JPH0672930B2 - Bias abnormality detection device for semiconductor radiation detector - Google Patents

Bias abnormality detection device for semiconductor radiation detector

Info

Publication number
JPH0672930B2
JPH0672930B2 JP63281300A JP28130088A JPH0672930B2 JP H0672930 B2 JPH0672930 B2 JP H0672930B2 JP 63281300 A JP63281300 A JP 63281300A JP 28130088 A JP28130088 A JP 28130088A JP H0672930 B2 JPH0672930 B2 JP H0672930B2
Authority
JP
Japan
Prior art keywords
semiconductor
radiation
radiation detector
type
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63281300A
Other languages
Japanese (ja)
Other versions
JPH02128184A (en
Inventor
敏和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63281300A priority Critical patent/JPH0672930B2/en
Publication of JPH02128184A publication Critical patent/JPH02128184A/en
Publication of JPH0672930B2 publication Critical patent/JPH0672930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体式放射線検出器のバイアス異常検出装置
に関するものである。
The present invention relates to a bias abnormality detection device for a semiconductor radiation detector.

放射線を利用したり、或いは放射線からの防護を必要と
する大学、病院、研究所及び原子力発電所等において
は、放射線検出器が用いられる。放射線検出器として
は、p型とn型の半導体を接合して成るダイオードの該
p型に負、n型に正という逆バイアス電圧を印加するこ
とにより、その内部に空乏層を形成させ、放射線に対す
る感度を持たせた半導体式放射線検出器が良く知られて
いる。
Radiation detectors are used in universities, hospitals, research institutes, nuclear power plants, etc. that utilize or require protection from radiation. As a radiation detector, by applying a reverse bias voltage of negative to the p-type and positive to the n-type of a diode formed by joining p-type and n-type semiconductors, a depletion layer is formed inside the diode, A semiconductor type radiation detector having sensitivity to is well known.

かかる半導体式放射線検出器においては、印加する逆バ
イアス電圧が適正な範囲内にないと、形成される空乏層
の容積も適正な範囲を外れ、その結果、感度が狂ってし
まい、誤検出を招くこともある。従って半導体式放射線
検出器におけるバイアス異常の有無検出は、その健全性
確認のために必要なことと言える。本発明は、このよう
な意味において大切な半導体式放射線検出器のバイアス
異常検出装置に関するものである。
In such a semiconductor radiation detector, if the reverse bias voltage to be applied is not within the proper range, the volume of the depletion layer formed will also be outside the proper range, and as a result, the sensitivity will be deviated and erroneous detection will occur. Sometimes. Therefore, it can be said that the detection of the presence or absence of the bias abnormality in the semiconductor radiation detector is necessary for confirming its soundness. The present invention relates to a bias abnormality detection device for a semiconductor radiation detector, which is important in this sense.

〔従来の技術〕[Conventional technology]

従来、発電所等の事業所において各ブロック毎に設置さ
れるエリアモニタとしての放射線検出器においては、そ
の健全性を確認する手段として次のような方式が採られ
てきた。
Conventionally, in a radiation detector as an area monitor installed in each block in a business place such as a power plant, the following method has been adopted as a means for confirming its soundness.

即ち、微弱な放射線源(バグソースという)を検出器
の近傍に常時設置しておき、それによって或る一定の指
示を検出器の指示計に常時与えるようにして検出器を構
成する測定系の異常を検知する。放射線検出器に逆バ
イアス電圧を与えるためのバイアス電源を監視していて
その異常を検出するようにする。放射線検出器に供給
する電源電圧をその送電側で監視していてコネクタ(電
源、信号を一体化した全体)の接続不良の有無を検知す
る。
That is, a weak radiation source (called a bag source) is always installed in the vicinity of the detector, so that a constant indication is constantly given to the indicator of the detector so that the detector system Detect an abnormality. A bias power supply for applying a reverse bias voltage to the radiation detector is monitored to detect its abnormality. The power supply voltage supplied to the radiation detector is monitored on the power transmission side to detect whether or not there is a connection failure in the connector (whole power supply and signal are integrated).

