JPH0624692B2 - Precision groove grinding method by compound vibration of grindstone - Google Patents

Precision groove grinding method by compound vibration of grindstone

Info

Publication number
JPH0624692B2
JPH0624692B2 JP20851086A JP20851086A JPH0624692B2 JP H0624692 B2 JPH0624692 B2 JP H0624692B2 JP 20851086 A JP20851086 A JP 20851086A JP 20851086 A JP20851086 A JP 20851086A JP H0624692 B2 JPH0624692 B2 JP H0624692B2
Authority
JP
Japan
Prior art keywords
grindstone
grinding
vibration
groove grinding
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20851086A
Other languages
Japanese (ja)
Other versions
JPS6362659A (en
Inventor
淳一郎 隈部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20851086A priority Critical patent/JPH0624692B2/en
Publication of JPS6362659A publication Critical patent/JPS6362659A/en
Publication of JPH0624692B2 publication Critical patent/JPH0624692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波振動と低周波振動の複合振動により砥
石を回転させることなく、溝を精密研削する加工方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a processing method for precisely grinding a groove without rotating a grindstone by a composite vibration of ultrasonic vibration and low-frequency vibration.

(従来技術) 本発明者は、先に砥石をワーク加工面に加圧し、ワーク
の加工送り方向にワーク加工表面に沿って低周波振動さ
せて研削加工する方法、更に低周波振動と同じ方向に超
音波振動を重畳させて精密研削加工する方法を開発し
た。
(Prior Art) The present inventor first applies a grindstone to a work processing surface and performs low frequency vibration along a work processing surface in a work feed direction to perform grinding, and further in the same direction as low frequency vibration. We have developed a method for precision grinding that superimposes ultrasonic vibration.

(発明が解決しようとする問題点) 上記従来技術に於ては、加工できるワークの形状に制限
が生ずる。すなわち、この方法は、一様な平面あるいは
円筒外周、穴面の研削加工には適用できるが、キー溝な
どの溝研削加工や底のある穴の穴面の研削加工には使用
できないという問題点があった。
(Problems to be Solved by the Invention) In the above conventional technique, the shape of a work that can be processed is limited. That is, this method can be applied to the grinding of a uniform flat surface, the outer circumference of a cylinder, or a hole surface, but cannot be used to grind a groove such as a key groove or a hole surface of a hole having a bottom. was there.

すなわち、超音波振動よりも振幅の大きい低周波振動数
の振幅が溝研削巾方向の側面をたたいたり、所定寸法以
上に加工して寸法精度を狂わせる現象が生ずる。穴加工
面では底面をたたく現象を生ずる。そして、加工精度を
低下させたり、砥石を破損させたりするので溝の精密研
削加工には不適であるという問題点があった。
That is, a phenomenon occurs in which the amplitude of the low-frequency frequency, which has a larger amplitude than the ultrasonic vibration, strikes the side surface in the groove grinding width direction or is machined to a predetermined size or more, thereby deviating the dimensional accuracy. On the machined surface, the phenomenon of tapping the bottom surface occurs. Further, there is a problem that it is not suitable for precision grinding of grooves because it lowers the processing accuracy and damages the grindstone.

(問題点を解決するための手段) 本発明は上記問題点を解決することを目的とし、砥石を
溝加工面に加圧し、溝研削長手方向の加工面に沿って低
周波振動させ乍ら、溝研削巾方向の加工面に沿って超音
波振動させ、該砥石を回転させないで研削加工する如く
なしたことを特徴とするものである。
(Means for Solving the Problems) The present invention is intended to solve the above problems, and a grindstone is pressed against a groove processing surface, and low-frequency vibration is performed along the groove grinding longitudinal direction processing surface. It is characterized in that ultrasonic vibration is carried out along the processing surface in the groove grinding width direction, and grinding is carried out without rotating the grindstone.

