophilic short fiber was prepared. The battery manufactured here has a nominal capacity of 4.5 Ah. A predetermined amount of sulfuric acid electrolyte was injected into these batteries. The time required for the injection of the electrolyte was 28 minutes in the conventional battery B filled only with the silica powder, whereas the battery A in the present invention filled with the mixture of the silica powder and the short glass fiber was 4.3 minutes. Thus, the time required for liquid injection could be greatly reduced. This is considered to be because the electrolytic solution permeated the silica powder via the glass fiber because the glass fiber had hydrophilicity.

次に作製した電池の容量試験をおこなった。比較のた
めに同じロットの正極および負極板を用いたリテーナ式
電池およびゲル式電池も試験した。結果を第1表に示
す。
Next, a capacity test of the manufactured battery was performed. For comparison, a retainer type battery and a gel type battery using the same lot of positive and negative electrode plates were also tested. The results are shown in Table 1.

この試験結果よりリテーナ式電池Cとゲル式電池Dと
を比較すると、リテーナ式電池Cは電解液比重がやや高
いためにゲル式電池Dよりも高率放電性能が優れてい
た。また低率放電容量はゲル式電池Dの方が若干多かっ
た。これは電解液量が多いためである。シリカ粉体のみ
を充填した従来電池Bはリテーナ式電池Cおよびゲル式
電池Dに比べ低率放電性能、高率放電性能とも10〜20%
性能が向上した。これは電解液比重をゲル式よりもやや
高くしたこと、電解液をリテーナ式よりも多く含浸でき
たことおよび放電の際に抵抗となるセパレータを使用す
る必要がないことや酸の拡散が優れていることなどの相
乗効果によるものと考えられる。
Comparing the retainer type battery C and the gel type battery D based on the test results, the retainer type battery C was superior to the gel type battery D in the high rate discharge performance because the specific gravity of the electrolyte was slightly higher. Also, the low rate discharge capacity of the gel type battery D was slightly higher. This is because the amount of the electrolyte is large. The conventional battery B filled with only silica powder has a low rate discharge performance and a high rate discharge performance of 10 to 20% compared to the retainer type battery C and the gel type battery D.
Performance has improved. This is because the specific gravity of the electrolyte is slightly higher than that of the gel type, the electrolyte can be impregnated more than the retainer type, and there is no need to use a separator that becomes a resistance during discharge, and the acid diffusion is excellent. It is thought to be due to a synergistic effect such as

一方、本発明によるシリカ粉体とガラス短繊維の混合
物を充填した電池Aはリテーナ式電池Cおよびゲル式電
池Dはもちろんシリカ粉体のみを充填した従来電池Bよ
りも低率放電性能、高率放電性能ともに優れていた。こ
れはシリカ粉体とガラス短繊維との混合物を充填した本
発明電池Aにおいて電解液の注入がシリカ粉体だけを充
填した電池Bよりも容易であったことからもわかるよう
に電解液の移動、すなわち拡散性が向上したことによる
ものであると考えられる。
On the other hand, the battery A filled with the mixture of the silica powder and the short glass fiber according to the present invention has lower discharge performance and higher rate than the conventional battery B filled only with the silica powder as well as the retainer type battery C and the gel type battery D. The discharge performance was excellent. This is apparent from the fact that in the battery A of the present invention filled with the mixture of the silica powder and the short glass fiber, the injection of the electrolyte was easier than in the battery B filled only with the silica powder. That is, it is considered that the reason is that the diffusivity was improved.

なお実施例では親水性を有する短繊維としてガラス短
繊維を用いたが、浸透処理を施した耐酸性を有する合成
繊維を用いてもよい。またその繊維長は両極間の間隙よ
り短い方が望ましいが、0.5〜5mmのもので効果が認めら
れた。短繊維を混合する割合はここでは10重量%の場合
を示したが1〜30%の範囲で効果が認められた。
Although glass short fibers are used as hydrophilic short fibers in the examples, acid-resistant synthetic fibers that have been subjected to permeation treatment may be used. It is desirable that the fiber length be shorter than the gap between the two poles, but the effect was recognized with a fiber length of 0.5 to 5 mm. Here, the mixing ratio of the short fibers is 10% by weight, but the effect is recognized in the range of 1 to 30%.

