JPS6362659A - Precise finishing method with complex vibration grinding wheel - Google Patents

Precise finishing method with complex vibration grinding wheel

Info

Publication number
JPS6362659A
JPS6362659A JP20851086A JP20851086A JPS6362659A JP S6362659 A JPS6362659 A JP S6362659A JP 20851086 A JP20851086 A JP 20851086A JP 20851086 A JP20851086 A JP 20851086A JP S6362659 A JPS6362659 A JP S6362659A
Authority
JP
Japan
Prior art keywords
finishing
vibration
low frequency
point
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20851086A
Other languages
Japanese (ja)
Other versions
JPH0624692B2 (en
Inventor
Junichiro Kumabe
隈部 淳一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20851086A priority Critical patent/JPH0624692B2/en
Publication of JPS6362659A publication Critical patent/JPS6362659A/en
Publication of JPH0624692B2 publication Critical patent/JPH0624692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable precise finish of such as rubber without sacrifice of machining profile accuracy, by applying low frequency vibration in the finishing direction while supersonic vibration in the perpendicular and parallel direction with the finishing direction onto a grinding wheel and applying a constant load onto the grinding wheel. CONSTITUTION:When the finishing direction and the direction of low frequency vibration 5 is y-axis, the loading direction 6 is z-axis and the direction of supersonic vibration is x-axis, a work 7 is fed in the finishing direction 8 with constant speed V toward a grinding wheel 1 and supersonic vibration of frequency (f) and amplitude (a) is applied in perpendicular and parallel direction with the finishing direction 8. Here, point (p) starts vibration from a point (o) and vibrates with quick period in supersonic region in the perpendicular direction with the finishing direction so as to start cutting in the finishing direction with one cycle of low frequency vibration from a solid line 12 point (e) and the vibration speed of low frequency vibration approaches to zero toward a point (d). When low frequency vibration is additionally applied in the finishing direction, supersonic vibration locus can be cut finely thereby soft material such as rubber can be grinded efficiently with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は研削砥石を回転させないで低い加工速度に於て
超音波振動と低周波振動を与え一定荷重を作用させて特
にゴム材のような軟質工作物の表面を能率よく精密仕上
加工する方法に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention applies ultrasonic vibration and low-frequency vibration at a low processing speed without rotating the grinding wheel, and applies a constant load to the grinding wheel. This article relates to a method for efficiently precision finishing the surface of a soft workpiece.

(従来技術) 従来砥石を仕上方向と直角方向に低周波振動させて仕上
加工する仕上方法は公知である。又砥石にこの低周波振
動方向と同じ方向に超音波振動させて精密加工する方法
も公知である。
(Prior Art) A finishing method in which a grindstone is vibrated at low frequency in a direction perpendicular to the finishing direction is known. There is also a known method for precision machining by subjecting a grindstone to ultrasonic vibration in the same direction as this low-frequency vibration.

(発明が解決しようとする問題点) ところで上記従来技術のうち、低周波振動のみによる方
法は、金属材料の鏡面加工を対象としたもので金属材料
とその組成を異にする有機材であるゴム材のような軟質
工作物に対してその技術をそのまま適用してもその効果
は全く得られない。すなわち、砥石を金属材料加工面に
加圧してこれを低周波振動させ、各は粒の運動軌跡を交
錯させることによって各砥粒の切削長さを寸断して切削
抵抗を軽減させて切削性を向上させることがゴムのよう
な軟質材に比べて剛性の高い金属材料に対しては可能で
はあるが、ゴムのような軟質材のように弾性に富む材料
に対しては、この技術における程度の切削長さの寸断で
は切削抵抗が減少せず、工作物が弾性変形して逃げてし
まい精密切削1゛ることかできないO この砥石を低周波振動の方向と同方向に超音波振動させ
る方法がある。この方法によって各砥粒の切削長さをよ
り細かく寸断することができ切削抵抗が激減してゴムの
ような軟質材の弾性変形を極微少化して精密切削を可能
とする。
(Problems to be Solved by the Invention) Among the above-mentioned conventional techniques, the method using only low-frequency vibration is intended for mirror finishing of metal materials, and is intended for mirror finishing of metal materials and rubber, which is an organic material with a different composition. Even if the technique is applied directly to soft workpieces such as wood, no effect will be obtained at all. In other words, the grinding wheel is pressed against the metal surface to be machined, causing it to vibrate at a low frequency, and by intersecting the motion trajectories of each grain, the cutting length of each abrasive grain is cut into pieces, reducing cutting resistance and improving machinability. Although it is possible to improve the rigidity of metal materials compared to soft materials such as rubber, it is not possible to improve the degree of improvement with this technology for materials with high elasticity such as soft materials such as rubber. When the cutting length is cut short, the cutting resistance does not decrease, and the workpiece elastically deforms and escapes, making precision cutting impossible. be. By this method, the cutting length of each abrasive grain can be cut into finer pieces, cutting resistance is drastically reduced, and elastic deformation of a soft material such as rubber is minimized, making precision cutting possible.

