JPH0624645Y2 - Boiler thermal stress monitor - Google Patents

Boiler thermal stress monitor

Info

Publication number
JPH0624645Y2
JPH0624645Y2 JP1985077089U JP7708985U JPH0624645Y2 JP H0624645 Y2 JPH0624645 Y2 JP H0624645Y2 JP 1985077089 U JP1985077089 U JP 1985077089U JP 7708985 U JP7708985 U JP 7708985U JP H0624645 Y2 JPH0624645 Y2 JP H0624645Y2
Authority
JP
Japan
Prior art keywords
metal temperature
stress
thermal stress
temperature difference
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985077089U
Other languages
Japanese (ja)
Other versions
JPS61198807U (en
Inventor
篤 庫本
修二 森
滋祥 川野
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP1985077089U priority Critical patent/JPH0624645Y2/en
Publication of JPS61198807U publication Critical patent/JPS61198807U/ja
Application granted granted Critical
Publication of JPH0624645Y2 publication Critical patent/JPH0624645Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案はボイラ耐圧部に発生する熱応力を、ボイラ耐圧
部の厚み方向における温度差から予測するボイラの熱応
力監視装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Use of the Invention] The present invention relates to a thermal stress monitoring device for a boiler, which predicts thermal stress generated in a boiler pressure resistant portion from a temperature difference in the thickness direction of the boiler pressure resistant portion.

〔考案の背景〕[Background of the invention]

従来、タービンプラントにおいては、タービン寿命を保
証しつつ、より速い起動停止,負荷変化を行なうことを
目的に、タービンのロータ熱応力制御システムが開発さ
れている。このシステムにおいては、タービンロータ部
の発生応力の予測に、ロータが回転体であることからメ
タル温度を直接計測できないため、蒸気状態をもとに蒸
気からメタルへの熱伝達率を推定し、これを境界条件と
して偏微分方程式を解くことによつて温度分布計算を行
ない発生応力を求めていた。
2. Description of the Related Art Conventionally, in a turbine plant, a rotor thermal stress control system for a turbine has been developed for the purpose of performing quick start / stop and load change while guaranteeing the turbine life. In this system, to predict the stress generated in the turbine rotor part, the metal temperature cannot be directly measured because the rotor is a rotating body, so the heat transfer coefficient from steam to metal is estimated based on the steam state. The temperature distribution was calculated by solving the partial differential equation with the boundary condition as to determine the stress generated.

このように、従来行つていた厚肉方向温度分布の推定、
すなわち発生応力の推定方法をボイラプラントに適用し
ようとした場合、次のような欠点がある。
In this way, the estimation of the temperature distribution in the thick wall direction, which was conventionally performed,
That is, when the method for estimating the generated stress is applied to a boiler plant, there are the following drawbacks.

(1)熱伝達率を推定し、これを境界条件に温度分布計算
を行つているため、発生応力計算精度向上には限度があ
る。
(1) Since the heat transfer coefficient is estimated and the temperature distribution is calculated using this as a boundary condition, there is a limit to improving the accuracy of the generated stress calculation.

(2)温度分布計算のために偏微分方程式を解く必要があ
り計算回数が多くなり計算時間がかかる。
(2) It is necessary to solve the partial differential equation to calculate the temperature distribution, which increases the number of calculations and requires calculation time.

〔考案の目的〕[Purpose of device]

本考案はかかる従来の欠点を解消しようとするもので、
その目的とするところは、メタル温度検出信号と圧力検
出信号から直接熱応力と内圧応力が求められるボイラの
熱応力監視装置を得ようとするものである。
The present invention is intended to eliminate such conventional drawbacks,
The purpose is to obtain a thermal stress monitoring device for a boiler in which thermal stress and internal pressure stress are directly obtained from a metal temperature detection signal and a pressure detection signal.

