JP2004239783A - Radiation monitor - Google Patents

Radiation monitor Download PDF

Info

Publication number
JP2004239783A
JP2004239783A JP2003030093A JP2003030093A JP2004239783A JP 2004239783 A JP2004239783 A JP 2004239783A JP 2003030093 A JP2003030093 A JP 2003030093A JP 2003030093 A JP2003030093 A JP 2003030093A JP 2004239783 A JP2004239783 A JP 2004239783A
Authority
JP
Japan
Prior art keywords
pulse
radiation
output
semiconductor detector
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030093A
Other languages
Japanese (ja)
Other versions
JP4157389B2 (en
JP2004239783A5 (en
Inventor
Kenichi Mogi
健一 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003030093A priority Critical patent/JP4157389B2/en
Publication of JP2004239783A publication Critical patent/JP2004239783A/en
Publication of JP2004239783A5 publication Critical patent/JP2004239783A5/ja
Application granted granted Critical
Publication of JP4157389B2 publication Critical patent/JP4157389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation monitor which is on-line-diagnosed without a measurement miss, and moreover enables separate and periodic automatic on-line-diagnosis of its semiconductor detector and a power source for the semiconductor detector. <P>SOLUTION: The radiation monitor is provided with: the semiconductor detector 1 which outputs a pulse of predetermined width when radiation impinges, and outputs a pulse whose width is different from the predetermined width when an optical pulse impinges; a pulse width discrimination means 6 which discriminates the width of the output pulse of the semiconductor detector, and generates an output pulse corresponding to the pulse by the radiation; a peak value spectrum measurement means 8 for measuring the peal value spectral of the output pulse of the semiconductor detector; and a radiation measurement means 9 for measuring the radiation based on the output of the pulse width discrimination means and the output of the peak value spectrum measurement means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、放射線モニタ、例えば原子力発電所、病院、研究所等で使用される半導体検出器を用いた放射線モニタに関するものである。
【0002】
【従来の技術】
放射線モニタのための放射線センサには、例えば、P型半導体層とN型半導体層との間に特に抵抗の大きいI型半導体層(低不純物濃度層)を設けたPIN型フォトダイオードが半導体検出器として使用されている。
また、放射線モニタの健全性を診断する手段として、光パルスを半導体検出器のPIN型フォトダイオードに照射して光パルスに対応する半導体検出器の出力パルスの波高値を監視するようにしたものが知られている。(例えば特許文献1参照)。
【0003】
【特許文献1】
特公平6−72930号公報(p3、左欄18行−同39行、第1図)
【0004】
【発明が解決しようとする課題】
従来の放射線モニタは、前記のように構成され、健全性の診断に際して半導体検出器に光パルスを照射すると、放射線モニタの指示が上昇して正確な測定ができなくなるため、照射前に放射線モニタの運転状態をテストモードに切換えてテスト警報を発信させて報知する操作が必要であり、テスト期間中は放射線モニタが欠測となる結果、欠測なしでのオンライン診断ができないという問題点があった。更に、半導体検出器を構成する半導体センサは、劣化するとリーク電流が増加してそれにともない定常ノイズが増加する現象、及び半導体検出器用電源が劣化するとリップルが増加する現象があり、これらが運用中の指示上昇トラブルの原因となるが、定期的に自動でオンライン診断ができないという問題点があった。
この発明は、前記のような問題点を解決するためになされたものであり、放射線モニタを欠測なしでオンライン診断することができ、更に、半導体検出器と半導体検出器用電源とを別々に定期的にオンライン自動診断することができる放射線モニタを提供することを目的とする。
【0005】
【課題を解決するための手段】
この発明に係わる放射線モニタは、放射線の入射時に所定の幅のパルスを出力し、光パルスの入射時に所定の幅とは異なる幅のパルスを出力する半導体検出器と、前記半導体検出器の出力パルスの幅を弁別し、放射線によるパルスに対応した出力パルスを生ずるパルス幅弁別手段と、前記半導体検出器の出力パルスの波高値スペクトルを測定する波高値スペクトル測定手段と、前記パルス幅弁別手段の出力及び前記波高値スペクトル測定手段の出力にもとづいて放射線を測定する放射線測定手段とを備えたものである。
【0006】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。 図1は、実施の形態1による放射線モニタの構成を示すブロック図である。この図において,半導体センサ1は放射線が入射することにより電流パルスを出力するもので、例えばP型半導体層とN型半導体層の間に特に抵抗の大きいI型半導体層(低不純物濃度層)を有するPIN型フォトダイオードによって構成されている。この場合、I型半導体層が放射線に対して感度を有しており、放射線の入射時に生成された電子と正孔が後述するバイアス電圧による電位勾配で電極に収集されて電流パルスを出力するもので、バイアス電圧が変動すると前記の電子と正孔の収集率が変化して放射線に対する感度が変動するものである。なお、半導体センサは、例えば放射線環境下で長期間使用するとその積算線量に応じて劣化し感度が低下することが知られている。
【0007】
プリアンプ2は前記半導体センサ1と共に半導体検出器を構成するもので、前記半導体センサ1の出力としての電流パルスを積分して電圧パルスに変換するものである。半導体検出器用電源3は前記半導体センサ1と前記プリアンプ2にバイアス電圧を供給するものである。パルス増幅器4は前記プリアンプ2の出力としての電圧パルスを増幅するものである。波高弁別器5は前記パルス増幅器4の出力パルスを入力して波高値が所定の値未満のパルスをノイズとして除去し、かつ、波高値が所定の値以上のパルスに対応してパルスを出力するものである。
パルス幅弁別器6は前記パルス増幅器4の出力パルスを入力してパルス幅が所定の値を超えるパルスをノイズとして除去し、かつ、パルス幅が所定の値以下のパルスに対応してパルスを出力するものである。論理回路7は前記波高弁別器5の出力と前記パルス幅弁別器6の出力との論理積でパルスを出力するようにされている。
【0008】
波高値スペクトル測定手段としての多重波高分析器8は前記パルス増幅器4の出力パルスを入力して波高値に対応した頻度のデータを出力するようにされている。放射線測定手段としてのレートメータ9は前記論理回路7の出力パルスと前記多重波高分析器8の出力データを入力してパルスの計数、計数率の計算、工学値変換、得られたデータにもとづく設定値との比較及び自己診断等の演算を行うと共に、表示及び警報発信を行うものである。LED10は光パルスを発生して前記半導体センサ1に照射するようにされており、前記レートメータ9からのテストパルスにもとづいて動作するLEDドライバー11によって駆動される。
このLED10は放射線センサ1に対して放射線と同様に感度を有するように波長と強度が選定されているが、更に、放射線センサ1の出力パルスが放射線の入射による場合と光パルスの入射による場合とでパルス幅が異なるように光パルスの幅が選定されている。
【0009】
図2は、この発明の実施の形態1における光パルス照射状態でのパルス増幅器4の出力パルスを示す図である。この図において、aはパルス増幅器4の出力パルスを示すものであり、alとa3は放射線の入射によるもの、a2とa5は光パルスの入射によるもの、a4はノイズによるものである。
また、cは波高弁別器5の波高弁別レベルを示すものであり、パルスの波高値がc未満のa4をノイズとして除去し、c以上のal、a2、a3、a5に対応して出力パルスを発生する。dはパルス幅弁別器6においてパルス幅を弁別する時にパルス幅を特定するレベルである。tlとt3はそれぞれ放射線による出力パルスalとa3に対応したパルス幅であり、t2とt5は光パルスによる出力パルスa2とa5に対応したパルス幅である。パルス幅弁別器6では基準のパルス幅ts(図示していないが、t2、t5より小さく、t1、t3より大きく設定される)が設定されており、tsを超える幅のパルスをノイズとして除去し、ts以下の幅のパルスに対応してパルスを出力する。また、波高弁別器5とパルス幅弁別器6の出力の論理積により、すなわちalとa3に対応して論理回路7からパルスが出力される。したがって、レートメータ9では放射線によるパルスのみが計数され、光パルスは計数されないため、放射線モニタはオンラインの状態で放射線センサ1に対して光パルスを照射することができる。
【0010】
図3は、この発明の実施の形態1における光パルス照射状態での多重波高分析器8の出力の波高値スペクトルを示す図である。この図において、横軸はパルス増幅器4の出力パルスの波高値、縦軸は頻度としてのカウント、eはバックグラウンドスペクトル、fは波高弁別器5の波高弁別レベルである。gは光パルスによる光パルススペクトルピークの初期値、hは半導体検出器用電源3のバイアス電圧がマイナス変動した場合または半導体センサが放射線等で劣化した場合の光パルススペクトルピーク、iは半導体検出器用電源3のバイアス電圧がプラス変動した場合の光パルススペクトルピークを示す。光パルスを半導体センサ1に照射すると通常のバックグラウンドスペクトルに光パルススペクトルが上積みされた波高値スペクトルになる。したがって、レートメータ9からテストパルスを出力してLEDドライバー11を駆動し、LED10を発光させ、半導体センサ1に光パルスを照射し、レートメータ9で光パルススペクトルピークを検出し、それをその初期値と比較することにより、半導体検出器用電源3及び半導体センサ1の健全性をオンラインで診断することができる。診断機能は定期的に自動で動作するが、マニュアル操作も可能である。