そのほか、放射線検出器について定期的な点検を行う場
合等では、検出器に電荷パルスを供給し、該パルスの繰
り返しし周波数を変化させることにより所定の測定レン
ジ内で検出器が正常に機能するか否かの確認が行われて
きた。
In addition, if the radiation detector is regularly inspected, etc., whether the detector functions normally within the specified measurement range by supplying a charge pulse to the detector and repeating the pulse to change the frequency. Confirmation has been made.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の電荷パルスを供給して検出器が正常に機能するか
否かの確認を行う方法では、検出端を除いた増幅器以降
の電子回路の健全性しか確認できず、検出端を含めた検
出ループ全体の健全性チエックは不可能であった。また
バグソースを使用して健全性を確認する上記の方法
は、検出端(センサ)を含めた検出ループ全体の健全性
チエックは出来るものの、バグソースとしての放射線源
を常時用意しなけれならず煩瑣であるということや、測
定レンジの全ての範囲にわたって健全性チエックが可能
なものではないという問題があった。
In the conventional method of supplying a charge pulse to check whether or not the detector functions normally, only the soundness of the electronic circuit after the amplifier excluding the detection end can be confirmed, and the detection loop including the detection end can be confirmed. The whole health check was impossible. In addition, the above method of confirming the soundness using a bug source can check the soundness of the entire detection loop including the detection end (sensor), but a radiation source as a bug source must be prepared at all times. However, there is a problem that the soundness check is not possible over the entire measurement range.

また上記,の方法も、必ずしも信頼度が高くない等
の問題があり、決して充分なものではなかった。
Further, the above-mentioned method also has a problem that the reliability is not always high, and it is by no means sufficient.

本発明の目的は、検出端(センサ、具体的には半導体放
射線検出素子)を含めた検出ループ全体の健全性チエッ
クが可能であるばかりか、測定レンジの全ての範囲にわ
たっての健全性チエックが可能であり、信頼度も高い放
射線検出器の健全性チエック手段としての半導体式放射
線検出器のバイアス異常検出装置を提供することにあ
る。
The object of the present invention is not only to check the soundness of the entire detection loop including the detection end (sensor, specifically, a semiconductor radiation detection element), but also to check the soundness over the entire measurement range. Therefore, it is an object of the present invention to provide a bias abnormality detection device for a semiconductor radiation detector as a soundness check means of the radiation detector having high reliability.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的達成のため、本発明では、p型とn型の半導体
を接合して成るダイオードの該p型に負、n型に正とい
う逆バイアス電圧を印加することにより、その内部に空
乏層を形成させ、放射線に対する感度を持たせた半導体
式放射線検出器に関して前記逆バイアス電圧の異常の有
無を検出するためのバイアス異常検出装置において、 前記放射線検出器に対して放射線によるそれと類似な出
力を持たせ得る光パルスの発生手段(LED 発光ダイオ
ード)と、前記光パルス発生手段(LED)を制御して、
発生する光パルスの繰り返し周波数を調節する周波数調
節手段と、光パルスがその放射線検出器に照射されたこ
とにより前記半導体式放射線検出器から出力されるパル
ス波高値を監視して前記逆バイアス電圧の異常の有無を
判別する判別手段と、を具備した。
To achieve the above object, the present invention applies a reverse bias voltage of negative and positive to a p-type of a diode formed by joining a p-type semiconductor and an n-type semiconductor, thereby forming a depletion layer inside the diode. A bias abnormality detecting device for detecting the presence or absence of abnormality of the reverse bias voltage with respect to a semiconductor type radiation detector which is formed and has sensitivity to radiation, having an output similar to that due to radiation to the radiation detector. By controlling the light pulse generation means (LED light emitting diode) and the light pulse generation means (LED),
Frequency adjusting means for adjusting the repetition frequency of the generated optical pulse, and by monitoring the pulse peak value output from the semiconductor type radiation detector due to the irradiation of the optical pulse to the radiation detector, the reverse bias voltage The determination means for determining the presence or absence of abnormality is provided.