〔考案の概要〕[Outline of device]

本考案は前述の目的を達成するため、 ボイラ耐圧部の内面メタル温度、中間メタル温度および
外面メタル温度をそれぞれ検出する温度検出器と、 その温度検出器からの内面メタル温度検出信号、中間メ
タル温度検出信号および外面メタル温度検出信号によ
り、サンプリング周期毎に内面メタル温度と中間メタル
温度との内側メタル温度差(ΔT)、中間メタル温度
と外面メタル温度との外側メタル温度差(ΔT)およ
び前記内側メタル温度差(ΔT)と外側メタル温度差
(ΔT)との内外メタル温度差(ΔT)をそれぞれ
演算する温度差演算器と、 各運転モードでの、内側メタル温度差(ΔT)と熱応
力との関係特性、外側メタル温度差(ΔT)と熱応力
との関係特性、ならびに内外メタル温度差(ΔT)と
熱応力との関係特性を予め求めておき、それら関係特性
と前記温度差演算器によつて演算された各メタル温度差
(ΔT),(ΔT),(ΔT)から直接に熱応力
を演算する熱応力演算器と、 ボイラ耐圧部にかかる内圧を検出する圧力検出器と、 その圧力検出器からの圧力検出信号により、内圧応力を
演算する内圧応力演算器と、 前記熱応力演算器によつて演算された熱応力と、前記内
圧応力演算器によつて演算された内圧応力とから合計応
力を演算する合計応力演算器とを設けたことを特徴とす
るものである。
In order to achieve the above-mentioned object, the present invention provides a temperature detector for detecting the inner surface metal temperature, the intermediate metal temperature and the outer surface metal temperature of a boiler pressure resistant part, and an inner surface metal temperature detection signal from the temperature detector and an intermediate metal temperature. By the detection signal and the outer surface metal temperature detection signal, an inner metal temperature difference (ΔT A ) between the inner surface metal temperature and the intermediate metal temperature, an outer metal temperature difference (ΔT B ) between the intermediate metal temperature and the outer surface metal temperature, and A temperature difference calculator for calculating the inner and outer metal temperature difference (ΔT C ) between the inner metal temperature difference (ΔT A ) and the outer metal temperature difference (ΔT B ), and the inner metal temperature difference (ΔT) in each operation mode. relational characteristic a) and relational characteristic between the thermal stress, the outer metal temperature difference and ([Delta] T B) and thermal stress, as well as internal and external metal temperature difference ([Delta] T C) and thermal stress To previously obtain a relation property in advance, they relational characteristics between the temperature difference calculator to by connexion computed respective metal temperature difference (ΔT A), (ΔT B ), calculates the direct thermal stress from ([Delta] T C) The thermal stress calculator, the pressure detector that detects the internal pressure applied to the boiler pressure-resistant portion, the internal pressure stress calculator that calculates the internal pressure stress from the pressure detection signal from the pressure detector, and the thermal stress calculator. A total stress calculator for calculating a total stress from the calculated thermal stress and the internal pressure stress calculated by the internal pressure stress calculator is provided.

〔実施例〕〔Example〕

以下本考案の実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本考案の実施例に係るボイラの熱応力監視装置
の概略系統図、第2図は第1図のヘツダの詳細図、第3
図は第2図のA−A線断面におけるメタル温度計測点を
示す説明図、第4図は第3図のメタル温度分布図、第5
図から第7図は応力−温度差線図である。
FIG. 1 is a schematic system diagram of a thermal stress monitoring device for a boiler according to an embodiment of the present invention, FIG. 2 is a detailed diagram of a header of FIG. 1, and FIG.
FIG. 4 is an explanatory diagram showing metal temperature measurement points in the cross section taken along the line AA of FIG. 2, FIG. 4 is a metal temperature distribution diagram of FIG. 3, and FIG.
FIG. 7 to FIG. 7 are stress-temperature difference diagrams.

以下、第1図,第2図を用いてボイラの熱応力監視装置
の概略につて説明する。
The outline of the thermal stress monitoring device for the boiler will be described below with reference to FIGS. 1 and 2.

ボイラの熱応力監視点の代表例として過熱器のヘツダ1
のノズルコーナ部2を例に説明する。
As a typical example of a thermal stress monitoring point of a boiler, a superheater head 1
The nozzle corner section 2 will be described as an example.