(実施例) 以下、図示した実施例に基づいて具体的に説明する。第
1図において、砥石1を縦軸方向に振動する超音波振動
子3の振幅を拡大する振幅拡大用ホーン2の先端に取付
け、ワーク7に対して、矢印8の溝研削加工長手方向に
対して直角方向で、溝加工面とは平行をなす巾方向4に
振動数f、振幅aで超音波振動させる。超音波振動子3
は電わい振動子、磁わい振動子いずれでもその作用効果
は同一である。この超音波振動する砥石を矢印8の溝研
削長手方向と同方向5に振動数F、振幅Aで低周波振動
させる。このようにワークの溝研削長手方向に低周波振
動し、これと直角な溝研削長手方向に超音波振動する砥
石に荷重P6を与え、回転することなく送り速度Vで溝
研削加工する。低周波振動駆動装置としては、三相誘導
電動機を利用した滑り子クランク機構、リンク機構およ
び空気圧、油圧を利用した装置あるいは電磁振動、電気
油圧振動駆動による装置などを用いることができる。
(Example) Hereinafter, it demonstrates concretely based on the Example shown in figure. In FIG. 1, the grindstone 1 is attached to the tip of an amplitude expanding horn 2 that expands the amplitude of an ultrasonic vibrator 3 that vibrates in the vertical axis direction, and is attached to the workpiece 7 in the longitudinal direction of the groove grinding process indicated by an arrow 8. Then, ultrasonic vibration is performed at a frequency of f and an amplitude of a in a width direction 4 that is parallel to the grooved surface in the right angle direction. Ultrasonic transducer 3
The effect is the same for both the electrostrictive vibrator and the magnetic vibrator. This ultrasonically vibrated grindstone is vibrated at a low frequency with a frequency F and an amplitude A in the same direction 5 as the longitudinal direction of the groove grinding indicated by the arrow 8. In this way, a load P6 is applied to the grindstone that vibrates at a low frequency in the longitudinal direction of the groove grinding of the workpiece and ultrasonically vibrates in the longitudinal direction of the groove grinding perpendicular thereto, and the groove grinding is performed at the feed speed V without rotating. As the low-frequency vibration drive device, a slider crank mechanism using a three-phase induction motor, a link mechanism and a device using pneumatic pressure or hydraulic pressure, or a device using electromagnetic vibration or electrohydraulic vibration drive can be used.

第2図は本発明による穴の溝研削方法である。砥石1を
縦軸方向に振動する超音波振動子3の振幅を拡大する振
幅拡大用ホーン2の先端に接着し穴7の軸方向に振動数
f、振幅aで超音波振動させる。この砥石を振動中心軸
を回転中心軸Oと一致させて振動数F、振幅Aで矢印5
の溝研削長手方向に低周波振動させ、荷重P6を与え加
工送り速度Vで穴研摩加工する。
FIG. 2 shows a hole groove grinding method according to the present invention. The grindstone 1 is bonded to the tip of an amplitude expanding horn 2 that expands the amplitude of an ultrasonic vibrator 3 that vibrates in the vertical axis direction, and is ultrasonically vibrated at a frequency f and amplitude a in the axial direction of the hole 7. The center of vibration of this grindstone is made to coincide with the center of rotation O so that the frequency 5 and the amplitude A indicate the arrow 5
Groove grinding is performed at low frequency in the longitudinal direction of the groove grinding, load P6 is applied, and hole polishing is performed at the processing feed speed V.

第3図によって本発明の研削加工を詳細に説明する。The grinding process of the present invention will be described in detail with reference to FIG.

本発明は、溝研削長手方向の加工面に沿った低周波振動
軌跡と、溝研削巾方向の加工面に沿った超音波振動軌跡
が激しく交叉して極微細に寸断するものである。すなわ
ち、切削長さを極微細に寸断し、切りくずを極微細に
し、研摩抵抗を軽減させることができる。実際の砥石作
用面には多数の砥粒が分布しているので、研削面積全面
を微細な曲線群によって細分割化でき研摩抵抗の軽減を
実現させることができるようになる。これが本発明によ
る研摩機構の特徴である。
According to the present invention, the locus of low-frequency vibration along the machined surface in the longitudinal direction of the groove grinding and the ultrasonic vibration trajectory along the machined surface in the width direction of the groove grinding violently cross each other to make minute cuts. That is, the cutting length can be cut into extremely small pieces, the chips can be made into extremely small pieces, and the abrasion resistance can be reduced. Since a large number of abrasive grains are distributed on the actual working surface of the grindstone, the entire grinding area can be subdivided by a group of fine curves, and the polishing resistance can be reduced. This is a feature of the polishing mechanism according to the present invention.