しかし、この方法には加工できる工作物の形状に制限が
生ずる。すなわち、この方法は、一様な平面あるいは円
筒外周1人面の仕上加工には適用できるが、キー溝など
の溝加工や底のある穴の大面の仕上加工には使用できな
いという問題点がある。
However, this method has limitations on the shape of the workpiece that can be machined. In other words, this method can be applied to finishing a uniform plane or a single surface on the outer circumference of a cylinder, but there is a problem that it cannot be used for finishing a groove such as a keyway or a large surface of a hole with a bottom. be.

すなわち、超音波振動よりも振幅の大きい低周波振動数
の振幅が砥石の作用面と直交する工作物の側面をたたい
たり、所定寸法以上に加工して寸法精度を狂わせる現象
が生ずる。例えば、キー溝加工ではキー溝側面をたたき
、大面加工では底面をたたく現象を生ずる。そして、加
工精度を低下させたり、砥石を破損させたりして発明の
効果を皆無とする。
That is, a phenomenon occurs in which the amplitude of a low frequency vibration, which has a larger amplitude than the ultrasonic vibration, hits the side of the workpiece that is perpendicular to the working surface of the grindstone, or the workpiece is machined to a predetermined size or more, thereby disrupting dimensional accuracy. For example, when machining a keyway, the side surface of the keyway is struck, and when machining a large surface, the bottom surface is struck. This may reduce processing accuracy or damage the grindstone, rendering the invention ineffective.

(問題点を解決するための手段) 本発明は上記問題点に着目してなされたもので砥石に与
える振幅の大きい低周波振動の方向は切削仕上方向と同
方向として、切りくずを極微細化するための超音波振動
の方向を仕上方向と直角方向で、仕上加工面と平行方向
として砥石を重畳振動させ、この砥石に定荷重を与えて
加工形状精度に影響を与えることなく精密仕上加工する
ことを特徴とするものである。
(Means for Solving the Problems) The present invention has been made by focusing on the above problems, and the direction of the low frequency vibration with large amplitude applied to the grinding wheel is the same as the finishing direction of cutting, thereby making the chips extremely fine. A grindstone is vibrated in a superimposed manner with the direction of ultrasonic vibration perpendicular to the finishing direction and parallel to the finished surface, and a constant load is applied to this grindstone to perform precision finishing without affecting the precision of the machined shape. It is characterized by this.

(実施例) 以下、図示した実施例に基づいて具体的に説明する。第
1図において、超音波振動砥石1を縦超音波振動子3の
振幅を拡大する振幅拡大用ホーン2の先端に取付けた曲
げ超音波振動砥石シャンク90両端に接着し、工作物7
に対して、矢印8の仕上方向に対して直角方向で、仕上
表面とは平行をなす方向に超音波振動数f、振幅a4で
超音波振動させる。超音波振動子3は電わい振動子、磁
わい振動子いずれでもその作用効果は同一である。この
超音波振動砥石を矢印8の仕上方向と同方向に低周波振
動数F、振幅A5で低周波振動させる。このように仕上
方向と同方向に低周波振動し、仕上方向と直角方向に超
音波振動する砥石に荷重P6を与え仕上速度v<2πA
Fで平面仕上加工する。低周波振動駆動装置としては、
三相誘導電動機を利用した滑り子クランク機構、リンク
機構および空気圧、油圧を利用した装置あるいは電磁振
動、電気油圧振動駆動による装置などを用いることがで
きる。
(Example) Hereinafter, a detailed explanation will be given based on the illustrated example. In FIG. 1, an ultrasonic vibrating grindstone 1 is glued to both ends of a bending ultrasonic vibrating grindstone shank 90 attached to the tip of an amplitude amplifying horn 2 for amplifying the amplitude of a vertical ultrasonic vibrator 3, and a workpiece 7
On the other hand, ultrasonic vibration is applied at an ultrasonic frequency f and an amplitude a4 in a direction perpendicular to the finishing direction as indicated by an arrow 8 and parallel to the finished surface. The action and effect of the ultrasonic vibrator 3 are the same whether it is an electric strain vibrator or a magnetic strain vibrator. This ultrasonic vibrating grindstone is caused to vibrate at a low frequency at a low frequency F and an amplitude A5 in the same direction as the finishing direction indicated by an arrow 8. In this way, load P6 is applied to the grindstone that vibrates at low frequency in the same direction as the finishing direction and ultrasonically vibrates in the direction perpendicular to the finishing direction, and the finishing speed v<2πA
Use F to finish the plane. As a low frequency vibration drive device,
A slider crank mechanism using a three-phase induction motor, a link mechanism, a device using pneumatic pressure or hydraulic pressure, or a device using electromagnetic vibration or electrohydraulic vibration drive can be used.