このヘツダ1は厚肉で、かつ550℃近辺の高温状態で使
用され、起動,停止等の非定常時に、内部の流体温度や
流量変化に対応して内面,中間,外面に温度差が生じ、
特にノズルコーナ部2はその構造の複雑さもあつて発生
応力の分布は複雑で値も大きく熱応力の発生が顕著な部
分である。
This head 1 is thick and is used in a high temperature state around 550 ° C, and during unsteady conditions such as starting and stopping, a temperature difference occurs on the inner surface, the middle surface, and the outer surface in response to changes in the internal fluid temperature and flow rate.
In particular, the nozzle corner portion 2 is a portion where the distribution of generated stress is complicated and the value thereof is large due to the complexity of its structure, and the generation of thermal stress is remarkable.

また、定常運転時の内部流体の圧力も225kg/cm2程度の
高圧となり、内圧応力による寿命消費も最も大きいとこ
ろである。
In addition, the pressure of the internal fluid during steady operation is as high as 225 kg / cm 2 , and the life consumption due to internal pressure stress is the largest.

ボイラの監視箇所の熱応力を求めるために、まずヘツダ
1の内面,中間,外面のメタル温度計測値3,4,5を
内面メタル温度検出器6により内面メタル温度検出信号
7,中間メタル温度検出器8により中間メタル温度検出
信号9および外面メタル温度検出器10により外面メタル
温度検出信号11をそれぞれ検出し、これらの内面メタル
温度検出信号7,中間メタル温度検出信号9および外面
メタル温度検出信号11の温度差を基に温度差演算器12に
おいて、温度差ΔT(内部メタル温度検出信号7と中
間メタル温度検出信号9の差),温度差ΔT(中間メ
タル温度検出信号9と外面メタル温度検出信号11の
差),温度差ΔT(温度差ΔTと温度差ΔT
差)を求める。この温度差演算器12によつて得られた温
度差(ΔT,ΔT,ΔT)信号13をもとに、熱応
力演算器14において熱応力演算値15を求める。一方、ヘ
ツダ1内より圧力計測値16を圧力検出器17で検出し、圧
力検出信号18をもとに内圧応力演算器19において、内圧
応力演算値20を求める。つぎに合計応力演算器21におい
て、熱応力演算値15と内圧応力演算値20を加えて合計応
力演算値22を求める。寿命消費演算器23では、合計応力
演算値22をもとに疲労およびクリープによる寿命消費演
算値24を演算する。応力制限値設定器25では運転モード
毎に計画時決定した寿命配分から実際の運用での寿命消
費演算値24を差し引き残余寿命を算出し、さらに残余寿
命および残余運転回数から今後の運転モード毎1回当り
の許容寿命消費を定め、この寿命消費をもたらすと予測
される応力値をボイラ厚肉管応力制限値26として設定す
る。つぎに、応力値比較器27において合計応力演算値22
と応力制限値26を比較する。この結果、応力制限値26を
越えるときには、負荷ホールド信号発生器28により負荷
ホールド信号29を発生し、ボイラ負荷制御装置30に送
る。
In order to obtain the thermal stress at the monitoring point of the boiler, first, the metal temperature measurement values 3, 4, 5 on the inner, middle and outer surfaces of the header 1 are detected by the inner metal temperature detector 6 to detect the inner metal temperature signal 7 and the intermediate metal temperature. The detector 8 detects the intermediate metal temperature detection signal 9 and the external metal temperature detector 10 detects the external metal temperature detection signal 11, respectively, and the internal metal temperature detection signal 7, the intermediate metal temperature detection signal 9 and the external metal temperature detection signal 11 are detected. In the temperature difference calculator 12 based on the temperature difference of ΔT A (difference between internal metal temperature detection signal 7 and intermediate metal temperature detection signal 9), temperature difference ΔT B (intermediate metal temperature detection signal 9 and outer surface metal temperature The difference between the detection signals 11) and the temperature difference ΔT C (the difference between the temperature difference ΔT A and the temperature difference ΔT B ) are obtained. Based on the temperature difference (ΔT A , ΔT B , ΔT C ) signal 13 obtained by the temperature difference calculator 12, a thermal stress calculator 14 calculates a thermal stress calculation value 15. On the other hand, the pressure measurement value 16 is detected from the inside of the head 1 by the pressure detector 17, and the internal pressure stress calculator 19 calculates the internal pressure stress calculation value 20 based on the pressure detection signal 18. Next, in the total stress calculation unit 21, the thermal stress calculation value 15 and the internal pressure stress calculation value 20 are added to obtain the total stress calculation value 22. The life consumption calculator 23 calculates the life consumption calculation value 24 due to fatigue and creep based on the total stress calculation value 22. The stress limit value setter 25 calculates the remaining life by subtracting the life consumption calculation value 24 in actual operation from the life distribution determined at the time of planning for each operation mode, and calculates the remaining life from the remaining life and the number of remaining operations 1 for each future operation mode. The permissible life consumption per operation is determined, and the stress value predicted to bring this life consumption is set as the boiler thick-walled pipe stress limit value 26. Next, in the stress value comparator 27, the total stress calculation value 22
And the stress limit 26. As a result, when the stress limit value 26 is exceeded, a load hold signal generator 28 generates a load hold signal 29 and sends it to the boiler load control device 30.

第2図は、第1図のボイラヘツダ1の拡大の断面図を示
し、本考案の熱応力監視装置は、応力集中部であるノズ
ルコーナ部2に注目し、発生応力および寿命消費を監視
する。
FIG. 2 shows an enlarged cross-sectional view of the boiler header 1 of FIG. 1, and the thermal stress monitoring device of the present invention focuses on the nozzle corner portion 2 which is a stress concentration portion to monitor the generated stress and life consumption.

第3図は第2図のA−A線断面におけるメタル温度計測
点を示し、点Tは内面メタル温度検出信号7の計測
点、Tは中間メタル温度検出信号9の計測点、T
外面メタル温度検出信号11の計測点を示し、a,b,c
はヘツダ1の半径である。
FIG. 3 shows a metal temperature measurement point in the cross section taken along the line AA in FIG. 2, where a point T 0 is a measurement point of the inner surface metal temperature detection signal 7, a T 1 is a measurement point of the intermediate metal temperature detection signal 9, and a point T 2. Indicates the measurement points of the outer surface metal temperature detection signal 11, a, b, c
Is the radius of Hedda 1.

第4図は第3図の計測点T,T,Tにおけるメタ
ル温度分布図である。
FIG. 4 is a metal temperature distribution diagram at the measurement points T 0 , T 1 , and T 2 in FIG.

熱応力演算値15は、温度差信号13,内面メタル温度検出
信号7,中間メタル温度検出信号9,外面メタル温度検
出信号11の関数として下式の様に表わされる。
The thermal stress calculation value 15 is expressed as a function of the temperature difference signal 13, the inner surface metal temperature detection signal 7, the intermediate metal temperature detection signal 9, and the outer surface metal temperature detection signal 11 by the following equation.