〔作用〕[Action]

半導体式放射線検出器は、既に述べたように、p型とn
型の半導体を接合して成るダイオードの該p型に負、n
型に正という逆バイアス電圧を印加することにより、そ
の内部に空乏層を形成させ、放射線に対する感度を持た
せたものであるが、空乏層は、放射線に対してだけでな
く、発光ダイオード(LED)からの光(特に赤外光)に
対して感度を持っている。
As described above, the semiconductor-type radiation detector has a p-type and an n-type.
Of p-type of a diode formed by joining semiconductors of n-type, n
By applying a reverse bias voltage of positive to the mold, a depletion layer is formed inside it to make it sensitive to radiation. The depletion layer is not only for radiation, but also for light emitting diodes (LEDs). ) Has a sensitivity to light (especially infrared light).

そこで発光ダイオード(LED)を駆動するドライバにオ
シレータ(発振器)からの発振出力を供給してドライブ
させ、かつその発振周波数を連続的に可変させる。かか
る発光ダイオード(LED)からの光パルスを直接、又は
半導体式放射線検出器の有感波長帯域内で減衰度の低い
光ガイド等を介して検出器のセンサ面に入射させると、
センサを構成している半導体ダイオードに逆バイアス電
圧が印加されてその内部に空乏層が形成されていれば、
その光パルスに対応した電荷パルスが該検出器の出力と
して出力される。
Therefore, a driver for driving a light emitting diode (LED) is supplied with an oscillation output from an oscillator (oscillator) to drive it, and the oscillation frequency is continuously varied. When a light pulse from such a light emitting diode (LED) is incident on the sensor surface of the detector directly or through an optical guide or the like with a low attenuation in the sensitive wavelength band of the semiconductor radiation detector,
If a reverse bias voltage is applied to the semiconductor diode forming the sensor and a depletion layer is formed inside it,
A charge pulse corresponding to the light pulse is output as the output of the detector.

かかる電荷パルスは、何れも特定の波高値をもったもの
に限られ、縦軸に入射パルスの頻度をとり、横軸に電荷
パルスの波高値をとると、単一ピーク状の波高値分布
(後述の第2図(イ)に示される如き)が得られる。こ
のような単一ピーク状の波高値分布になるという点を除
けば、光パルスを入射させて得られる電荷パルスも、放
射線を入射させて得られる電荷パルスも大差はない。
Such charge pulses are all limited to those having a specific peak value, and when the vertical axis represents the frequency of incident pulses and the horizontal axis represents the peak value of the charge pulse, a single peak-shaped peak value distribution ( As shown in FIG. 2 (a) described later) is obtained. There is no great difference between the charge pulse obtained by making the light pulse incident and the charge pulse obtained by making the radiation incident, except that the peak value distribution has a single peak shape.

従って、かかる発光ダイオード(LED)からの光パルス
を放射線の代わりに用いることで、検出端(センサ)を
含めた放射線検出器ループの全体の健全性チエックがで
きる。また発光ダイオード(LED)からの光パルスの繰
り返し周波数を連続的に可変させることで、検出端(セ
ンサ)に入射する放射線量を増減させたことと等価な効
果が得られるので、任意の線量率に対する健全性チエッ
クが可能になる。
Therefore, by using the light pulse from such a light emitting diode (LED) instead of the radiation, it is possible to check the whole integrity of the radiation detector loop including the detection end (sensor). Also, by continuously varying the repetition frequency of the light pulse from the light emitting diode (LED), the effect equivalent to increasing or decreasing the radiation dose incident on the detection end (sensor) can be obtained, so any dose rate It is possible to check the soundness against.

一方、かかる光パルスが検出端(センサ)内部の空乏層
に入射することに起因して出力される出力パルスの波高
値は、検出端(センサ)のもつ静電容量の影響を受け、
該静電容量が大きくなるほど、即ち同一の検出端(セン
サ)ならばバイアス電圧が低下するほど、次式に従って
低下する。
On the other hand, the peak value of the output pulse that is output due to the light pulse entering the depletion layer inside the detection end (sensor) is affected by the capacitance of the detection end (sensor),
The larger the electrostatic capacitance, that is, the lower the bias voltage for the same detection end (sensor), the lower the voltage according to the following equation.

