JPH0624693B2 - Precision grinding method of ceramics etc. by compound vibration of grindstone - Google Patents

Precision grinding method of ceramics etc. by compound vibration of grindstone

Info

Publication number
JPH0624693B2
JPH0624693B2 JP20851186A JP20851186A JPH0624693B2 JP H0624693 B2 JPH0624693 B2 JP H0624693B2 JP 20851186 A JP20851186 A JP 20851186A JP 20851186 A JP20851186 A JP 20851186A JP H0624693 B2 JPH0624693 B2 JP H0624693B2
Authority
JP
Japan
Prior art keywords
grindstone
vibration
grinding
frequency
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20851186A
Other languages
Japanese (ja)
Other versions
JPS6362660A (en
Inventor
淳一郎 隈部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20851186A priority Critical patent/JPH0624693B2/en
Publication of JPS6362660A publication Critical patent/JPS6362660A/en
Publication of JPH0624693B2 publication Critical patent/JPH0624693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、砥石に超音波振動と低周波振動を与えて研削
加工を行う如くなした砥石の複合振動によるセラミック
等の精密研削加工方法に関する。
Description: TECHNICAL FIELD The present invention relates to a precision grinding method for a ceramic or the like by compound vibration of a grindstone in which ultrasonic grinding and low-frequency vibration are applied to the grindstone for grinding. .

(従来技術) 本発明者は先に砥石をワーク加工面に加圧し、ワークの
加工送り方向に加工表面に沿って低周波振動させて研削
加工する方法、更に低周波振動と同じ方向に超音波振動
を重畳させて研削加工する方法を開発した。
(Prior Art) The present inventor first applies a grindstone to a work surface of a work, performs low-frequency vibration along a work surface in a work-feed direction of the work to perform grinding, and further applies ultrasonic waves in the same direction as the low-frequency vibration. We have developed a grinding method that superimposes vibration.

(発明が解決しようとする問題点) ところで上記従来技術に於ては、セラミック等の硬い材
料の精密研削加工は困難であるという問題点があった。
(Problems to be Solved by the Invention) By the way, the above-mentioned conventional technique has a problem that it is difficult to perform precision grinding of a hard material such as ceramics.

(問題点を解決するための手段) 本発明は上記問題点を解決することを目的とし、砥石を
加工する面に加圧し、加工する面の法線方向に超音波振
動させ、同時にこの法線方向と直交する加工送り方向に
加工表面に沿って低周波振動させ、該砥石を回転させる
ことなく研削加工する如くなした砥石の複合振動による
セラミック等の精密研削加工方法を特徴とするものであ
る。
(Means for Solving Problems) An object of the present invention is to solve the above problems, by applying pressure to a surface to be processed by a grindstone and ultrasonically vibrating in a direction normal to the surface to be processed. The present invention is characterized by a precision grinding method for ceramics or the like by compound vibration of a grindstone which is vibrated at a low frequency along a machining surface in a machining feed direction orthogonal to the direction and grinds without rotating the grindstone. .

(実施例) 以下、図示した実施例に基づいて具体的に説明する。第
1図において、砥石1を加工面と広い接触面積で接触す
る角形砥石としてこれを縦軸方向に振動する超音波振動
子3の振幅を拡大する振幅拡大用ホーン2の先端に取り
付け、ワーク7に対してその法線方向である加工面と垂
直をなす方向に振動数f、振幅aで矢印4の方向に超音
波振動させる。この縦軸方向に振動する超音波振動系砥
石を矢印8の加工送り方向5の方向に加工表面に沿って
振動数F、振幅Aで低周波振動させる。そして定荷重P
6を与え、加工送り速度Vで砥石を回転することなく研
削加工する。低周波振動駆動装置としては三相誘導電動
機を利用した滑り子クランク機構、リンク機構および空
気圧、油圧を利用した装置あるいは電磁振動、電気油圧
振動駆動による装置などを用いることができる。
(Example) Hereinafter, it demonstrates concretely based on the Example shown in figure. In FIG. 1, a grindstone 1 is used as a square grindstone that comes into contact with a processed surface over a wide contact area, and is attached to the tip of an amplitude expanding horn 2 that expands the amplitude of an ultrasonic vibrator 3 that vibrates in the vertical axis direction. On the other hand, ultrasonic vibration is performed in the direction of arrow 4 with a frequency f and an amplitude a in a direction perpendicular to the machined surface, which is the normal direction. This ultrasonic vibrating grindstone vibrating in the direction of the vertical axis is vibrated at a low frequency with a frequency F and an amplitude A along the machining surface in the machining feed direction 5 indicated by the arrow 8. And constant load P
6 is given and grinding is performed at the processing feed speed V without rotating the grindstone. As the low-frequency vibration driving device, a slider crank mechanism using a three-phase induction motor, a link mechanism and a device using air pressure or hydraulic pressure, or a device using electromagnetic vibration or electrohydraulic vibration driving can be used.