【0011】
実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。図4は、実施の形態2による放射線モニタの構成を示すブロック図である。この図において、図1と同一または相当部分にはそれぞれ同一符号を付して説明を省略する。図1と異なる点は、半導体検出器用電源3の出力電圧が入力され、測定データをレートメータ9に出力するA/D変換器12を設けた点である。 A/D変換器12の測定データはレートメータ9に入力されて常時監視されるので、半導体センサ1と半導体検出器用電源3とを別々にオンライン診断することができる。
【0012】
実施の形態3.
次に、この発明の実施の形態3を図にもとづいて説明する。この実施の形態による放射線モニタの構成は、図1または図4と同様であるため図示を省略する。図5は、実施の形態3を説明するための図で、半導体センサ1の劣化または半導体検出器用電源3の劣化によるバックグラウンドスペクトルの変化を示す図である。この図において、横軸はパルス増幅器4の出力パルスの波高値、縦軸は頻度としてのカウント、jはバックグラウンドスペクトルの初期値、kは半導体検出器用電源3の劣化または半導体センサ1の劣化が進行した状態でのバックグラウンドスペクトルを示す。多重波高分析器8の測定データをもとに、測定対象の波高値すなわち波高弁別器5の弁別レベル以下の波高値ウィンドウの計数率をレートメータ9で演算して求め、初期値と比較し、計数率の増加が所定の範囲を超えた場合に警報を発信する。このようにノイズレベルの波高値の計数率の増加を監視することにより、半導体センサ1または半導体検出器用電源3の劣化を監視することができる。
【0013】
実施の形態4.
次に、この発明の実施の形態4を図にもとづいて説明する。図6は、実施の形態4による放射線モニタの構成を示すブロック図である。この図において、図1と同一または相当部分にはそれぞれ同一符号を付して説明を省略する。図1と異なる点は、多重波高分析器8の入力側にレートメータ9の切換信号CS1によって切り換え操作される第1の切換回路14を設け、半導体検出器用電源3の出力側に接続され、電源出力の直流成分をカットして交流成分を出力するコンデンサ13の出力とパルス増幅器4の出力とを切り換えて入力し得るようにした点である。この第1の切換回路14をレートメータ9からの切換信号によって定期的に自動切換えを行なうことにより、多重波高分析器8は半導体検出器用電源3のリップルを測定し、その測定データをもとにレートメータ9が所定のウィンドウを設け、その計数率を求めて初期値と比較し、計数率の増加が所定の範囲を超えたら警報を発信する。この結果、半導体センサ1および半導体検出器用電源3の劣化の進行を別々に監視することができる。
【0014】
実施の形態5.
次に、この発明の実施の形態5を図にもとづいて説明する。図7は、実施の形態5による放射線モニタの構成を示すブロック図である。この図において、図1と同一または相当部分にはそれぞれ同一符号を付して説明を省略する。図1と異なる点は、パルス増幅器4の入力側にレートメータ9の切換信号CS2によって切り換え操作される第2の切換回路15を設け、プリアンプ2の出力と、レートメータ9から出力されるテストパルスとを切り換えて入力し得るようにした点である。前記テストパルスはLEDドライバー11の入力を分岐したものである。放射線モニタの指示が変動して光パルスによる自己診断に異常がない場合は、レートメータ9は多重波高分析器8の測定データをもとに測定対象の波高値ウィンドウに対する計数率を求めて論理回路7のパルスをもとに計数した計数率と比較チェックを行い、それに変動が認められ、かつ、変動方向が同じであれば放射線による変動とみなす。これらの自己診断は自動で行われるが、念のため測定系のチェックを行う場合には、マニュアルで第2の切換回路15の切換を行えば検出系と測定系を別々に診断することができる。なお、テストパルスは通常は固定周波数で十分であるが、周波数を可変にすれば定期検査等で測定系のループチェック(入出力の周波数応答)を自動で行うことができる。
【0015】
実施の形態6.
次に、この発明の実施の形態6を図にもとづいて説明する。図8は、実施の形態5による放射線モニタの構成を示すブロック図である。この図において、16はレートメータ9に接続された第1の通信インターフェース(I/F)、17は光ケーブル、18は第2の通信インターフェース(I/F)、19は監視・操作装置である。このような構成とすることにより、レートメータ9の演算結果が、第1の通信I/F16で伝送信号に変換されて光ケーブル17を経由して伝送され、第2の通信I/F18で受信されて監視・操作装置19で表示され遠隔で監視できる。また、双方向通信により、送受信を逆にすれば監視・操作装置19から遠隔操作することができる。
【0016】
【発明の効果】
この発明に係る放射線モニタは、放射線の入射時に所定の幅のパルスを出力し、光パルスの入射時に所定の幅とは異なる幅のパルスを出力する半導体検出器と、前記半導体検出器の出力パルスの幅を弁別し、放射線によるパルスに対応した出力パルスを生ずるパルス幅弁別手段と、前記半導体検出器の出力パルスの波高値スペクトルを測定する波高値スペクトル測定手段と、前記パルス幅弁別手段の出力及び前記波高値スペクトル測定手段の出力にもとづいて放射線を測定する放射線測定手段とを備えたものであるため、光パルスを照射しても放射線モニタの指示が上昇せず、したがって放射線モニタを欠測させることなくオンラインで半導体検出器と半導体検出器用電源を診断することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1による放射線モニタの構成を示すブロック図である。
【図2】この発明の実施の形態1における光パルス照射状態でのパルス増幅器の出力パルスを示す図である。
【図3】この発明の実施の形態1における光パルス照射状態での多重波高分析器出力の波高値スペクトルを示す図である。
【図4】この発明の実施の形態2による放射線モニタの構成を示すブロック図である。
【図5】この発明の実施の形態3を説明するための図で、半導体センサの劣化または半導体検出器用電源の劣化によるバックグラウンドスペクトルの変化を示す図である。
【図6】この発明の実施の形態4による放射線モニタの構成を示すブロック図である。
【図7】この発明の実施の形態5による放射線モニタの構成を示すブロック図である。
【図8】この発明の実施の形態6による放射線モニタの構成を示すブロック図である。
【符号の説明】
1 半導体センサ、 2 プリアンプ、 3 半導体検出器用電源、
4 パルス増幅器、 5 波高弁別器、 6 パルス幅弁別器、
7 論理回路、 8 多重波高分析器、 9 レートメータ、
10 LED、 11 LEDドライバー、 12 A/D変換器、
13 コンデンサ、 14 切換回路、 15 第2の切換回路、
16 第1の通信I/F、 17 光ケーブル、
18 第2の通信I/F、 19 監視・操作装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radiation monitor, for example, a radiation monitor using a semiconductor detector used in nuclear power plants, hospitals, research laboratories, and the like.
[0002]
[Prior art]
As a radiation sensor for radiation monitoring, for example, a PIN photodiode having a particularly high resistance I-type semiconductor layer (low impurity concentration layer) between a P-type semiconductor layer and an N-type semiconductor layer is a semiconductor detector. Has been used as
Further, as means for diagnosing the soundness of the radiation monitor, there is a device which irradiates a PIN type photodiode of a semiconductor detector with a light pulse and monitors the peak value of the output pulse of the semiconductor detector corresponding to the light pulse. Are known. (See, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Publication No. 6-72930 (p3, left column, line 18-line 39, FIG. 1)
[0004]
[Problems to be solved by the invention]
The conventional radiation monitor is configured as described above, and when irradiating the semiconductor detector with a light pulse at the time of soundness diagnosis, the instruction of the radiation monitor is increased and accurate measurement cannot be performed. It is necessary to switch the operation state to the test mode and send a test alarm to notify the operator. During the test period, the radiation monitor is missing, so that there is a problem that online diagnosis cannot be performed without missing. . Furthermore, the semiconductor sensor that constitutes the semiconductor detector has a phenomenon in which, when deteriorated, a leak current increases and a steady noise increases accordingly, and when a semiconductor detector power supply deteriorates, a ripple increases. Although this could cause a trouble in ascending the indication, there was a problem that online diagnosis could not be performed automatically on a regular basis.