Q=CV ここでQは光パルス(或いは放射線)によって検出端
(センサ)内に作られた電荷量、Cは検出端(センサ)
のもつ静電容量、Vは電気信号として取り出した場合の
波高値(電圧値)である。
Q = CV where Q is the amount of charge created in the detection end (sensor) by the light pulse (or radiation), and C is the detection end (sensor).
The electrostatic capacitance V of V has a peak value (voltage value) when it is extracted as an electric signal.

第2図は、縦軸にかかる光パルスの入射頻度を、横軸に
出力パルスの波高値を、それぞれとって表わした波高値
分布特性である。
FIG. 2 is a peak value distribution characteristic in which the vertical axis represents the incidence frequency of the optical pulse and the horizontal axis represents the peak value of the output pulse.

同図で(イ)で示した光パルスによる波高値分布特性
が、検出端(センサ)に印加する逆バイアス電圧が適正
な範囲にあるときのそれを示しているとすれば、破線で
示した特性(ハ)は、逆バイアス電圧が高過ぎる場合、
破線で示した特性(ロ)は、逆バイアス電圧が低過ぎる
場合、のそれを示している。
If the peak value distribution characteristics by the optical pulse shown in (a) in the figure indicate that when the reverse bias voltage applied to the detection end (sensor) is in the proper range, it is shown by the broken line. The characteristic (C) is that if the reverse bias voltage is too high,
The characteristic (b) indicated by the broken line shows that when the reverse bias voltage is too low.

従って検出端(センサ)に光パルスを入射して得られる
出力パルスの波高値分布特性を監視すれば、検出端(セ
ンサ)に印加する逆バイアス電圧が適正な範囲にあるか
否かを判別すことができる。
Therefore, by monitoring the peak value distribution characteristics of the output pulse obtained by injecting an optical pulse to the detection end (sensor), it is possible to determine whether the reverse bias voltage applied to the detection end (sensor) is in the proper range. be able to.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示すブロック図である。同
図において、1はライトガイド、2は半導体放射線検出
素子(センサ)、3は信号増幅器、4は波高弁別器
(A)、5は波高弁別器(B)、6はアンドゲート、7
はナンドゲート、8はオアゲート、9は異常検出出力、
10は発光ダイオード(LED)、11はLEDドライバ、12はオ
シレータ(発振器)、13は周波数調節器、14はバイアス
電源(逆バイアス電圧の発生源)、である。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a light guide, 2 is a semiconductor radiation detecting element (sensor), 3 is a signal amplifier, 4 is a wave height discriminator (A), 5 is a wave height discriminator (B), 6 is an AND gate, 7
Is a NAND gate, 8 is an OR gate, 9 is an abnormality detection output,
Reference numeral 10 is a light emitting diode (LED), 11 is an LED driver, 12 is an oscillator (oscillator), 13 is a frequency adjuster, and 14 is a bias power supply (a source of reverse bias voltage).

波高弁別器(A)4は第2図に示す波高値L1を超えた出
力パルスのみを出力するように予め設定されており、波
高弁別器(B)5は第2図に示す波高値L2を超えた出力
パルスのみを出力するように予め設定されている。
The wave height discriminator (A) 4 is preset so as to output only the output pulse exceeding the wave height value L1 shown in FIG. 2, and the wave height discriminator (B) 5 outputs the wave height value L2 shown in FIG. It is preset to output only the output pulses that exceed.

第1図において、半導体放射線検出素子(センサ)2
は、バイアス電源14によって適正な逆バイアス電圧を供
給されて、その内部に適正な空乏層容積を形成している
ものとする。発光ダイオード(LED)10は、オシレータ1
2によりドライバ11を介して駆動され、光パルスを発生
してライトガイド1を介して半導体放射線検出素子(セ
ンサ)2を照射する。
In FIG. 1, a semiconductor radiation detecting element (sensor) 2
Is supplied with an appropriate reverse bias voltage by the bias power supply 14 to form an appropriate depletion layer volume therein. Light emitting diode (LED) 10 is oscillator 1
It is driven by the driver 2 by the driver 2 to generate a light pulse to irradiate the semiconductor radiation detecting element (sensor) 2 via the light guide 1.

その結果、半導体放射線検出素子(センサ)2から電荷
パルスが発生し、これは信号増幅器3により増幅されて
電圧信号となる。
As a result, a charge pulse is generated from the semiconductor radiation detecting element (sensor) 2, which is amplified by the signal amplifier 3 to become a voltage signal.

この場合、電圧信号は第2図において(イ)で示す如
き、弁別波高値L1を超えた分布をとるので、波高弁別器
(A)4は出力を生じるが、弁別波高値L2を超えるには
至っていないので、波高弁別器(B)5は出力を生ぜ
ず、従ってオアゲート9から異常検知出力9が出力され
ることはない。
In this case, the voltage signal has a distribution exceeding the discrimination peak value L1 as shown by (a) in FIG. 2, so that the peak discriminator (A) 4 produces an output, but it does not exceed the discrimination peak value L2. Since it has not reached, the wave height discriminator (B) 5 does not produce an output, and therefore the OR gate 9 does not output the abnormality detection output 9.

仮にバイアス電源14によって供給される逆バイアス電圧
が適正な範囲を下回っており、その結果、信号増幅器3
から出力される電圧信号が第2図の(ハ)で示す如き波
高値分布をとったとすると、これは弁別波高値L1もL2も
両方を下回っているので、波高弁別器(A)4も波高弁
別器(B)5も出力を生せず、従ってナンドゲート7か
ら出力が出てオアゲート8を介して異常検知出力9とな
って出力される。
If the reverse bias voltage supplied by the bias power supply 14 is below the proper range, as a result, the signal amplifier 3
Assuming that the voltage signal output from the device has a peak value distribution as shown in (c) of Fig. 2, this is lower than both the discrimination peak values L1 and L2, so the peak height discriminator (A) 4 also has a peak height. The discriminator (B) 5 also does not produce an output, so an output is output from the NAND gate 7 and is output as an abnormality detection output 9 via the OR gate 8.

またバイアス電源14によって供給される逆バイアス電圧
が適正な範囲を上回っており、その結果、信号増幅器3
から出力される電圧信号が第2図の(ロ)で示す如き波
高値分布をとったとすると、これは弁別波高値L1もL2も
両方を上回っているので、波高弁別器(A)4も波高弁
別器(B)5も出力を生じ、従ってアンドゲート6から
出力が出てオアゲート8を介して異常検知出力9となっ
て出力される。
Further, the reverse bias voltage supplied by the bias power supply 14 exceeds the proper range, and as a result, the signal amplifier 3
Assuming that the voltage signal output from the signal has a peak value distribution as shown in (b) of Fig. 2, this is higher than both the discrimination peak values L1 and L2, so the peak height discriminator (A) 4 also has a peak height. The discriminator (B) 5 also produces an output, so that an output is output from the AND gate 6 and is output as an abnormality detection output 9 via the OR gate 8.

周波数調節器13を調節してオシレータ12からの発振周波
数を変えれば、半導体放射線検出素子(センサ)2に入
射する放射線量を増減させたのと等価な効果が得られる
ので、測定レンジを変えての健全性チエックに相当する
ことを容易に行うことができる。
By adjusting the frequency adjuster 13 to change the oscillation frequency from the oscillator 12, the same effect as increasing or decreasing the radiation dose incident on the semiconductor radiation detection element (sensor) 2 can be obtained. Therefore, change the measurement range. You can easily do what is equivalent to the integrity check.