次に本発明の実施例について説明する。ゴムの平板にみ
ぞを精密研削加工する場合を第3図、第4図によって説
明する。
Next, examples of the present invention will be described. The case of precision grinding a groove on a rubber flat plate will be described with reference to FIGS. 3 and 4.

10mm角、厚さ5mmのWA#60の砥石1を20KHz,
600Wのたて振動電わい振動子3の振幅拡大用ホーン
2の先端にボルトで固定して取付けた曲げ振動砥石シャ
ンク14の両端に接着する。ホーン2の振動節を取付板
15で固定する。この取付板15を加圧装置16に固定
する。加圧装置は低周波振動駆動装置17によって矢印
5の溝研削長手方向に低周波振動する振動軸18に取付
ける。低周波振動駆動装置は三相誘導電動機19とベル
ト20によって一定方向に高速回転する振動駆動軸の回
転運動を偏心カムとすべり子クランク機構によって変換
し、振動軸18を矢印5の溝研削長手方向に最大振動数
100Hz、片振幅0.2mm程度で振動させる。この装置
17を平削り盤あるいは形削り盤刃物台21に矢印8の
溝研削巾方向8と矢印5の溝研削長手方向とが一致する
ようにして取り付ける。超音波発振機22によって超音
波振動子3を励振すれば、砥石は溝研削巾方向に超音波
振動数f=20KHz、片振幅a=4〜15μm程度で超
音波振動する。第4図のようにこの砥石1に加圧力Pを
矢印6の方向にワーク7に与え、振動数F=100Hz、
片振幅A=0.2mm程度で低周波振動させ、溝研削速度
V=0.5〜2m/minをもって研削加工することによっ
て本発明による精密溝研削加工が実施される。
10mm square, 5mm thick WA # 60 grindstone 1 at 20KHz,
The bending vibration grindstone shank 14 is fixed to the tip of the amplitude-enhancing horn 2 of the vertical vibrating electrostrictive vibrator 3 of 600 W by bolts and bonded to both ends. The vibration node of the horn 2 is fixed by the mounting plate 15. The mounting plate 15 is fixed to the pressure device 16. The pressurizing device is attached to a vibrating shaft 18 that vibrates at a low frequency in the longitudinal direction of the groove grinding indicated by an arrow 5 by a low frequency vibration driving device 17. The low-frequency vibration drive device converts the rotational movement of the vibration drive shaft, which rotates at a high speed in a fixed direction by the three-phase induction motor 19 and the belt 20, by the eccentric cam and the slider crank mechanism, so that the vibration shaft 18 moves in the groove grinding longitudinal direction of arrow 5. Vibrate at a maximum frequency of 100 Hz and a single amplitude of 0.2 mm. This device 17 is attached to a planing or shaping tool tool rest 21 so that the groove grinding width direction 8 indicated by the arrow 8 and the groove grinding longitudinal direction indicated by the arrow 5 coincide with each other. When the ultrasonic oscillator 3 is excited by the ultrasonic oscillator 22, the grindstone vibrates ultrasonically in the groove grinding width direction at an ultrasonic frequency f = 20 KHz and a single amplitude a = about 4 to 15 μm. As shown in FIG. 4, a pressing force P is applied to the grindstone 1 in the direction of arrow 6 to the work 7, and the vibration frequency F = 100 Hz,
Precision groove grinding according to the present invention is carried out by vibrating at a low frequency with one-sided amplitude A of about 0.2 mm and grinding at a groove grinding speed V of 0.5 to 2 m / min.