The present invention has been made in order to solve the above-described problems, and allows a radiation monitor to be diagnosed online without missing, and furthermore, a semiconductor detector and a power supply for the semiconductor detector are separately and regularly scheduled. It is an object of the present invention to provide a radiation monitor capable of performing automatic online diagnosis.
[0005]
[Means for Solving the Problems]
A radiation monitor according to the present invention includes: a semiconductor detector that outputs a pulse having a predetermined width when radiation is incident, and outputs a pulse having a width different from the predetermined width when an optical pulse is incident; and an output pulse of the semiconductor detector. Pulse width discriminating means for generating an output pulse corresponding to a pulse due to radiation, a peak value spectrum measuring means for measuring a peak value spectrum of an output pulse of the semiconductor detector, and an output of the pulse width discriminating means. And radiation measuring means for measuring radiation based on the output of the peak value spectrum measuring means.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of the radiation monitor according to the first embodiment. In FIG. 1, a semiconductor sensor 1 outputs a current pulse when radiation is incident. For example, an I-type semiconductor layer (low impurity concentration layer) having particularly large resistance is provided between a P-type semiconductor layer and an N-type semiconductor layer. And a PIN type photodiode. In this case, the I-type semiconductor layer has sensitivity to radiation, and electrons and holes generated at the time of radiation incidence are collected by an electrode with a potential gradient due to a bias voltage described later and output a current pulse. When the bias voltage fluctuates, the electron and hole collection rates change, and the sensitivity to radiation fluctuates. It is known that, for example, when a semiconductor sensor is used for a long period of time in a radiation environment, the semiconductor sensor is deteriorated according to the integrated dose and the sensitivity is reduced.
[0007]
The preamplifier 2 constitutes a semiconductor detector together with the semiconductor sensor 1, and integrates a current pulse as an output of the semiconductor sensor 1 and converts it into a voltage pulse. The semiconductor detector power supply 3 supplies a bias voltage to the semiconductor sensor 1 and the preamplifier 2. The pulse amplifier 4 amplifies a voltage pulse as an output of the preamplifier 2. The pulse height discriminator 5 receives an output pulse from the pulse amplifier 4 and removes a pulse whose peak value is less than a predetermined value as noise, and outputs a pulse corresponding to a pulse whose peak value is equal to or more than a predetermined value. Things.
The pulse width discriminator 6 receives an output pulse of the pulse amplifier 4 and removes a pulse having a pulse width exceeding a predetermined value as noise, and outputs a pulse corresponding to a pulse having a pulse width of a predetermined value or less. Is what you do. The logic circuit 7 outputs a pulse by the logical product of the output of the pulse height discriminator 5 and the output of the pulse width discriminator 6.
[0008]
A multiplex peak analyzer 8 as a peak value spectrum measuring means receives the output pulse of the pulse amplifier 4 and outputs data having a frequency corresponding to the peak value. The rate meter 9 as a radiation measuring means receives the output pulse of the logic circuit 7 and the output data of the multiplex height analyzer 8 to count the pulses, calculate the count rate, convert the engineering value, and set based on the obtained data. It performs calculations such as comparison with values and self-diagnosis, and also performs display and alarm transmission. The LED 10 generates a light pulse and irradiates the semiconductor sensor 1 with the light pulse. The LED 10 is driven by an LED driver 11 that operates based on a test pulse from the rate meter 9.
The wavelength and intensity of the LED 10 are selected so as to have the same sensitivity to the radiation sensor 1 as the radiation. The width of the light pulse is selected so that the pulse width is different.
[0009]
FIG. 2 is a diagram showing an output pulse of the pulse amplifier 4 in the light pulse irradiation state according to the first embodiment of the present invention. In this figure, a represents the output pulse of the pulse amplifier 4, al and a3 are due to the incidence of radiation, a2 and a5 are due to the incidence of light pulses, and a4 is due to noise.
In addition, c indicates a pulse height discrimination level of the pulse height discriminator 5, and a4 having a pulse peak value less than c is removed as noise, and output pulses corresponding to al, a2, a3, and a5 greater than c are output. appear. d is a level for specifying the pulse width when the pulse width is discriminated by the pulse width discriminator 6. tl and t3 are pulse widths corresponding to output pulses al and a3 due to radiation, respectively, and t2 and t5 are pulse widths corresponding to output pulses a2 and a5 due to light pulses. In the pulse width discriminator 6, a reference pulse width ts (not shown, but smaller than t2 and t5 and larger than t1 and t3) is set, and a pulse having a width exceeding ts is removed as noise. , Ts or less. Also, a pulse is output from the logic circuit 7 by the logical product of the outputs of the pulse height discriminator 5 and the pulse width discriminator 6, that is, corresponding to al and a3. Therefore, the rate meter 9 counts only pulses due to radiation and does not count light pulses, so that the radiation monitor can irradiate the radiation sensor 1 with light pulses in an online state.