発明の効果 上述の実施例から明らかなように、本発明による密閉
式鉛蓄電池はシリカ粉体と親水性を有する短繊維との混
合物に電解液を保持させることにより従来のシリカ粉体
のみを用いた場合に比べ電解液の注入に要する時間を大
幅に短縮でき、さらに電池の放電性能を大幅に短縮で
き、さらに電池の放電性能を大幅に向上でき、その工業
的価値は非常に大きい。
Effects of the Invention As is clear from the above-described embodiment, the sealed lead-acid battery according to the present invention uses only the conventional silica powder by holding the electrolyte in a mixture of the silica powder and the short fibers having hydrophilicity. The time required for injecting the electrolytic solution can be greatly reduced as compared with the case where the battery has been discharged, the discharge performance of the battery can be significantly reduced, and the discharge performance of the battery can be significantly improved, and its industrial value is very large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は隔離体の斜視図を示す。 FIG. 1 shows a perspective view of the separator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電池の充電中に発生する酸素ガスを負極で
吸収させる密閉式鉛蓄電池において、正極板と負極板の
間に隔離体を挿入してなる極板群を電槽内に収納すると
ともに、正極板と負極板との間隙および極板群の周囲に
シリカ粉体と親水性を有する短繊維との混合物を充填、
配置し、放電に必要かつ充分な量の硫酸電解液を上記混
合物に含浸、保持させることを特徴とする密閉式鉛蓄電
池。
In a sealed lead-acid battery in which oxygen gas generated during charging of a battery is absorbed by a negative electrode, a group of electrodes formed by inserting a separator between a positive electrode plate and a negative electrode plate is housed in a battery case, The gap between the positive electrode plate and the negative electrode plate and the periphery of the electrode plate group are filled with a mixture of silica powder and short fibers having hydrophilicity,
A sealed lead-acid battery, which is disposed and impregnated in the mixture with a sulfuric acid electrolyte solution necessary and sufficient for discharging and holding the mixture.
JP1336119A 1989-12-25 1989-12-25 Sealed lead-acid battery Expired - Lifetime JP2952374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336119A JP2952374B2 (en) 1989-12-25 1989-12-25 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336119A JP2952374B2 (en) 1989-12-25 1989-12-25 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH03196466A JPH03196466A (en) 1991-08-27
JP2952374B2 true JP2952374B2 (en) 1999-09-27

Family

ID=18295890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336119A Expired - Lifetime JP2952374B2 (en) 1989-12-25 1989-12-25 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2952374B2 (en)

Also Published As

Publication number Publication date
JPH03196466A (en) 1991-08-27

Similar Documents

Publication Publication Date Title
JP2952374B2 (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JP3555177B2 (en) Sealed lead-acid battery
JP2958790B2 (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JP2581237B2 (en) Manufacturing method of sealed lead-acid battery
JP2559633B2 (en) Sealed lead acid battery
JP2559610B2 (en) Method for manufacturing sealed lead acid battery
JP2855706B2 (en) Sealed lead-acid battery
JPH0693367B2 (en) Sealed lead acid battery
JP2591975B2 (en) Sealed clad type lead battery
JP2794588B2 (en) Sealed lead-acid battery
JPH0492376A (en) Sealed type lead storage battery
JP2573094B2 (en) Manufacturing method of sealed lead-acid battery
JPS61264675A (en) Positive plate of clad type lead-acid battery
JPH0451943B2 (en)
JPH07135018A (en) Manufacture of sealed lead acid battery
JPH08153535A (en) Sealed lead-acid battery and its manufacture
JPH0547410A (en) Close-type lead-acid battery
JPH0654680B2 (en) Sealed lead acid battery
JPH03105874A (en) Sealed lead-acid battery
JP2001202989A (en) Sealed lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPH06150961A (en) Sealed lead-acid battery
JPH0676854A (en) Sealed lead-acid battery