σth=σth1+σth2+σth3・・・(1) σth1=A(T)・ΔT,σth2=B(T)・ΔT
σth3=C(ΔT),ΔT=T−T ΔT=T−T,ΔT=ΔT−ΔT=内面メタル温度,σth:熱応力 T=中間メタル温度 T=外面メタル温度 より求める。(1)式の関数A(T),B(T),C
(ΔT)は、オフラインにより実際の形状で、各運転
モードでの熱応力解析のケーススケタデイを実施し、第
5図から第7図の様な応力−温度差線図を作成し決定す
る。ここで、関数A(T)のT,関数B(T)の
は、それぞれ、実際のメタル温度によりヤング率、
線膨脹係数が異なるため、温度T,Tの関数にな
る。第5図に、温度Tでの関数A(T)=αの応力
−温度差模式図を示す。第6図,第7図にそれぞれ、B
(T),C(ΔT)の、応力−温度差模式図を示
す。このように、熱応力計算式を温度及び温度差の関数
にすることにより、オンラインでの演算に好都合とな
る。すなわち、通常、熱応力を求めるためには、先ず各
種計測データをもとに偏微分方程式を解き温度分布を求
め、温度分布から熱応力を計算するため計算ステツプも
多く、計算時間も多くかかるが、本考案によれば計算時
間も大巾に短縮できる。また、内部蒸気からメタルへの
熱伝達率を環境条件に、偏微分方程式を解く場合には、
熱伝達率の推定精度に熱応力計算精度が全く依存するた
め、熱伝達率推定のための蒸気条件計測誤差が少なから
ずあるため、精度向上には限度があるが本考案によれ
ば、メタル温度を直接計測するため精度よく熱応力を求
めることができる。
σ th = σ th1 + σ th2 + σ th3 (1) σ th1 = A (T 0 ) · ΔT A , σ th2 = B (T 1 ) · ΔT
B σ th3 = C (ΔT C ), ΔT A = T 0 −T 1 ΔT B = T 1 −T 2 , ΔT C = ΔT A −ΔT B T 0 = Inner surface metal temperature, σ th : Thermal stress T 1 = Intermediate metal temperature T 2 = Calculated from outer surface metal temperature. Function A (T 0 ), B (T 1 ), C of the equation (1)
(ΔT C ) is determined by performing a case study of thermal stress analysis in each operation mode with an actual shape off-line and creating a stress-temperature difference diagram as shown in FIGS. 5 to 7. . Here, T 0 of the function A (T 0), T 1 function B (T 1), respectively, the Young's modulus by the actual metal temperature,
Since the linear expansion coefficients are different, it becomes a function of the temperatures T 0 and T 1 . FIG. 5 shows a schematic diagram of stress-temperature difference of function A (T 0 ) = α at temperature T 1 . B is shown in FIGS. 6 and 7, respectively.
(T 1), C of ([Delta] T C), the stress - shows the temperature difference schematic diagram. In this way, by making the thermal stress calculation formula a function of temperature and temperature difference, it becomes convenient for online calculation. That is, normally, in order to obtain the thermal stress, first, a partial differential equation is solved based on various measurement data to obtain the temperature distribution, and the thermal stress is calculated from the temperature distribution, so that there are many calculation steps and a lot of calculation time. According to the present invention, the calculation time can be greatly reduced. Also, when solving a partial differential equation with the heat transfer coefficient from the internal steam to the metal as the environmental condition,
Since the accuracy of thermal stress calculation depends entirely on the accuracy of heat transfer coefficient estimation, there are considerable errors in measuring steam conditions for heat transfer coefficient estimation, so there is a limit to improvement in accuracy. Since it is directly measured, the thermal stress can be accurately obtained.

つぎに内圧による3方向応力は下記の(2),(3)式により
得られる。
Next, the three-way stress due to the internal pressure is obtained by the following equations (2) and (3).

σrP=−P・・・(2) ここで、σrP:半径方向内圧応力,P:内圧 σeP:周方向内圧応力,Di:内径 σZP:軸方向内圧応力,t:板厚 以上、(1)〜(3)式は、円筒部に発生する応力でありノズ
ルコーナ部2等の応力集中部に発生する応力は、円筒部
に発生する応力に応力集中係数を乗じて求める。したが
つて、ノズルコーナ部2に発生する合計応力演算値22
は、下記の(4)〜(6)式で得られる。
σ rP = -P (2) Where σ rP : radial inner pressure stress, P: inner pressure σ eP : circumferential inner pressure stress, Di: inner diameter σ ZP : axial inner pressure stress, t: plate thickness or more, equations (1) to (3) are cylindrical The stress that is generated in the portion and that is generated in the stress concentration portion such as the nozzle corner portion 2 is obtained by multiplying the stress that is generated in the cylindrical portion by the stress concentration coefficient. Therefore, the total stress calculation value 22 generated in the nozzle corner 2
Is obtained by the following equations (4) to (6).

σ=Krp・σrp・・・(4) σ=Kep・σth+Kep・σep・・・(5) σ=Kzt・σth+Kzp・σzp・・・(6) ここで、Krp:半径方向内圧応力集中係数 Ket:周方向熱応力集中係数 KeP:周方向内圧応力集中係数 KZt:軸方向内圧応力集中係数 KZP:軸方向内圧応力集中係数 σ:半径方向合計応力 σ:周方向合計応力 σ:軸方向合計応力 第1図に示す実施例では、熱応力監視点をヘツダ1のノ
ズルコーナ部2に1ケ所だけ設けたものについて説明し
たが、実際にはこのような監視点を複数個設け、それら
すべての要求を満たすようなボイラの熱応力監視が行な
われる。
σ r = K rp・ σ rp・ ・ ・ (4) σ 0 = K ep・ σ th + K ep・ σ ep・ ・ ・ (5) σ z = K zt・ σ th + K zp・ σ zp・ ・ ・ ( 6) where K rp : radial direction internal pressure stress concentration factor K et : circumferential thermal stress concentration factor K eP : circumferential direction internal pressure stress concentration factor K Zt : axial direction internal pressure stress concentration factor K ZP : axial direction internal pressure stress concentration factor σ r : Total stress in the radial direction σ e : Total stress in the circumferential direction σ z : Total stress in the axial direction In the embodiment shown in FIG. 1, the thermal stress monitoring point is provided in the nozzle corner portion 2 of the head 1 only at one location. However, in practice, a plurality of such monitoring points are provided and the thermal stress of the boiler is monitored so as to satisfy all the requirements.

また、実施例では、内面,中間,外面の3点のメタル温
度を計測しているが、更に計測点を増すことにより熱応
力演算精度を上げることができる。
Further, in the embodiment, the metal temperatures at the three points of the inner surface, the middle portion and the outer surface are measured, but the thermal stress calculation accuracy can be improved by further increasing the measurement points.

なお、内面メタル温度検出器6の計測点Tを第3図に
示す様にヘツダ1の内面よりも外側に位置させたので、
内面メタル温度がヘツダ1の蒸気温度に左,右されるこ
とがなく、内面メタル温度を正確に測定することができ
る。
Since the measurement point T 0 of the inner surface metal temperature detector 6 is located outside the inner surface of the header 1 as shown in FIG. 3,
The inner metal temperature can be accurately measured without the inner metal temperature being left and right by the steam temperature of the header 1.

この様に本考案によるボイラの熱応力監視装置は熱応力
を求めるために偏微分方程式を解く必要がなく、メタル
温度検出信号から直接熱応力が得られるため計算時間が
大巾に短縮される。したがつて、計算機によりオンライ
ンで逐次発生応力を監視する場合、計算機負荷も低減で
きる。
As described above, the thermal stress monitoring device for the boiler according to the present invention does not need to solve the partial differential equation to obtain the thermal stress, and the thermal stress can be directly obtained from the metal temperature detection signal, so that the calculation time is greatly shortened. Therefore, when the stress generated sequentially is monitored online by the computer, the computer load can be reduced.

また、内部流体からメタルへの熱伝達率を境界条件に偏
微分方程式を解いて熱応力を求める従来方法に比べて、
熱応力計算精度も向上できる。すなわち、熱伝達率の推
定には、内部流体条件を計測する必要があり、計測誤差
等は不可避で精度向上には限度がある。
In addition, compared with the conventional method that solves the partial differential equation with the heat transfer coefficient from the internal fluid to the metal as the boundary condition to obtain the thermal stress,
The thermal stress calculation accuracy can also be improved. That is, in order to estimate the heat transfer coefficient, it is necessary to measure the internal fluid conditions, measurement errors and the like are unavoidable, and there is a limit to improving accuracy.

なお、熱応力演算のためのメタル温度計測点は、最低3
点でよく他の蒸気状態の計測は不要なため経済的でもあ
る。
At least 3 metal temperature measurement points for thermal stress calculation.
It is economical because it does not need to measure other vapor conditions.

〔考案の効果〕[Effect of device]

本考案は前述のように、各運転モードでの、内側メタル
温度差(ΔT)と熱応力との関係特性、外側メタル温
度差(ΔT)と熱応力との関係特性、ならびに内外メ
タル温度差(ΔT)と熱応力との関係特性を予め求め
ておき、それら関係特性と温度差演算器によつて演算さ
れた各メタル温度差(ΔT),(ΔT),(Δ
)から直接に熱応力を演算することができ、また圧
力検出器からの圧力検出信号により、直接に内圧応力を
演算することができるから、ボイラ耐圧部における応力
の演算が、例えばボイラ起動中などにおいて短時間にし
かも精度よくでき、信頼性の高いボイラの熱応力監視装
置を提供することができる。
As described above, the present invention relates to the relationship between the inner metal temperature difference (ΔT A ) and thermal stress, the relationship between the outer metal temperature difference (ΔT B ) and thermal stress, and the inner and outer metal temperature in each operation mode. The relationship characteristics between the difference (ΔT C ) and the thermal stress are obtained in advance, and the metal temperature differences (ΔT A ), (ΔT B ), (Δ
The thermal stress can be calculated directly from T C ), and the internal pressure stress can be calculated directly from the pressure detection signal from the pressure detector. It is possible to provide a highly reliable thermal stress monitoring device for a boiler, which can be accurately performed in a short time in the middle or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例に係るボイラの熱応力監視装置
の概略系統図、第2図は第1図のヘツダを拡大した詳細
図、第3図は第2図のA−A線断面におけるメタル温度
計測点を示す説明図、第4図は第3図のメタル温度分布
図、第5図から第7図は応力−温度差線図である。 1……ヘツダ、6,8,10……温度検出器、7……内面
メタル温度検出信号、9……中間メタル温度検出信号、
11……外面メタル温度検出信号、12……温度差演算器、
14……熱応力演算器、15……熱応力演算値、17……圧力
検出器、18……圧力検出信号、19……内圧応力演算器、
20……内圧応力演算値、21……合計応力演算器。
FIG. 1 is a schematic system diagram of a thermal stress monitoring device for a boiler according to an embodiment of the present invention, FIG. 2 is an enlarged detailed view of a header of FIG. 1, and FIG. 3 is a sectional view taken along line AA of FIG. 4 is an explanatory view showing the metal temperature measurement points in FIG. 4, FIG. 4 is a metal temperature distribution diagram of FIG. 3, and FIGS. 5 to 7 are stress-temperature difference diagrams. 1 ... Hedda, 6,8,10 ... Temperature detector, 7 ... Internal metal temperature detection signal, 9 ... Intermediate metal temperature detection signal,
11 …… Outside metal temperature detection signal, 12 …… Temperature difference calculator,
14 ... Thermal stress calculator, 15 ... Thermal stress calculation value, 17 ... Pressure detector, 18 ... Pressure detection signal, 19 ... Internal pressure stress calculator,
20 …… Internal pressure stress calculation value, 21 …… Total stress calculation unit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ボイラ耐圧部の内面メタル温度、中間メタ
ル温度および外面メタル温度をそれぞれ検出する温度検
出器と、 その温度検出器からの内面メタル温度検出信号、中間メ
タル温度検出信号および外面メタル温度検出信号によ
り、サンプリング周期毎に内面メタル温度と中間メタル
温度との内側メタル温度差(ΔT)、中間メタル温度
と外面メタル温度との外側メタル温度差(ΔT)およ
び前記内側メタル温度差(ΔT)と外側メタル温度差
(ΔT)との内外メタル温度差(ΔT)をそれそれ
演算する温度差演算器と、 各運転モードでの、内側メタル温度差(ΔT)と熱応
力との関係特性、外側メタル温度差(ΔT)と熱応力
との関係特性、ならびに内外メタル温度差(ΔT)と
熱応力との関係特性を予め求めておき、それら関係特性
と前記温度差演算器によつて演算された各メタル温度差
(ΔT),(ΔT),(ΔT)から直接に熱応力
を演算する熱応力演算器と、 ボイラ耐圧部にかかる内圧を検出する圧力検出器と、 その圧力検出器からの圧力検出信号により、内圧応力を
演算する内圧応力演算器と、 前記熱応力演算器によつて演算された熱応力と、前記内
圧応力演算器によつて演算された内圧応力とから合計応
力を演算する合計応力演算器とを設けたことを特徴とす
るボイラの熱応力監視装置。
1. A temperature detector for detecting an inner metal temperature, an intermediate metal temperature and an outer metal temperature of a boiler pressure-resistant portion, and an inner metal temperature detection signal, an intermediate metal temperature detection signal and an outer metal temperature from the temperature detector. the detection signal, the inner metal temperature difference between the inner surface metal temperature and the intermediate metal temperature in each sampling period ([Delta] T a), the outer metal temperature difference between the intermediate metal temperature and the outer surface metal temperature ([Delta] T B) and the inner metal temperature differences ( ΔT A ) and the outside metal temperature difference (ΔT B ), the temperature difference calculator for calculating the inside / outside metal temperature difference (ΔT C ), and the inside metal temperature difference (ΔT A ) and thermal stress in each operation mode. And the relational characteristics between the outside metal temperature difference (ΔT B ) and the thermal stress, and the relational characteristics between the inside and outside metal temperature difference (ΔT C ) and the thermal stress. The thermal stress calculator for directly calculating the thermal stress from the relational characteristics and the metal temperature differences (ΔT A ), (ΔT B ), and (ΔT C ) calculated by the temperature difference calculator, and the boiler. A pressure detector for detecting the internal pressure applied to the pressure resistant portion, an internal pressure stress calculator for calculating the internal pressure stress by the pressure detection signal from the pressure detector, and a thermal stress calculated by the thermal stress calculator, A thermal stress monitoring device for a boiler, comprising: a total stress calculator for calculating a total stress from the internal pressure stress calculated by the internal pressure stress calculator.
JP1985077089U 1985-05-25 1985-05-25 Boiler thermal stress monitor Expired - Lifetime JPH0624645Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985077089U JPH0624645Y2 (en) 1985-05-25 1985-05-25 Boiler thermal stress monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985077089U JPH0624645Y2 (en) 1985-05-25 1985-05-25 Boiler thermal stress monitor