[0010]
FIG. 3 is a diagram showing a peak value spectrum of the output of the multiplex pulse height analyzer 8 in the light pulse irradiation state according to the first embodiment of the present invention. In this figure, the horizontal axis represents the peak value of the output pulse of the pulse amplifier 4, the vertical axis represents the count as frequency, e represents the background spectrum, and f represents the pulse height discrimination level of the pulse height discriminator 5. g is the initial value of the light pulse spectrum peak due to the light pulse, h is the light pulse spectrum peak when the bias voltage of the semiconductor detector power supply 3 fluctuates negatively or the semiconductor sensor is deteriorated by radiation or the like, and i is the power supply for the semiconductor detector. 3 shows an optical pulse spectrum peak when the bias voltage of No. 3 fluctuates in the plus direction. When a light pulse is applied to the semiconductor sensor 1, the peak value spectrum is obtained by superimposing a light pulse spectrum on a normal background spectrum. Therefore, a test pulse is output from the rate meter 9 to drive the LED driver 11 to cause the LED 10 to emit light, irradiate the semiconductor sensor 1 with a light pulse, detect a light pulse spectrum peak with the rate meter 9, and set it to its initial value. By comparing with the value, the soundness of the semiconductor detector power supply 3 and the semiconductor sensor 1 can be diagnosed online. The diagnostic function operates automatically at regular intervals, but manual operation is also possible.
[0011]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a block diagram showing a configuration of the radiation monitor according to the second embodiment. In this figure, the same or corresponding parts as those in FIG. The difference from FIG. 1 is that an A / D converter 12 that receives the output voltage of the semiconductor detector power supply 3 and outputs measurement data to the rate meter 9 is provided. Since the measurement data of the A / D converter 12 is input to the rate meter 9 and constantly monitored, the semiconductor sensor 1 and the semiconductor detector power supply 3 can be separately diagnosed online.
[0012]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to the drawings. The configuration of the radiation monitor according to this embodiment is the same as that in FIG. 1 or FIG. FIG. 5 is a diagram for explaining the third embodiment, and is a diagram showing a change in the background spectrum due to the deterioration of the semiconductor sensor 1 or the power supply 3 for the semiconductor detector. In this figure, the horizontal axis is the peak value of the output pulse of the pulse amplifier 4, the vertical axis is the count as frequency, j is the initial value of the background spectrum, and k is the deterioration of the semiconductor detector power supply 3 or the deterioration of the semiconductor sensor 1. The background spectrum in the advanced state is shown. Based on the measurement data of the multi-peak analyzer 8, the peak value of the measurement target, that is, the counting rate of the peak window below the discrimination level of the peak discriminator 5 is calculated by the rate meter 9, and compared with the initial value, An alarm is issued when the increase in the counting rate exceeds a predetermined range. By monitoring the increase in the count rate of the peak value of the noise level in this manner, it is possible to monitor the deterioration of the semiconductor sensor 1 or the power supply 3 for the semiconductor detector.
[0013]
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a block diagram showing a configuration of the radiation monitor according to the fourth embodiment. In this figure, the same or corresponding parts as those in FIG. The difference from FIG. 1 is that a first switching circuit 14 that is switched by the switching signal CS1 of the rate meter 9 is provided on the input side of the multiplex height analyzer 8 and is connected to the output side of the power supply 3 for a semiconductor detector. The point is that the output of the capacitor 13 that cuts the DC component of the output and outputs the AC component and the output of the pulse amplifier 4 can be switched and input. By automatically switching the first switching circuit 14 periodically according to a switching signal from the rate meter 9, the multiplex height analyzer 8 measures the ripple of the power supply 3 for the semiconductor detector, and based on the measured data, The rate meter 9 provides a predetermined window, finds the count rate, compares it with an initial value, and issues an alarm when the increase in the count rate exceeds a predetermined range. As a result, the progress of deterioration of the semiconductor sensor 1 and the power supply 3 for the semiconductor detector can be separately monitored.