半導体放射線検出素子(センサ)2は、製品毎にその特
性(放射線に対する感度)が微妙にバラツクことがあ
る。その場合には、周波数調節器13を調節して、どの半
導体放射線検出素子(センサ)2も同一感度になるよう
にLEDドライバ11を制御してやれば、半導体放射線検出
素子(センサ)2以降、信号増幅器3以下の電子回路を
どの製品(半導体放射線検出素子)に対しても共通とす
ることができる。
The characteristics (sensitivity to radiation) of the semiconductor radiation detection element (sensor) 2 may vary slightly depending on the product. In that case, by adjusting the frequency adjuster 13 to control the LED driver 11 so that all the semiconductor radiation detecting elements (sensors) 2 have the same sensitivity, the semiconductor radiation detecting elements (sensors) 2 and the subsequent signal amplifiers are controlled. Electronic circuits of 3 or less can be used in common for any product (semiconductor radiation detection element).

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、放射線源を使用
することなしに、半導体放射線検出素子(センサ)から
線量率指示計に至る全測定ループの健全性チエックが容
易に可能となるほか、測定系の上限校正、下限校正、窒
息検知(大量な放射線が照射されたことにより信号増幅
器が飽和して放射線の計測が不能になること)の機能確
認作業が極めて短時間に、かつ遠隔の場所からでも容易
に実施可能になるという利点がある。
As described above, according to the present invention, the soundness check of all measurement loops from the semiconductor radiation detection element (sensor) to the dose rate indicator can be easily performed without using a radiation source. The function confirmation work of the upper limit calibration, lower limit calibration, and suffocation detection of the measurement system (the signal amplifier is saturated due to the irradiation of a large amount of radiation and the radiation measurement becomes impossible) is performed in an extremely short time and at a remote location. There is an advantage that it can be easily implemented even from the above.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
半導体放射線検出素子(センサ)から出力される電荷パ
ルスの波高値分布特性を示す特性図、である。 符号の説明 1……ライトガイド、2……半導体放射線検出素子(セ
ンサ)、3……信号増幅器、4……波高弁別器(A)、
5……波高弁別器(B)、6……アンドゲート、7……
ナンドゲート、8……オアゲート、9……異常検出出
力、10……発光ダイオード(LED)、11……LEDドライ
バ、12……オシレータ、13……周波数調節器、14……バ
イアス電源。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing peak value distribution characteristics of charge pulses output from a semiconductor radiation detecting element (sensor). Explanation of symbols 1 ... Light guide, 2 ... Semiconductor radiation detection element (sensor), 3 ... Signal amplifier, 4 ... Wave height discriminator (A),
5 ... Wave height discriminator (B), 6 ... AND gate, 7 ...
NAND gate, 8 ... OR gate, 9 ... Abnormality detection output, 10 ... Light emitting diode (LED), 11 ... LED driver, 12 ... Oscillator, 13 ... Frequency adjuster, 14 ... Bias power supply.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】p型とn型の半導体を接合して成るダイオ
ードの該p型に負、n型に正という逆バイアス電圧を印
加することにより、その内部に空乏層を形成させ、放射
線に対する感度を持たせた半導体式放射線検出器に関し
て前記逆バイアス電圧の異常の有無を検出するためのバ
イアス異常検出装置において、 前記空乏層に対して放射線によるそれと類似な感度を持
たせ得る光パルスの発生手段と、前記光パルス発生手段
を制御して、発生する光パルスの繰り返し周波数を調節
する周波数調節手段と、光パルスがその空乏層に照射さ
れたことにより前記半導体式放射線検出器から出力され
るパルス波高値を監視して前記逆バイアス電圧の異常の
有無を判別する判別手段と、を具備して成ることを特徴
とする半導体式放射線検出器のバイアス異常検出装置。
1. A depletion layer is formed inside a diode formed by joining a p-type semiconductor and an n-type semiconductor by applying a reverse bias voltage of negative to the p-type and positive to the n-type to prevent radiation. In a bias abnormality detection device for detecting the presence or absence of abnormality of the reverse bias voltage with respect to a semiconductor type radiation detector having sensitivity, generation of an optical pulse capable of giving the depletion layer a sensitivity similar to that due to radiation Means and frequency adjusting means for controlling the light pulse generating means to adjust the repetition frequency of the light pulse to be generated, and the light pulse is output from the semiconductor radiation detector by irradiating the depletion layer. Bias difference of the semiconductor type radiation detector, characterized by comprising a judging means for monitoring the pulse peak value and judging whether the reverse bias voltage is abnormal or not. Always detection device.
JP63281300A 1988-11-09 1988-11-09 Bias abnormality detection device for semiconductor radiation detector Expired - Lifetime JPH0672930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281300A JPH0672930B2 (en) 1988-11-09 1988-11-09 Bias abnormality detection device for semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281300A JPH0672930B2 (en) 1988-11-09 1988-11-09 Bias abnormality detection device for semiconductor radiation detector

Publications (2)

Publication Number Publication Date
JPH02128184A JPH02128184A (en) 1990-05-16
JPH0672930B2 true JPH0672930B2 (en) 1994-09-14

Family

ID=17637151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281300A Expired - Lifetime JPH0672930B2 (en) 1988-11-09 1988-11-09 Bias abnormality detection device for semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPH0672930B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239783A (en) * 2003-02-06 2004-08-26 Mitsubishi Electric Corp Radiation monitor
JP2010044020A (en) * 2008-08-18 2010-02-25 Aloka Co Ltd Radiation measuring apparatus
US7999218B2 (en) 2006-09-27 2011-08-16 Kabushiki Kaisha Toshiba Radiation detector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528547B2 (en) * 2004-03-30 2010-08-18 株式会社東芝 Degradation abnormality detector for semiconductor radiation detector
JP4599188B2 (en) * 2005-02-25 2010-12-15 株式会社東芝 Radiation detector
JP4912983B2 (en) 2007-08-24 2012-04-11 株式会社東芝 Radiation monitor and its operation confirmation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239783A (en) * 2003-02-06 2004-08-26 Mitsubishi Electric Corp Radiation monitor
US7999218B2 (en) 2006-09-27 2011-08-16 Kabushiki Kaisha Toshiba Radiation detector
JP2010044020A (en) * 2008-08-18 2010-02-25 Aloka Co Ltd Radiation measuring apparatus

Also Published As

Publication number Publication date
JPH02128184A (en) 1990-05-16

Similar Documents

Publication Publication Date Title
CA1272262A (en) Combined smoke and gas detection apparatus
US5008559A (en) Method for operating an optical smoke detector and optical smoke detector for the method
US4720636A (en) Drop detecting system which operates under different ambient light conditions
US4295475A (en) Probe and system for detecting probe dislodgement
US3723737A (en) Infrared detection and control device
SE9403098L (en) Device for measuring the position of a bright spot with integrated function to eliminate the influence of light bulbs
JPH0672930B2 (en) Bias abnormality detection device for semiconductor radiation detector
US9863874B2 (en) Method for signal detection in a gas analysis system
KR102479238B1 (en) Quantum Sensor-Based Remote High-precision Gas Sensing Apparatus
US4647786A (en) Photoelectric smoke detector and its application
US5126555A (en) Apparatus for preventing accidental activations of opto-electronic switches due to extraneous light
US3487222A (en) Automatic gain control for self-calibrating a detection system
US4091368A (en) Method and apparatus to obtain an electrical signal representative of thickness of a traveling filament
JPH0850094A (en) Sensitivity test system for photoelectric smoke detector
JP4599188B2 (en) Radiation detector
EP2765441B1 (en) Radiation detector
JP4157389B2 (en) Radiation monitor
JPS6026173B2 (en) Smoke detectors
GB2111193A (en) Method and apparatus for assessing the quality of cement clinker
GB1394145A (en) Monitoring travel of vehicles
JP2658531B2 (en) Radiation measuring instrument
JPH03245296A (en) Testing method for smoke sensor and smoke sensor
JPS5916874B2 (en) High energy density beam welding equipment
JPH04168395A (en) Radiation monitor device
JP3925852B2 (en) Security sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 15