本発明は、使用するダイヤモンド砥石でセラミックスを
超音波域の高い振動数で規則的に衝撃力を与えてたたき
微細クラックを発生させて小刻みに加工送り方向の突起
部を削除して平坦にする過程と、平坦にした加工面をさ
らに平滑にする過程とを繰返してただダイヤモンド砥石
を押しつけるだけでは研削加工できないセラミックスを
能率よく研削加工することを特徴とするものである。
The present invention is a process in which a diamond grindstone to be used is a process in which ceramics are regularly given an impact force at a high frequency in an ultrasonic range to generate fine cracks, and small projections in the machining feed direction are removed to flatten the surface. This is characterized by efficiently grinding ceramics that cannot be ground simply by pressing a diamond grindstone by repeating the process of smoothing the flattened surface.

第2図において、砥石1を矢印8の加工送り方向5のy
軸方向に振動数F、振幅Aで低周波振動させる。
In FIG. 2, the grindstone 1 is moved in the machining feed direction 5 indicated by the arrow 8 in the y direction.
A low frequency vibration is performed at a frequency of F and an amplitude of A in the axial direction.

第4図は第2図における突起山群11にクラックを発生
させて突起山群を微細に破砕していく過程をモデル化し
て示す図である。
FIG. 4 is a diagram showing a model of a process in which a crack is generated in the protrusion crest group 11 in FIG. 2 and the protrusion crest group is finely crushed.

第5図は点e,点hを通過してなお残留して点在する突
起山群にクラックを発生させて破砕しながら一様な微細
表面粗さ凹凸面12に研削加工する機構を説明する図で
ある。
FIG. 5 illustrates a mechanism for grinding a uniform fine surface roughness concavo-convex surface 12 while crushing by generating cracks in the protrusion peaks which remain and are scattered after passing the points e and h. It is a figure.

第6図は第2図の点i付近において砥石作用面全面がセ
ラミックス仕上面に接触して通常の加圧力となり、ま
た、微細な凹凸面のためにクラックの発生も極微細化さ
れ、lTで大きく発生した残留クラック部を削除して損傷
の少ない加工面に研削加工することを示す図である。
Figure 6 becomes a normal pressure and grinding action entire surface is in contact with the ceramic surface finish in the vicinity of the point i of FIG. 2, also, are very fine formation of cracks due to the fine irregular surface, l T It is a figure which shows that the residual crack part which generate | occur | produced largely in 1 is deleted, and it grinds to the processed surface with few damages.