[0014]
Embodiment 5 FIG.
Next, a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a block diagram showing a configuration of the radiation monitor according to the fifth embodiment. In this figure, the same or corresponding parts as those in FIG. The difference from FIG. 1 is that a second switching circuit 15 that is switched by the switching signal CS2 of the rate meter 9 is provided on the input side of the pulse amplifier 4, and the output of the preamplifier 2 and the test pulse output from the rate meter 9 are provided. And can be input by switching. The test pulse is obtained by branching the input of the LED driver 11. When the instruction of the radiation monitor fluctuates and there is no abnormality in the self-diagnosis by the light pulse, the rate meter 9 obtains the count rate for the peak value window of the measurement target based on the measurement data of the multiple pulse height analyzer 8 and executes a logic circuit. A comparison check is performed with the counting rate counted based on the pulse No. 7, and if a change is recognized and the change direction is the same, the change is regarded as a change due to radiation. These self-diagnosis are performed automatically. However, when the measurement system is checked just in case, the detection system and the measurement system can be separately diagnosed by manually switching the second switching circuit 15. . A fixed frequency is usually sufficient for the test pulse, but if the frequency is made variable, a loop check (input / output frequency response) of the measurement system can be automatically performed by periodic inspection or the like.
[0015]
Embodiment 6 FIG.
Next, a sixth embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram showing a configuration of the radiation monitor according to the fifth embodiment. In this figure, 16 is a first communication interface (I / F) connected to the rate meter 9, 17 is an optical cable, 18 is a second communication interface (I / F), and 19 is a monitoring and operating device. With such a configuration, the operation result of the rate meter 9 is converted into a transmission signal by the first communication I / F 16 and transmitted via the optical cable 17 and received by the second communication I / F 18. Displayed on the monitoring / operation device 19 and can be monitored remotely. In addition, if the transmission and reception are reversed by the two-way communication, remote control can be performed from the monitoring / operation device 19.
[0016]
【The invention's effect】
A radiation monitor according to the present invention outputs a pulse having a predetermined width upon incidence of radiation, and outputs a pulse having a width different from the predetermined width upon incidence of an optical pulse; and an output pulse of the semiconductor detector. Pulse width discriminating means for generating an output pulse corresponding to a pulse due to radiation, a peak value spectrum measuring means for measuring a peak value spectrum of an output pulse of the semiconductor detector, and an output of the pulse width discriminating means. And the radiation measuring means for measuring the radiation based on the output of the peak value spectrum measuring means. It is possible to diagnose the semiconductor detector and the power supply for the semiconductor detector online without performing the operation.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a radiation monitor according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing output pulses of a pulse amplifier in a light pulse irradiation state according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a peak value spectrum of a multiplex pulse height analyzer output in a light pulse irradiation state according to the first embodiment of the present invention.
FIG. 4 is a block diagram showing a configuration of a radiation monitor according to a second embodiment of the present invention.
FIG. 5 is a diagram for explaining the third embodiment of the present invention, and is a diagram showing a change in a background spectrum due to deterioration of a semiconductor sensor or deterioration of a power supply for a semiconductor detector.
FIG. 6 is a block diagram showing a configuration of a radiation monitor according to Embodiment 4 of the present invention.
FIG. 7 is a block diagram showing a configuration of a radiation monitor according to a fifth embodiment of the present invention.
FIG. 8 is a block diagram showing a configuration of a radiation monitor according to Embodiment 6 of the present invention.
[Explanation of symbols]
1 semiconductor sensor, 2 preamplifier, 3 power supply for semiconductor detector,
4 pulse amplifier, 5 pulse height discriminator, 6 pulse width discriminator,
7 logic circuit, 8 multiplex height analyzer, 9 rate meter,
10 LED, 11 LED driver, 12 A / D converter,
13 capacitor, 14 switching circuit, 15 second switching circuit,
16 first communication I / F, 17 optical cable,
18 second communication I / F, 19 monitoring and operating device.