第2図は穴の本発明による精密仕上方法である。超音波
振動砥石1を縦超音波振動子3の振幅を拡大する振幅拡
大用ホーン2の先端に接着し穴7の軸方向に超音波振動
数f、振幅aで超音波振動させる。この縦超音波振動系
砥石を振動中心軸を回転中心軸Oと一致させて振動数F
FIG. 2 is a method of precision finishing a hole according to the present invention. An ultrasonic vibrating grindstone 1 is bonded to the tip of an amplitude amplifying horn 2 for enlarging the amplitude of a vertical ultrasonic vibrator 3, and is ultrasonically vibrated in the axial direction of the hole 7 at an ultrasonic frequency f and an amplitude a. The vibration center axis of this vertical ultrasonic vibration system grindstone is aligned with the rotation center axis O, and the frequency of vibration is F.
.

振幅Aで矢印5の仕上方向と同方向に低周波振動させ、
荷重P6を与え仕上速度V<2πAFで穴仕上加工する
Vibrate at low frequency in the same direction as the finishing direction of arrow 5 at amplitude A.
A load P6 is applied and the hole is finished at a finishing speed V<2πAF.

第3図、第4図、第5図、第6図、第7図。3, 4, 5, 6, and 7.

第8図によって本発明が能率的な精密仕上加工を可能と
する理由について説明する。
The reason why the present invention enables efficient precision finishing will be explained with reference to FIG.

第3図において、仕上方向および低周波振動方向5をy
軸、荷重方向6をZ軸、超音波振動方向をy軸とする。
In Figure 3, the finishing direction and low frequency vibration direction 5 are y
The load direction 6 is the Z-axis, and the ultrasonic vibration direction is the y-axis.

砥石の変位と時間との関係はy = A sin wt
で表わされ、図示のような正弦波曲線11で表わされる
。今この砥石1に対して工作物7を仕上方向8に一定速
度Vで送る。
The relationship between the displacement of the grinding wheel and time is y = A sin wt
It is represented by a sine wave curve 11 as shown in the figure. Now, a workpiece 7 is sent to this grindstone 1 in a finishing direction 8 at a constant speed V.

点Oかも振動させたとする。曲線上の点Cで砥石の端面
が加工すべき工作物7の側面正1と接触し始め点dから
は砥石の振動の方向が仕上方向と同じ方向となり、点e
は仕上速度と振動速度とが等しくなる点でこのcdeO
間で砥石振動1サイクルで加工する長さ1T−Vloを
仕上加工する。そしてここから砥石と工作物の側面CE
とは離れ始め点e以後は振動速度が仕上速度よりも速く
なって最大速度2πAFに達する。
Suppose that point O is also vibrated. At point C on the curve, the end face of the grinding wheel begins to come into contact with the side surface 1 of the workpiece 7 to be machined, and from point d onwards, the direction of vibration of the grinding wheel becomes the same as the finishing direction, and it reaches point e.
is this cdeO at the point where the finishing speed and vibration speed are equal.
In between, a length of 1T-Vlo is finished with one cycle of grindstone vibration. And from here, the side CE of the grindstone and workpiece
After the starting point e, the vibration speed becomes faster than the finishing speed and reaches the maximum speed 2πAF.

点iを通過し、点fの直前まで離れており、点fVcお
いて砥石側面と工作物側面Cl(とが接触し始め曲線上
のfgbで1.r=7を仕上加工してCEに相当するF
 Hまでを削除する。この砥石に荷重Pを与えれば抵抗
p#/c等しい量だけの切込みCEで仕上方向に砥石の
振動−周期ごとにlTづつ小刻みに仕上加工していくこ
とができる。このとき、ゴムのような軟質材はわずかな
荷重でも弾性変形して加工すべき加工面が逃げてしまう
ので、この第3図の方法では金属は加工できてもゴムの
ような軟質材は砥石を切込ませて仕上加工することがで
きない。与える荷iPをより軽荷重としても砥石をゴム
のような軟質材に切込ませることができる方法を必要と
する。
It passes point i and is far away just before point f, and at point fVc, the side surface of the grinding wheel and the side surface of the workpiece Cl (start to come into contact with each other). F to do
Delete up to H. If a load P is applied to this grindstone, finishing can be performed in small increments of lT for each vibration period of the grindstone in the finishing direction with a depth of cut CE equal to the resistance p#/c. At this time, soft materials such as rubber deform elastically even with a slight load and the surface to be machined escapes, so although metal can be processed using the method shown in Figure 3, soft materials such as rubber cannot be processed easily with the grinding wheel. It is not possible to cut and finish. What is needed is a method that allows a grindstone to cut into a soft material such as rubber even if the applied load iP is a lighter load.