又、第5図、第6図に示すように、一辺が100mmの厚
材状の硬質ゴム材に幅10mmの長さ100mmの金属角棒
24がはめこまれ、接着、固定されている。そして、基
板であるゴム材23表面は金属角棒24の表面から0.
03mm以内で突出している。これを金属角棒の表面より
0.03mm以内に低く精密研削加工するときに、本発明
を低周波振動数F=100Hz、振幅A=0.2mm、超音
波振動数f=20KHz、振幅a=16μm、10mm角厚
さ5mmの#600電着ダイヤモンド砥石、溝研削速度2
m/min、2g/mm2の極軽荷重で実施することによって、
4往復させるだけで第7図の如く、各溝を一様に表面粗
さ3μmRmax、平面度3μm/100mmの加工面積度と
し、端面のだれや変形盛り上りをなくして研削加工する
ことができる。
Further, as shown in FIGS. 5 and 6, a metal square rod 24 having a width of 10 mm and a length of 100 mm is fitted, adhered and fixed to a thick hard rubber material having a side of 100 mm. The surface of the rubber material 23, which is the substrate, is 0.
It is protruding within 03mm. When this is precisely ground to within 0.03 mm below the surface of the metal square bar, the present invention is applied to low frequency frequency F = 100 Hz, amplitude A = 0.2 mm, ultrasonic frequency f = 20 KHz, amplitude a = 16μm, 10mm square, 5mm thick # 600 electrodeposited diamond grindstone, groove grinding speed 2
m / min, 2g / mm 2 ultra light load,
As shown in FIG. 7, each groove can be uniformly ground to have a surface roughness of 3 μm Rmax and a flatness of 3 μm / 100 mm, and can be ground without sagging on the end surface or deformation.

(効果) 本発明によると、砥石を溝加工面に加圧し、ワークの加
工方向である溝研削長手方向の加工面に沿って低周波振
動させ乍ら、これと直交する溝研削巾方向の加工面に沿
って超音波振動させ、該砥石を回転させないで研削加工
する如くなっているので、溝の巾方向側面をたゝいて寸
法精度を狂わせたり、研削加工用の砥石を破損させたり
することを防止でき、精密溝研削加工を行うことができ
る。
(Effect) According to the present invention, the grindstone is pressed against the groove processing surface, and low-frequency vibration is performed along the processing surface in the groove grinding longitudinal direction which is the processing direction of the work, and the processing in the groove grinding width direction orthogonal to this is performed. As it grinds without rotating the grindstone by ultrasonically vibrating along the surface, the widthwise side of the groove can be struck to impair the dimensional accuracy or to damage the grindstone for grinding. Can be prevented and precision groove grinding can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による平面の研削加工方法とその特徴を
簡明に示す説明図、第2図は本発明による穴の溝研削加
工方法とその特徴を簡明に示す説明図、第3図は本発明
を実施する平削り盤を加工送り方向と直角方向から見た
側面図、第4図は本発明に用いる溝加工用超音波振動砥
石の側面図、第5図は硬質ゴム材に金属角棒を僅に突出
してはめこんだ研削部材平面図、第6図は第5図の正面
図、第7図は同上部材の研削加工後の正面図である。 1…超音波振動ダイヤモンド砥石 2…振幅拡大用ホーン 3…超音波振動子 4…超音波振動 5…低周波振動 6…加圧力 22…超音波発振機 23…ゴム素材 V…加工送り速度
FIG. 1 is an explanatory view showing the surface grinding method according to the present invention and its features in a simple manner, FIG. 2 is an explanatory view showing the hole groove grinding method according to the present invention and its features in a simple manner, and FIG. FIG. 4 is a side view of a planing machine embodying the invention as seen from a direction perpendicular to a machining feed direction, FIG. 4 is a side view of an ultrasonic vibration grindstone for grooving used in the present invention, and FIG. 5 is a hard rubber material and a metal square bar. FIG. 6 is a plan view of a grinding member with a slight protrusion, and FIG. 6 is a front view of FIG. 5, and FIG. 7 is a front view of the same member after grinding. 1 ... Ultrasonic vibration diamond grindstone 2 ... Amplitude expansion horn 3 ... Ultrasonic vibrator 4 ... Ultrasonic vibration 5 ... Low frequency vibration 6 ... Pressure force 22 ... Ultrasonic oscillator 23 ... Rubber material V ... Processing feed rate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】砥石を溝加工面に加圧し、ワークの加工方
向である溝研削長手方向の加工面に沿って低周波振動さ
せ乍ら、これと直交する溝研削巾方向の加工面に沿って
超音波振動させ、該砥石を回転させないで研削加工する
如くなした砥石の複合振動による精密溝研削加工方法。
1. A grindstone is pressed against a grooved surface and is oscillated at a low frequency along a grooved longitudinal direction, which is a machining direction of a workpiece, and along a grooved widthwise orthogonal surface. A method for precision groove grinding by compound vibration of a grindstone in which ultrasonic vibration is performed and grinding is performed without rotating the grindstone.
JP20851086A 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone Expired - Lifetime JPH0624692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20851086A JPH0624692B2 (en) 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20851086A JPH0624692B2 (en) 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone

Publications (2)

Publication Number Publication Date
JPS6362659A JPS6362659A (en) 1988-03-18
JPH0624692B2 true JPH0624692B2 (en) 1994-04-06

Family

ID=16557356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20851086A Expired - Lifetime JPH0624692B2 (en) 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone

Country Status (1)

Country Link
JP (1) JPH0624692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211297A (en) * 2011-05-31 2011-10-12 北京航空航天大学 Method and device for composite vibration grinding based on ultrasonic high frequency and pneumatic low frequency
CN102211296A (en) * 2011-05-31 2011-10-12 北京航空航天大学 Composite ultrasonic vibration grinding device based on high and low frequencies

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562530A (en) * 1994-08-02 1996-10-08 Sematech, Inc. Pulsed-force chemical mechanical polishing
JP4426059B2 (en) * 2000-05-12 2010-03-03 ナブテスコ株式会社 Optical three-dimensional modeling method and apparatus
JP5049402B1 (en) * 2011-12-20 2012-10-17 有限会社アリューズ Mirror surface processing method, mirror surface processing machine, mirror surface processing tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211297A (en) * 2011-05-31 2011-10-12 北京航空航天大学 Method and device for composite vibration grinding based on ultrasonic high frequency and pneumatic low frequency
CN102211296A (en) * 2011-05-31 2011-10-12 北京航空航天大学 Composite ultrasonic vibration grinding device based on high and low frequencies

Also Published As

Publication number Publication date
JPS6362659A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
KR100316003B1 (en) a micro burnishing apparatus using ultrasonic vibration
US5187899A (en) High frequency vibrational polishing
Balamuth Ultrasonic assistance to conventional metal removal
JPH0624692B2 (en) Precision groove grinding method by compound vibration of grindstone
US2939250A (en) Resonant honing
JP2012045642A (en) Bore surface machining method, tool for machining bore surface, and bore surface machining device
KR100417643B1 (en) Automatic Polishing Apparatus for Mold using ultrasonic waves vibrating tool
JPS6362658A (en) Precise finishing method with complex vibration grinding wheel
EP0403537B1 (en) Ultrasonic polishing
JPH0120035B2 (en)
JPH0624693B2 (en) Precision grinding method of ceramics etc. by compound vibration of grindstone
JPH06339847A (en) Work method for circumferential groove in ceramics
JPH0451306B2 (en)
JP2007050471A (en) Dressing method and rotary dressing device
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JPH0575560B2 (en)
JPH03234451A (en) Polishing method utilizing torsional vibration
JPH07164288A (en) Ultrasonic vibration grinding method, ultrasonic vibration grinding tool, and ultrasonic vibration grinding device
CA1329988C (en) Ultrasonic polishing
JPS6234678Y2 (en)
JPH06339865A (en) Cup grinding wheel for ultrasonic grinding and ultrasonic grinding work machine using the same
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel
JPH03111166A (en) Cut off grinding method
JP2023050722A (en) Dressing method of superabrasive grinding wheel and device
JPS62140703A (en) Heating/cooling type precise cutting/grinding processing method for ceramics