Claims (6)

放射線の入射時に所定の幅のパルスを出力し、光パルスの入射時に所定の幅とは異なる幅のパルスを出力する半導体検出器と、前記半導体検出器の出力パルスの幅を弁別し、放射線によるパルスに対応した出力パルスを生ずるパルス幅弁別手段と、前記半導体検出器の出力パルスの波高値スペクトルを測定する波高値スペクトル測定手段と、前記パルス幅弁別手段の出力及び前記波高値スペクトル測定手段の出力にもとづいて放射線を測定する放射線測定手段とを備えたことを特徴とする放射線モニタ。A semiconductor detector that outputs a pulse of a predetermined width upon incidence of radiation, and outputs a pulse having a width different from the predetermined width upon incidence of an optical pulse, and discriminates the width of the output pulse of the semiconductor detector, and the Pulse width discriminating means for generating an output pulse corresponding to a pulse, peak value spectrum measuring means for measuring a peak value spectrum of an output pulse of the semiconductor detector, and output of the pulse width discriminating means and the peak value spectrum measuring means. A radiation monitor, comprising: radiation measurement means for measuring radiation based on an output. 前記半導体検出器に電圧を供給する電源の出力電圧を監視するようにしたことを特徴とする請求項1記載の放射線モニタ。The radiation monitor according to claim 1, wherein an output voltage of a power supply that supplies a voltage to the semiconductor detector is monitored. 前記波高値スペクトル測定手段によって測定したスペクトルにもとづき、測定対象の波高値以下に波高値ウィンドウを設定すると共に、前記波高値ウィンドウの計数率を前記放射線測定手段によって演算し、初期値と比較することにより前記半導体検出器または半導体検出器用電源の劣化を監視することを特徴とする請求項1または請求項2記載の放射線モニタ。Based on the spectrum measured by the peak value spectrum measuring means, a peak value window is set below the peak value of the measurement target, and the count rate of the peak value window is calculated by the radiation measuring means and compared with an initial value. The radiation monitor according to claim 1, wherein the deterioration of the semiconductor detector or the power supply for the semiconductor detector is monitored by the monitor. 前記半導体検出器用電源の出力側に接続され、前記電源出力の直流成分をカットして交流成分を出力する直流カット手段と、前記直流カット手段の出力と前記半導体検出器の出力とを切り換えて前記波高値スペクトル測定手段に入力する切換手段とを設けたことを特徴とする請求項1〜請求項3のいずれか1項記載の放射線モニタ。DC cut means connected to the output side of the power supply for the semiconductor detector, cuts a DC component of the power output and outputs an AC component, and switches between the output of the DC cut means and the output of the semiconductor detector. The radiation monitor according to any one of claims 1 to 3, further comprising switching means for inputting to the peak value spectrum measuring means. 前記放射線測定手段からのテストパルスと、前記半導体検出器の出力とを切り換えて前記パルス幅弁別手段に入力する第2の切換手段を設けたことを特徴とする請求項1〜請求項4のいずれか1項記載の放射線モニタ。5. The apparatus according to claim 1, further comprising a second switching unit configured to switch between a test pulse from the radiation measuring unit and an output of the semiconductor detector and input the test pulse to the pulse width discriminating unit. 6. The radiation monitor according to claim 1. 前記放射線測定手段に通信手段を介して接続された監視操作手段を設け、前記放射線測定手段を遠隔監視あるいは遠隔操作し得るようにしたことを特徴とする請求項1〜請求項5のいずれか1項記載の放射線モニタ。6. The radiation measuring means according to claim 1, further comprising a monitoring operation means connected to the radiation measuring means via a communication means, so that the radiation measuring means can be remotely monitored or remotely operated. Radiation monitor according to the item.
JP2003030093A 2003-02-06 2003-02-06 Radiation monitor Expired - Fee Related JP4157389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030093A JP4157389B2 (en) 2003-02-06 2003-02-06 Radiation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030093A JP4157389B2 (en) 2003-02-06 2003-02-06 Radiation monitor