そこで、第3図で説明した砥石をさらに超音波振動数f
、振幅aをもって仕上方向8に対して直角方向で仕上面
と平行方向に超音波振動させる。このときの砥石内の1
つの砥粒点pの運動軌跡を実線の曲線12と点線の曲線
13で示す。
Therefore, the grindstone explained in Fig. 3 is further adjusted to the ultrasonic frequency f.
, ultrasonic vibrations are made with an amplitude a in a direction perpendicular to the finishing direction 8 and parallel to the finished surface. 1 inside the whetstone at this time
The motion locus of one abrasive grain point p is shown by a solid curve 12 and a dotted curve 13.

点pは第3図の点0から第3図で説明したようにして振
動を開始する。一方、この点pは仕上方向と直角方向に
超音波域の早い周期で振動する。点pが超音波振動して
いなければこの点pの運動軌跡は直線となる。点C1点
d1点eは第3図の曲線11上の点C1点d9点eに相
当する。実線12の点eから1T−p  の砥石の低周
波振動1ザイクルで仕上方向に切削すべき長さの部分を
切削し始める。点eから点dに向うに従って低周波振動
の振動速度はゼロに近づく。そして、仕上速度Vと超音
波振動速度との関係になるので、点pの振動開始点付近
の運動軌跡の山と山との間隔に比べてその間隔が狭く密
となってくる。点dを通過して点eVC向う過程ではそ
の位相が逆転する運動軌跡となる。これを点線13で示
す。点eで低周波振動による振動1サイクルでの切削長
さを切削し終る。点線13は実線12を反転した形とな
る。この両曲線は激しく交叉してその軌跡は長さの短い
微小曲線に寸断される。低周波振動させないと、この超
音波振動軌跡の反転現象はなく寸断されることのない連
続した正弦波振動曲線を示す。この仕上方向の低周波振
動の伺加によって超音波振動軌跡を極微細に寸断するこ
とができる。すなわち、切削長さを極微細に寸断し、切
りくずを極微細にし、切削抵抗を軽減させることができ
る。説明を1つの砥粒によって行ったが実際の砥石作用
面には多数の砥粒が分布しているので、1Txl(砥石
の巾)の切削面積全面を微細な直線群によって細分割化
でき切削抵抗の軽減を実現させることができるようにな
る。これが本発明による仕上機構の特徴である。
Point p begins to oscillate from point 0 in FIG. 3 in the manner described in FIG. On the other hand, this point p vibrates at a fast frequency in the ultrasonic range in a direction perpendicular to the finishing direction. If point p is not undergoing ultrasonic vibration, the motion trajectory of point p will be a straight line. The points C1, d1, and e correspond to the points C1, d9, and e on the curve 11 in FIG. From point e on the solid line 12, cutting of the length to be cut in the finishing direction is started with one cycle of low frequency vibration of the grindstone of 1T-p. The vibration speed of low frequency vibration approaches zero as it goes from point e to point d. Since there is a relationship between the finishing speed V and the ultrasonic vibration speed, the interval becomes narrower and denser than the interval between the peaks of the motion locus near the vibration start point of point p. In the process of passing through point d and heading towards point eVC, the trajectory becomes a motion trajectory in which the phase is reversed. This is shown by dotted line 13. At point e, the cutting length of one cycle of vibration due to low frequency vibration is finished. The dotted line 13 is the inverse of the solid line 12. These two curves intersect violently, and their loci are cut into short minute curves. If low frequency vibration is not applied, this reversal phenomenon of the ultrasonic vibration locus does not occur, and a continuous sinusoidal vibration curve is shown without interruption. By adding this low-frequency vibration in the finishing direction, the ultrasonic vibration locus can be cut into extremely fine pieces. That is, the cutting length can be cut into extremely fine pieces, the chips can be made extremely fine, and the cutting resistance can be reduced. The explanation was given using a single abrasive grain, but since many abrasive grains are actually distributed on the working surface of a whetstone, the entire cutting area of 1Txl (width of the whetstone) can be subdivided into fine straight lines, reducing the cutting resistance. It will be possible to realize the reduction of This is a feature of the finishing mechanism according to the invention.

砥石車は高速回転させて砥粒1刃あたりの切込みを小さ
くして抵抗を軽減させて精密研削を可能にしているが、
高速回転をさせることができない定荷重方式における砥
石によるゴムのような軟質材に対する能率的な精密研削
法は本発明の振動方向に超音波振動と低周波振動を重畳
複合させて切りくず長さを極微細に寸断して研削抵抗を
軽減させる方法以外にはない。
Grinding wheels rotate at high speed to reduce the cutting depth per abrasive grain, reducing resistance and enabling precision grinding.
An efficient precision grinding method for soft materials such as rubber using a constant load method that cannot rotate at high speeds is based on the present invention, which combines ultrasonic vibration and low frequency vibration in the vibration direction to reduce the chip length. There is no other way than to reduce the grinding resistance by cutting it into extremely fine pieces.

第5図、第6図、第7図は、本発明の精密仕上機構をさ
らに詳しく説明し、仕上面あらさを平滑にする機構を説
明する図である。第5図は、本発明によって平均加工量
tをもってlTづつ小刻みに仕上加工している加工状態
を示し、第3図における点e、あるいは点りの加工状態
を示す図である。第3図の点Cから加工し始めるに従い
、次第に増大していく加工抵抗の影響を受けて砥石はご
くわずかではあるが仕上面8から離れて加工抵抗と荷重
Pとのバランスが保たれる。そしてlTを砥石の低周波
振動1サイクルで切削した点eあるいは点りで平均加工
量tを加工し、第6図のようにして砥石側面は工作物か
ら離れ始める。この間に仕」二面8から突出した部分を
切削して第7図のように砥石作用面全面が仕上面8と接
触するようになる。そして単位面積あたりの法線方向加
圧力が減少し各砥粒は工作物への食込みによる切削作用
はなくなり、工作物表面の微細突起部を8のように平滑
に仕上げる。この仕上げ機構の場合も本発明の低周波振
動の重畳によって超音波振動による運動軌跡の反転機構
によって切削長さを寸断し、切削抵抗を軽減させてゴム
のような軟質材の微小突起部を弾性変形させて逃がすこ
となく均一に精密仕上するのが本発明の特徴である。
FIG. 5, FIG. 6, and FIG. 7 are diagrams explaining the precision finishing mechanism of the present invention in more detail and explaining the mechanism for smoothing the roughness of the finished surface. FIG. 5 shows a machining state in which finishing is performed in small increments of 1T with an average machining amount t according to the present invention, and is a diagram showing a machining state at point e or dot in FIG. 3. As machining begins from point C in FIG. 3, the grinding wheel moves away from the finished surface 8, albeit very slightly, under the influence of the machining resistance, which gradually increases, and the balance between the machining resistance and the load P is maintained. Then, the average machining amount t is processed at point e or point where lT is cut by one cycle of low-frequency vibration of the grindstone, and the side surface of the grindstone begins to separate from the workpiece as shown in FIG. During this time, the part protruding from the finishing surface 8 is cut so that the entire working surface of the grindstone comes into contact with the finishing surface 8 as shown in FIG. Then, the normal pressing force per unit area is reduced, and each abrasive grain no longer has a cutting action by biting into the workpiece, and the fine protrusions on the workpiece surface are finished smooth as shown in 8. In the case of this finishing mechanism, the cutting length is cut into pieces by the ultrasonic vibration motion locus reversal mechanism by superimposing the low frequency vibration of the present invention, reducing the cutting resistance and making the micro protrusions of soft materials such as rubber elastic. A feature of the present invention is that it can be finished uniformly and precisely without deforming or escaping.

次に本発明の実施例について説明する。ゴムの平板にみ
ぞを精密仕上加工する場合を第8図。
Next, examples of the present invention will be described. Figure 8 shows the case of precision finishing grooves on a flat rubber plate.

第9図によって説明する。This will be explained with reference to FIG.

10m角、厚さ5關のWA≠60の砥石1を201EG
(z600Wたて振動室わい振動子3の振幅拡大用ホー
ン2の先端にボルトで固定して取付けた曲げ振動砥石シ
ャンク140両端に接着する。ホーン2の振動節を取付
板18で固定する。この取付板15を加圧装置16に固
定する。加圧装置は低周波振動駆動装置17によって矢
印5の方向に低周波振動する振動軸18に取付けろ。低
周波振動駆動装置は三相誘導電動機19とベルト加によ
って一定方向に高速回転する振動駆動軸の回転運動を偏
心カムとすべり子クランク機構によって変換し、振動軸
18を矢印5の方向に最大振動数100Hz 、片振幅
0.2mm程度で振動させる。この装置17を平削り盤
あるいは形削り盤刃物台21に矢印8の仕上方向と矢印
5の低周波振動方向とが一致するようにして取付ける。
201EG whetstone 1 of 10m square and 5mm thick with WA≠60
(Glue to both ends of the bending vibrating grindstone shank 140 attached with bolts to the tip of the amplitude expansion horn 2 of the z600W vertical vibration chamber oscillator 3. Fix the vibration node of the horn 2 with the mounting plate 18. Fix the mounting plate 15 to the pressure device 16.The pressure device should be attached to the vibration shaft 18 that vibrates at low frequency in the direction of the arrow 5 by the low frequency vibration drive device 17.The low frequency vibration drive device is a three-phase induction motor 19. The rotational motion of the vibration drive shaft, which rotates at high speed in a fixed direction by belt application, is converted by an eccentric cam and a slider crank mechanism, and the vibration shaft 18 is vibrated in the direction of arrow 5 at a maximum frequency of 100 Hz and a half amplitude of approximately 0.2 mm. This device 17 is attached to a planing machine or a shaping machine tool post 21 so that the finishing direction indicated by arrow 8 and the direction of low frequency vibration indicated by arrow 5 coincide with each other.

超音波発振機nによって超音波振動子3を励振すれば、
砥石は仕上方向と直角方向に超音波振動数f −20K
Hz 。
If the ultrasonic vibrator 3 is excited by the ultrasonic oscillator n,
The grindstone has an ultrasonic frequency of f -20K in the direction perpendicular to the finishing direction.
Hz.

片振幅a = 4〜15μm程度で超音波振動する。Ultrasonic vibration occurs with half amplitude a = approximately 4 to 15 μm.

第9図のようにこの砥石1に加圧力Pを矢印6の方向に
工作物7に与え、振動数F = 100Hz。
As shown in FIG. 9, a pressing force P is applied to the workpiece 7 in the direction of the arrow 6 to the grindstone 1, and the frequency of vibration is F = 100 Hz.

片振幅&=0.2mm程度で低周波振動させ、仕上速度
vく2πAFの仕上速度V = 0.5〜2V漬をもっ
て仕上加工することによって本発明による精密平面仕上
加工が実施されゴム材へのみその精密仕上加工が可能と
なる。
Precision flat finishing according to the present invention is carried out by performing low frequency vibration with half amplitude &= about 0.2 mm and finishing at a finishing speed of V = 0.5 to 2V at a finishing speed of 2πAF. Precise finishing processing becomes possible.

本発明の実施において、仕上方向に対する超音波振動方
向および低周波振動方向との関係がそれぞれの振動方向
が多少づれた場合でも、それぞれの主成分が特許請求の
範囲で述べるように仕上方向に対して超音波振動方向に
ついては直角方向であり、低周波振動方向については同
方向となっている場合はすべて本発明に包含される。
In the practice of the present invention, even if the relationship between the ultrasonic vibration direction and the low frequency vibration direction with respect to the finishing direction is slightly different from each other, the main components of each of them are relative to the finishing direction as stated in the claims. All cases where the ultrasonic vibration direction is perpendicular and the low frequency vibration direction is the same direction are included in the present invention.

(効果) 本発明の実施によって得られる効果について説明する。(effect) The effects obtained by implementing the present invention will be explained.

第10図に示すように、−辺が100mm の厚材状の
硬質ゴム材に幅10 mmの長100mrr+の金属角
棒がはめこまれ、接着、固定されている。そして基板で
あるゴム材5表面が金属角棒別の表面から0.03mm
以内で突出している。これを仕上げて金属角棒の表面よ
り0.03mm以内に低く精密仕上加工するときに、本
発明を低周波振動数F = 100 Hz 、振幅A 
= 0.2 mm 、超音波振動数f −20KHz 
、  振幅a = 16.71m 、 10 mm角厚
さ5mmの=#= 600電着ダイヤモンド砥石、仕上
速度2”A。
As shown in FIG. 10, a square metal bar with a width of 10 mm and a length of 100 mrr+ is fitted into a thick hard rubber material with a negative side of 100 mm, and is bonded and fixed. And the surface of the rubber material 5 that is the substrate is 0.03 mm from the surface of another square metal bar.
Outstanding within. When this is finished and precisely finished to a level lower than the surface of the square metal bar by 0.03 mm, the present invention is applied to a low frequency vibration frequency F = 100 Hz and an amplitude A.
= 0.2 mm, ultrasonic frequency f -20KHz
, amplitude a = 16.71 m, 10 mm square 5 mm thick = # = 600 electroplated diamond grinding wheel, finishing speed 2”A.

2 g/miの極部荷重で実施することによって、4往
復させるだけで各みそを一様に表面粗さ3 fim R
max 、平面度3fim7100mmの加工面精度と
し、端面のだれや変形盛り上りをなくして一様な仕上面
に能率よく精密仕上することに成功した。
By carrying out the process with an extreme load of 2 g/mi, each miso can be uniformly coated with a surface roughness of 3 fim R by just 4 reciprocations.
The machined surface accuracy was max. 3fim7100mm, and we were able to efficiently and accurately finish the finished surface to a uniform finish by eliminating droop and deformed bulges on the end face.

本発明を実施することによって仕上速度を遅くして精密
仕上できるので加工面表面および砥石作用面の発熱を皆
無にすることができる。また、加圧力を極小にしてゴム
の精密仕上ができる。加圧するとゴムに吸収させている
油かにじみ出て潤滑作用をして砥粒の切削作用を阻害し
て滑らせて仕上作業が困雛であったような場合などに本
発明は画期的効果を発揮する。
By carrying out the present invention, precision finishing can be achieved by slowing down the finishing speed, so that heat generation on the machined surface and the grinding wheel action surface can be completely eliminated. In addition, precision finishing of rubber can be achieved by minimizing the pressing force. When pressurized, the oil absorbed by the rubber oozes out and acts as a lubricant, inhibiting the cutting action of the abrasive grains and causing them to slip, making finishing work difficult. demonstrate.

第1図は本発明による平面の仕上加工方法とその特徴を
簡明に示す説明図。
FIG. 1 is an explanatory diagram briefly showing the flat surface finishing method and its characteristics according to the present invention.

第2図は、本発明による穴の仕上加工方法とその特徴を
簡明に示す説明図。
FIG. 2 is an explanatory diagram briefly showing the hole finishing method and its characteristics according to the present invention.

第3図は、砥石を仕上方向に低周波振動させたときの砥
石の運動軌跡と砥石の振動1サイクルでの仕上加工長さ
lTを示す説明図。
FIG. 3 is an explanatory diagram showing the locus of motion of the grindstone when the grindstone is vibrated at low frequency in the finishing direction and the finishing length lT in one cycle of vibration of the grindstone.

第4図は、砥石を仕上方向と直角方向に超音波振動させ
、仕上方向に低周波振動させたときの砥石のなかの1つ
の砥粒pの超音波振動の運動軌跡が反転交錯して切削長
さが寸断され切削抵抗が軽減することを示す説明図。
Figure 4 shows that when the grinding wheel is vibrated ultrasonically in a direction perpendicular to the finishing direction and vibrated at low frequency in the finishing direction, the locus of motion of the ultrasonic vibration of one abrasive grain P in the grinding wheel is reversed and crossed, resulting in cutting. An explanatory diagram showing that cutting resistance is reduced by cutting the length.

第5図は、砥石の低周波振動1ザイクルでlTの長さを
切削したときの砥石と工作物との位置関係を示す説明図
FIG. 5 is an explanatory diagram showing the positional relationship between the grindstone and the workpiece when cutting a length of 1T with one cycle of low-frequency vibration of the grindstone.

第6図は、砥石の低周波振動1サイクルでV=2πAF
”となってそれ以後、砥石の側面が工作物から離れ始め
、加工面を平滑にしていく過程を示す説明図。
Figure 6 shows V=2πAF in one cycle of low-frequency vibration of the grindstone.
This is an explanatory diagram showing the process in which the side of the grindstone begins to move away from the workpiece and the machined surface becomes smooth.

第7図は、第6図につづき、砥石の低周波振動1サイク
ルの時間の経過とともに、砥石作用面全面が工作物の加
工面全面と接触して加工面を平滑に精密仕上することを
示す説明図。
Fig. 7 continues from Fig. 6 and shows that as time passes for one cycle of low-frequency vibration of the grinding wheel, the entire working surface of the grinding wheel comes into contact with the entire processing surface of the workpiece, resulting in a smooth and precise finish on the processing surface. Explanatory diagram.

第8図は、本発明を実施する平削り盤を仕上方向と直角
方向から見た側面図。
FIG. 8 is a side view of a planing machine embodying the present invention, viewed from a direction perpendicular to the finishing direction.

第9図は本発明に用いるみぞ加工用超音波振動砥石の側
面図。
FIG. 9 is a side view of the ultrasonic vibration grindstone for groove machining used in the present invention.

第10図は、本発明の実施効果を説明するための本発明
実施前の工作物の上面図と正面図。
FIG. 10 is a top view and a front view of a workpiece before implementing the present invention for explaining the effects of implementing the present invention.

第11図は、本発明の実施後の工作物の正面図である。FIG. 11 is a front view of the workpiece after implementing the present invention.

1・・・・・・超音波振動ダイヤモンド砥石2・・・・
・・振幅拡大用ホーン 3・・・・・・超音波振動子 4・・・・・・超音波振動 5・・・・・・低周波振動 6・・・・・・加圧力 n・・・・・・超音波発振機 器・・・・・・ゴム素材 第1図 図面の71・占(内容に変更なし) 第3図 第4図 図面の浄書(内容に変更なし) 第9図 第10図 一目一 第11図 手続補正書 昭和61年12月8 日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和61年特許願第208510号 2、発明の名称 複合振動砥石による精密仕上加工方法 3、補正をする者 事件との関係   特許出願人 住所  栃木県宇都宮市南大通り1−4−20チサンマ
ンション701号室 氏名    隈  部  淳一部 4、代理人 住所  東京都港区新橋2丁目2番5号5、補正指令の
日付 昭和61年11月25日 6、補正の対象 委任状及び図面 7、補正の内容
1... Ultrasonic vibration diamond grinding wheel 2...
... Horn for amplitude expansion 3 ... Ultrasonic vibrator 4 ... Ultrasonic vibration 5 ... Low frequency vibration 6 ... Pressure force n ... ...Ultrasonic oscillation equipment...Rubber material Figure 1 71 of the drawing (no change in content) Figure 3 Engraving of the drawing in Figure 4 (no change in content) Figure 9 Figure 10 Ichimoku 1 Figure 11 Procedural Amendment December 8, 1985 Commissioner of the Patent Office Black 1) Mr. Yu Aki 1, Indication of the case 1985 Patent Application No. 208510 2, Name of the invention Precision finishing method using composite vibrating grindstone 3. Relationship with the case of the person making the amendment Patent Applicant Address: Room 701, Chisun Mansion, 1-4-20 Minami Odori, Utsunomiya City, Tochigi Prefecture Name: Jun Kumabe Part 4 Agent address: 2-2-5-5 Shinbashi, Minato-ku, Tokyo , Date of amendment order November 25, 1986 6, Power of attorney subject to amendment and drawings 7, Contents of amendment

Claims (1)

【特許請求の範囲】[Claims] 仕上用砥石を仕上面と直角方向で仕上表面と平行方向に
超音波動させ、該仕上用砥石を仕上方向と同方向に低周
波振動数F、振巾Aで低周波振動させ、仕上速度V<2
πAFとして該仕上用砥石を加工面に加圧して仕上加工
する複合振動砥石による精密仕上加工方法。
A finishing whetstone is ultrasonically moved in a direction perpendicular to the finishing surface and parallel to the finishing surface, and the finishing whetstone is vibrated at a low frequency frequency F and an amplitude A in the same direction as the finishing direction, and the finishing speed is V. <2
A precision finishing method using a composite vibrating grindstone in which the finishing grindstone is pressurized to the processing surface as πAF.
JP20851086A 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone Expired - Lifetime JPH0624692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20851086A JPH0624692B2 (en) 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20851086A JPH0624692B2 (en) 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone

Publications (2)

Publication Number Publication Date
JPS6362659A true JPS6362659A (en) 1988-03-18
JPH0624692B2 JPH0624692B2 (en) 1994-04-06

Family

ID=16557356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20851086A Expired - Lifetime JPH0624692B2 (en) 1986-09-04 1986-09-04 Precision groove grinding method by compound vibration of grindstone

Country Status (1)

Country Link
JP (1) JPH0624692B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562530A (en) * 1994-08-02 1996-10-08 Sematech, Inc. Pulsed-force chemical mechanical polishing
JP2001315213A (en) * 2000-05-12 2001-11-13 Teijin Seiki Co Ltd Method and apparatus for optical solid molding
JP5049402B1 (en) * 2011-12-20 2012-10-17 有限会社アリューズ Mirror surface processing method, mirror surface processing machine, mirror surface processing tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211296B (en) * 2011-05-31 2013-12-25 北京航空航天大学 Composite ultrasonic vibration grinding device based on high and low frequencies
CN102211297B (en) * 2011-05-31 2013-12-25 北京航空航天大学 Method and device for composite vibration grinding based on ultrasonic high frequency and pneumatic low frequency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562530A (en) * 1994-08-02 1996-10-08 Sematech, Inc. Pulsed-force chemical mechanical polishing
JP2001315213A (en) * 2000-05-12 2001-11-13 Teijin Seiki Co Ltd Method and apparatus for optical solid molding
JP5049402B1 (en) * 2011-12-20 2012-10-17 有限会社アリューズ Mirror surface processing method, mirror surface processing machine, mirror surface processing tool

Also Published As

Publication number Publication date
JPH0624692B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
KR100316003B1 (en) a micro burnishing apparatus using ultrasonic vibration
CN101362303A (en) Grinding method combining mechanical reciprocation and supersonic vibration
Balamuth Ultrasonic assistance to conventional metal removal
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
SU1087307A1 (en) Grinding method
JPS6246281B2 (en)
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
JPH0120035B2 (en)
Nomura et al. Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes
JPS6362658A (en) Precise finishing method with complex vibration grinding wheel
JPS58196934A (en) Precision oscillation cutting method for ceramics
JPS6362660A (en) Precise finishing method with complex vibration grinding wheel
JPH0575560B2 (en)
JPH03234451A (en) Polishing method utilizing torsional vibration
JPH06339847A (en) Work method for circumferential groove in ceramics
SU1576283A1 (en) Method of finish ultrasonic working
JPS6234678Y2 (en)
JPH07164288A (en) Ultrasonic vibration grinding method, ultrasonic vibration grinding tool, and ultrasonic vibration grinding device
JPH0451306B2 (en)
JPH07164287A (en) Grinding method and grinding device
JP2831966B2 (en) Processing method of silicon nitride ceramics
Balamuth Recent developments in ultrasonic metalworking processes
RU2238839C1 (en) Device for ultrasonic finishing of parts
RU2127658C1 (en) Method for abrasive-free finish ultrasonic treatment of surfaces
JPS63232930A (en) Polishing method