第7図、第8図は平面加工時の一実施例装置である。例
えば、30mm角厚さ10mmの#600のダイヤモンド砥
石を20KHz,300Wの縦電わい振動子3の振幅拡大
用ホーン2の先端に接着し、ホーン2の振動節で取付板
20に固定する。取付板は加圧装置15にボルトで締付
けて固定する。加圧装置は矢印5の方向に低周波振動す
る振動軸14に固定する。この振動軸を三相誘導電動機
750W16の回転数3000r.p.mをベルト17で増
速して6000r.p.mとしてすべり子クランク機構を駆
動し、その回転運動を揺動、往復運動にかえ振動数F=
100Hz、振幅A=0.2mm程度で矢印5の方向に低周波
振動させる。このような構造の低周波振動駆動装置13
を平研削盤刃物台18にボルト締めする。加圧装置には
空気圧、油圧、ばねなどを利用した装置を用い、加圧力
P=0.2〜3kg/cm2が与えられるようにする。振動子3
は超音波発振機19によって超音波振動させる。この装
置によってダイヤモンド砥石を超音波振動数f=20〜
40KHz、片振幅a=2〜20μm程度で超音波振動さ
せ、かつ振動数F=20〜100Hz、片振幅A=0.1〜
0.2mm程度で低周波振動させることができる。そして、
研削加工送り速度Vとして例えば5m/min程度のワーク
研削加工送り速度として第7図、第8図に示す研削加工
送り速度、超音波振動、低周波振動、荷重の方向として
工作物7を研削加工することによって本発明は実施され
る。
FIG. 7 and FIG. 8 show an apparatus according to one embodiment for flattening. For example, a # 600 diamond grindstone of 30 mm square and 10 mm thick is bonded to the tip of the amplitude expanding horn 2 of the longitudinal electrostrictive vibrator 3 of 20 KHz and 300 W, and is fixed to the mounting plate 20 by the vibration node of the horn 2. The mounting plate is fixed to the pressure device 15 by tightening it with bolts. The pressurizing device is fixed to a vibrating shaft 14 that vibrates at a low frequency in the direction of arrow 5. The vibration axis of the three-phase induction motor 750W16 is set to 6000 rpm to increase the rotation speed of the three-phase induction motor 750W16 to 6000 rpm, and the sliding crank mechanism is driven to swing and reciprocate.
A low frequency vibration is performed in the direction of arrow 5 at 100 Hz and an amplitude A of about 0.2 mm. Low frequency vibration drive device 13 having such a structure
Is bolted to the flat grinder tool rest 18. As the pressurizing device, a device utilizing air pressure, hydraulic pressure, a spring, etc. is used so that a pressing force P = 0.2 to 3 kg / cm 2 is applied. Oscillator 3
Is ultrasonically vibrated by the ultrasonic oscillator 19. With this device, the diamond grindstone is moved to ultrasonic frequency f = 20-
Ultrasonic vibration at 40 KHz, single amplitude a = 2 to 20 μm, and frequency F = 20 to 100 Hz, single amplitude A = 0.1 to
It can vibrate at a low frequency of about 0.2 mm. And
Grinding feed speed V is, for example, a work of about 5 m / min. Grinding feed speed shown in FIGS. The present invention is thereby carried out.

第9図は本発明によるセラミックス軸23などへのキー
溝の研削加工を示すものである。縦振動ホーン2で振動
駆動される曲げ振動シャンクを利用して超音波振動数
f、振幅a4および低周波振動数F、振幅A5で振動す
るキー溝加工用ダイヤモンド砥石25を図示のように
f,aの振動方向がキー溝の底面と法線方向となるよう
にして加圧力P6を与えてジルコニア加工面に加圧し、
加工送り速度Vで研削加工する。
FIG. 9 shows grinding of a key groove on the ceramic shaft 23 or the like according to the present invention. Using a bending vibration shank that is vibrated and driven by the vertical vibration horn 2, a key groove machining diamond grindstone 25 that vibrates at ultrasonic frequency f, amplitude a4 and low frequency frequency F, and amplitude A5 is f, as shown in the figure. A pressure P6 is applied so that the vibration direction of "a" is in the direction normal to the bottom surface of the key groove, and the pressure is applied to the zirconia processed surface,
Grinding is performed at the processing feed speed V.

(効果) 本発明によると、砥石を加工する面に加圧し、加工する
面の法線方向に超音波振動させ、同時にこの法線方向と
直交する加工送り方向に加工表面に沿って低周波振動さ
せ、該砥石を回転させることなく研削加工する如くして
あるので、下記の効果を有する。
(Effect) According to the present invention, pressure is applied to the surface to be processed of the grindstone, ultrasonic vibration is performed in the normal direction of the surface to be processed, and at the same time, low-frequency vibration is applied along the processing surface in the processing feed direction orthogonal to this normal direction. Since the grindstone is ground without rotating, the following effects are obtained.

内径20mm、外径40mmのパイプ状合成樹脂材に埋め込
れた外径20mm、厚さ10mmのジルコニア端面がパイプ
状合成樹脂材端面から0.01mm以内で突出している。
この突出部を研削加工して平面度を5μm以内に多量生
産するときに、この工作物を第7図のように平研削盤テ
ーブル上に真空チャックして取付け、本発明を直径25
mm、厚さ5mmの#600角形ダイヤモンド砥石、超音波
振動数20KHz、振幅15μm、低周波振動数100H
z、振幅0.2mm、加工送り速度2m/min、加圧力1kgf/c
m2乾式の加工条件で実施して、ダイヤモンド砥石を直径
20mmのジルコニア工作物端面上を一往復させるだけで
矢印0.01mmの突起部を研削加工して、表面粗さ2μmRma
xをもって5μm以内の平面度とし、パイプ状合成樹脂
端面とジルコニア端面とを同一平面に能率よく精密研削
することに成功した。研削加工抵抗が少なく低速のため
砥石面も発熱しないためダイヤモンド砥石寿命も著しく
長くなる他の方法には見られない画期的効果が得られ
る。
An end surface of zirconia having an outer diameter of 20 mm and a thickness of 10 mm embedded in a pipe-shaped synthetic resin material having an inner diameter of 20 mm and an outer diameter of 40 mm projects within 0.01 mm from the end surface of the pipe-shaped synthetic resin material.
When a large amount of flatness is produced within 5 μm by grinding this protrusion, this work piece is vacuum chucked and mounted on a flat grinder table as shown in FIG.
mm, 5mm thick # 600 square diamond grindstone, ultrasonic frequency 20KHz, amplitude 15μm, low frequency frequency 100H
z, amplitude 0.2 mm, processing feed rate 2 m / min, pressing force 1 kgf / c
It was carried out under m 2 dry processing conditions, and the diamond wheel was made to make one reciprocation on the end surface of the zirconia workpiece with a diameter of 20 mm to grind the protrusion with an arrow of 0.01 mm to obtain a surface roughness of 2 μm Rma.
With x being a flatness within 5 μm, the pipe-shaped synthetic resin end surface and the zirconia end surface were efficiently and precisely ground on the same plane. Since the grinding resistance is low and the speed is low, the surface of the grindstone does not generate heat, and the life of the diamond grindstone is remarkably extended.

第9図のようにしてジルコニアに幅5mm、深さ3mm、長
さ20mmのキー溝を設ける際に従来の加工技術の教える
ところに従ってダイヤモンド砥石で強く押しつけただけ
では長時間かけても研削加工できない。本発明を幅5m
m、長さ10mm、厚さ5mmの#600ダイヤモンド砥石
を縦振動ホーン2で駆動される曲げ振動シャンクに接着
してその振動方向がキー底面の法線方向となるようにし
て他の条件は上記と同一にして本発明を実施して、約3
00回砥石を往復運動させることによって幅5mm、深さ
3mm、長さ20mmのキー溝を研削加工することに成功し
た。
As shown in Fig. 9, when a key groove with a width of 5 mm, a depth of 3 mm, and a length of 20 mm is provided in zirconia, it cannot be ground even if it is pressed for a long time just by strongly pressing it with a diamond grindstone according to the teaching of conventional processing technology. . The present invention is 5m wide
Adhere a # 600 diamond grindstone of m, length 10 mm and thickness 5 mm to the bending vibration shank driven by the vertical vibration horn 2 so that the vibration direction is the normal to the bottom surface of the key. And carrying out the present invention in the same manner as
By reciprocating the whetstone 00 times, we succeeded in grinding a key groove with a width of 5 mm, a depth of 3 mm and a length of 20 mm.

本装置を軽量小型化すれば手動研削加工もできる。If this device is made lightweight and compact, manual grinding is also possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による研削加工方法を示す斜視図、第2
図は本発明に於ける砥石を加工送り方向に低周波振動さ
せたときの説明する図、第3図は本発明に於ける砥石が
低周波振動した時の作動説明図、第4図は本発明に於け
る法線方向の砥石の超音波振動した時の説明図、第5図
はクラックの発生を微細化して行く過程を示す説明図、
第6図はさらにクラックの発生を極微細化して行く過程
を示す説明図、第7図は本発明方法を実施する装置の一
実施例側面図、第8図は上記装置を加工送り方向と直角
方向からみた正面図、第9図は本発明によるキー溝の研
削加工方法を示す説明図である。 1,25…超音波振動ダイヤモンド砥石 2…振幅拡大用ホーン 3…超音波振動子 4…超音波振動 5…低周波振動 6…定荷重 7…セラミックス 19…超音波発振機 21…セラミックス歯車 23…セラミックスキー溝
FIG. 1 is a perspective view showing a grinding method according to the present invention, and FIG.
FIG. 4 is a diagram for explaining the grindstone of the present invention when it is vibrated at a low frequency in the machining feed direction, FIG. 3 is an operation explanatory diagram when the grindstone of the present invention is vibrated at a low frequency, and FIG. FIG. 5 is an explanatory view when the grindstone in the normal direction is ultrasonically vibrated in the invention, and FIG. 5 is an explanatory view showing a process of making the generation of cracks finer,
FIG. 6 is an explanatory view showing a process of further miniaturizing the generation of cracks, FIG. 7 is a side view of an embodiment of an apparatus for carrying out the method of the present invention, and FIG. FIG. 9 is a front view seen from the direction, and FIG. 9 is an explanatory view showing a method for grinding a key groove according to the present invention. 1, 25 ... Ultrasonic vibration diamond grindstone 2 ... Amplitude amplification horn 3 ... Ultrasonic vibrator 4 ... Ultrasonic vibration 5 ... Low frequency vibration 6 ... Constant load 7 ... Ceramics 19 ... Ultrasonic oscillator 21 ... Ceramic gear 23 ... Ceramics key groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】砥石を加工する面に加圧し、加工する面の
法線方向に超音波振動させ、同時にこの法線方向と直交
する加工送り方向に加工表面に沿って低周波振動させ、
該砥石を回転させることなく研削加工する如くなした砥
石の複合振動によるセラミック等の精密研削加工方法。
1. A grindstone is pressed against a surface to be machined, ultrasonically vibrated in a direction normal to the surface to be machined, and at the same time, a low frequency vibration is carried out along a surface to be machined in a machining feed direction orthogonal to the normal direction,
A precision grinding method for ceramics or the like by compound vibration of a grindstone, which grinds without rotating the grindstone.
JP20851186A 1986-09-04 1986-09-04 Precision grinding method of ceramics etc. by compound vibration of grindstone Expired - Lifetime JPH0624693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20851186A JPH0624693B2 (en) 1986-09-04 1986-09-04 Precision grinding method of ceramics etc. by compound vibration of grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20851186A JPH0624693B2 (en) 1986-09-04 1986-09-04 Precision grinding method of ceramics etc. by compound vibration of grindstone

Publications (2)

Publication Number Publication Date
JPS6362660A JPS6362660A (en) 1988-03-18
JPH0624693B2 true JPH0624693B2 (en) 1994-04-06

Family

ID=16557374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20851186A Expired - Lifetime JPH0624693B2 (en) 1986-09-04 1986-09-04 Precision grinding method of ceramics etc. by compound vibration of grindstone

Country Status (1)

Country Link
JP (1) JPH0624693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211297A (en) * 2011-05-31 2011-10-12 北京航空航天大学 Method and device for composite vibration grinding based on ultrasonic high frequency and pneumatic low frequency

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562530A (en) * 1994-08-02 1996-10-08 Sematech, Inc. Pulsed-force chemical mechanical polishing
JP5043708B2 (en) * 2008-02-12 2012-10-10 西部自動機器株式会社 Super finishing method and grinding apparatus
CN114473834B (en) * 2022-01-27 2023-05-05 大连理工大学 Microstructure non-contact polishing device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211297A (en) * 2011-05-31 2011-10-12 北京航空航天大学 Method and device for composite vibration grinding based on ultrasonic high frequency and pneumatic low frequency

Also Published As

Publication number Publication date
JPS6362660A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
JP2004504166A (en) Micro burnisher using ultrasonic wave
JPS5935743B2 (en) Ultrasonic grinding equipment
US4071385A (en) Ultrasonic inlaid article
CN206344030U (en) A kind of radial ultrasonic vibration auxiliary cup emery wheel
CN106493648A (en) A kind of radial ultrasonic vibration auxiliary cup emery wheel and its using method
Balamuth Ultrasonic assistance to conventional metal removal
KR100647199B1 (en) Ultrasonic cutter and its cutting method
JP2008538727A (en) Cutting or grinding equipment
JPH0624693B2 (en) Precision grinding method of ceramics etc. by compound vibration of grindstone
CN206344031U (en) A kind of axial ultrasonic vibration auxiliary cup emery wheel
KR100417643B1 (en) Automatic Polishing Apparatus for Mold using ultrasonic waves vibrating tool
JPH0624692B2 (en) Precision groove grinding method by compound vibration of grindstone
JPH0120035B2 (en)
US5551907A (en) System for ultrasonic lap grinding and polishing
JPH0624691B2 (en) Precision Surface Polishing Method for Work Surface by Complex Vibration of Grinding Wheel
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JPH03234451A (en) Polishing method utilizing torsional vibration
JPH0451306B2 (en)
JP3169249B2 (en) Lens centering device
JPH09290356A (en) Surface traverse grinding device using ultrasonic vibration
JPH0451300B2 (en)
JPH07164288A (en) Ultrasonic vibration grinding method, ultrasonic vibration grinding tool, and ultrasonic vibration grinding device
JPH07164287A (en) Grinding method and grinding device
JPS6234678Y2 (en)
JP2682796B2 (en) Dressing method of grinding wheel