Publications (3)

Publication Number Publication Date
JP2004239783A true JP2004239783A (en) 2004-08-26
JP2004239783A5 JP2004239783A5 (en) 2005-09-29
JP4157389B2 JP4157389B2 (en) 2008-10-01

Family

ID=32957069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030093A Expired - Fee Related JP4157389B2 (en) 2003-02-06 2003-02-06 Radiation monitor

Country Status (1)

Country Link
JP (1) JP4157389B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082848A (en) * 2006-09-27 2008-04-10 Toshiba Corp Radiation detector
WO2009028161A1 (en) * 2007-08-24 2009-03-05 Kabushiki Kaisha Toshiba Radiation monitor and method for confirming operation of the same
JP2009063351A (en) * 2007-09-05 2009-03-26 Mitsubishi Electric Corp Radiation monitoring device
KR100916759B1 (en) 2007-09-19 2009-09-14 한국원자력연구원 Method and equipment for Auto Activated Nuclear Radiation Dose Keeper
JP2010145319A (en) * 2008-12-22 2010-07-01 Mitsubishi Electric Corp Radioactive gas monitor
JP2010164523A (en) * 2009-01-19 2010-07-29 Mitsubishi Electric Corp Area monitor
KR101182404B1 (en) 2010-06-22 2012-09-11 한국원자력연구원 A nuclear detection and control equipment with the functions of a real-time dosimetry
JP2016125922A (en) * 2015-01-06 2016-07-11 株式会社島津製作所 X-ray analysis device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153583A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Radiation counting rate meter
JPH0217488A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Measuring apparatus of radiation
JPH0528393A (en) * 1991-07-19 1993-02-05 Fuji Electric Co Ltd Radiation detecting signal transmitter
JPH0672930B2 (en) * 1988-11-09 1994-09-14 富士電機株式会社 Bias abnormality detection device for semiconductor radiation detector
JPH06324158A (en) * 1993-05-12 1994-11-25 Mitsubishi Electric Corp Radioactive ray monitoring device
JP2000074968A (en) * 1998-08-27 2000-03-14 Mitsubishi Electric Corp Signal detector
JP2001194460A (en) * 2000-01-07 2001-07-19 Mitsubishi Electric Corp Radiation monitor
JP2002055164A (en) * 2000-08-11 2002-02-20 Canon Inc Device and method for photographing image