Publications (2)

Publication Number Publication Date
JPS61198807U JPS61198807U (en) 1986-12-12
JPH0624645Y2 true JPH0624645Y2 (en) 1994-06-29

Family

ID=30619833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985077089U Expired - Lifetime JPH0624645Y2 (en) 1985-05-25 1985-05-25 Boiler thermal stress monitor

Country Status (1)

Country Link
JP (1) JPH0624645Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721508B2 (en) * 1988-05-09 1998-03-04 株式会社日立製作所 Warm-up separation heater control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128429A (en) * 1983-01-14 1984-07-24 Mitsubishi Heavy Ind Ltd Life monitoring method for pressure resisting parts
JPS6089602A (en) * 1983-10-20 1985-05-20 三菱重工業株式会社 Method of monitoring life of pressure-resisting part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement

Also Published As

Publication number Publication date
JPS61198807U (en) 1986-12-12

Similar Documents

Publication Publication Date Title
EP0030459B1 (en) System for monitoring steam condenser performance
Zagarola et al. Mean-flow scaling of turbulent pipe flow
EP2038604B1 (en) Steam generator measuring system
CN102901748B (en) Nondestructive testing device and method based on pipeline temperature field distribution
CN110909505B (en) Transient temperature field calculation method of nuclear power plant fatigue monitoring and life evaluation system
JPH0624645Y2 (en) Boiler thermal stress monitor
EP0165675B2 (en) Apparatus for measuring thermal stress of pressure-tight tube
Taler et al. Experimental verification of space marching methods for solving inverse heat conduction problems
JP2001108669A (en) Remaining life evaluating apparatus for heat transfer tube
CN110929401A (en) Boundary element method-based online detection method for defects of inner wall of high-temperature steel-making converter
JPS59128429A (en) Life monitoring method for pressure resisting parts
JPH0617067Y2 (en) Thermal stress monitoring device for thick-walled tubular structures
JP3676054B2 (en) Pressure monitoring unit life monitoring device
JPH1096704A (en) Monitering device for fatigue
JPS62835A (en) Nonitoring device for creep fatigue and life of turbine rotor
JPH1010276A (en) Method and system for coolant flowrate measurement in reactor core
JPH0480282B2 (en)
JPS57166541A (en) Method and device estimating life of fluid receptacle at high temperature
JPS6011002A (en) Controller for boiler load
JPH0127377B2 (en)
JPH0127378B2 (en)
JP2540727B2 (en) Plant parameter abnormal amount search method and apparatus
CN116754101A (en) Temperature measurement correction method for high-temperature solid wall surface
JPS6089602A (en) Method of monitoring life of pressure-resisting part
JPS6171345A (en) Life monitoring method of pressure resisting part