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153583A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Radiation counting rate meter
JPH0217488A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Measuring apparatus of radiation
JPH0672930B2 (en) * 1988-11-09 1994-09-14 富士電機株式会社 Bias abnormality detection device for semiconductor radiation detector
JPH0528393A (en) * 1991-07-19 1993-02-05 Fuji Electric Co Ltd Radiation detecting signal transmitter
JPH06324158A (en) * 1993-05-12 1994-11-25 Mitsubishi Electric Corp Radioactive ray monitoring device
JP2000074968A (en) * 1998-08-27 2000-03-14 Mitsubishi Electric Corp Signal detector
JP2001194460A (en) * 2000-01-07 2001-07-19 Mitsubishi Electric Corp Radiation monitor
JP2002055164A (en) * 2000-08-11 2002-02-20 Canon Inc Device and method for photographing image

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082848A (en) * 2006-09-27 2008-04-10 Toshiba Corp Radiation detector
WO2009028161A1 (en) * 2007-08-24 2009-03-05 Kabushiki Kaisha Toshiba Radiation monitor and method for confirming operation of the same
JP2009052926A (en) * 2007-08-24 2009-03-12 Toshiba Corp Radiation monitor and method for confirming operation of the same
EP2180341A1 (en) * 2007-08-24 2010-04-28 Kabushiki Kaisha Toshiba Radiation monitor and method for confirming operation of the same
US8637827B2 (en) 2007-08-24 2014-01-28 Kabushiki Kaisha Toshiba Radiation monitor and method for checking operation of the same
EP2180341A4 (en) * 2007-08-24 2015-01-21 Toshiba Kk Radiation monitor and method for confirming operation of the same
JP2009063351A (en) * 2007-09-05 2009-03-26 Mitsubishi Electric Corp Radiation monitoring device
KR100916759B1 (en) 2007-09-19 2009-09-14 한국원자력연구원 Method and equipment for Auto Activated Nuclear Radiation Dose Keeper
JP2010145319A (en) * 2008-12-22 2010-07-01 Mitsubishi Electric Corp Radioactive gas monitor
JP2010164523A (en) * 2009-01-19 2010-07-29 Mitsubishi Electric Corp Area monitor
KR101182404B1 (en) 2010-06-22 2012-09-11 한국원자력연구원 A nuclear detection and control equipment with the functions of a real-time dosimetry
JP2016125922A (en) * 2015-01-06 2016-07-11 株式会社島津製作所 X-ray analysis device

Also Published As

Publication number Publication date
JP4157389B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US9360449B2 (en) Functional monitoring of an electrolytic gas sensor having three electrodes, and hazard alarm and gas measuring device
KR101731195B1 (en) Detection of x-rays, and x-ray detector system
CN111221030A (en) Neutron-gamma detector based on physical integration and neutron-gamma online screening method
JP4157389B2 (en) Radiation monitor
CN108139494A (en) For the polarization correction of direct conversion x-ray detector
CN110113995A (en) System and method for monitoring computer tomographic imaging system
US20130034213A1 (en) Method and system for monitoring mishandling of a digital x-ray detector
JP6066835B2 (en) Radiation measurement equipment
EP3605147A1 (en) Distance measuring device
KR102346124B1 (en) Radiation dose monitoring system
KR101808577B1 (en) Neutrons, gamma rays, x-ray radiation detection and integrated control system for the detection
JP2009244010A (en) Fluorescence detection apparatus
US7684541B2 (en) System and method capable of simultaneous radiographic examination and radioactive material inspection
EP2632167A2 (en) System to detect failed pixels in a sensor array
JP2006234670A (en) Radiation detector and its test method
JPH04168395A (en) Radiation monitor device
JP2000258538A (en) Radiation measuring device and method
JP2010151615A (en) Radiation monitor
JP2005283327A (en) Deterioration/anomaly detection device for semiconductor radiation detector
JP3879352B2 (en) Radiation monitoring system
JP4686328B2 (en) Radiation monitoring device
CN205506622U (en) Raise dust sensor
JPH02128184A (en) Bias abnormality detector of semiconductor radiation detector
US20080073537A1 (en) Radiation detector
JP2002521656A (en) Method for testing the function of a spectrometer and a spectrometer having a fault detection device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4157389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees