JPH1096704A - Monitering device for fatigue - Google Patents

Monitering device for fatigue

Info

Publication number
JPH1096704A
JPH1096704A JP25180496A JP25180496A JPH1096704A JP H1096704 A JPH1096704 A JP H1096704A JP 25180496 A JP25180496 A JP 25180496A JP 25180496 A JP25180496 A JP 25180496A JP H1096704 A JPH1096704 A JP H1096704A
Authority
JP
Japan
Prior art keywords
temperature
piping
nozzle
stress
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25180496A
Other languages
Japanese (ja)
Inventor
Kiminobu Hojo
公伸 北条
Itaru Muroya
格 室屋
Kinji Baba
金司 馬場
Mayumi Ochi
真弓 越智
Toshimitsu Umagoe
俊光 馬越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25180496A priority Critical patent/JPH1096704A/en
Publication of JPH1096704A publication Critical patent/JPH1096704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate fatigue damage coefficient and cracking stability more accurately, by analyzing variation of a thermal stress caused by time-dependent variation of any temperature distribution on an evaluated cross-section using a reverse analysis method and an extended Green function method. SOLUTION: A temperature sensor 3 for outer surface of piping and a temperature sensor 2 for outer surface of nozzle respectively attached to an evaluated piping 4 and a nozzle 1 respectively detect temperature change 3a on the outer surface of the piping and temperature change 2a on the outer surface of the nozzle. A reverse analyzing processor 26 calculates temperature change 27 on the inner surface of the piping from the temperature change 3a, and calculates temperature change 28 on the inner surface of the nozzle from the temperature change 2a using reverse analysis method, and an extended Green function processor 30 calculates thermal stress changes 32, 35 for the piping 4 and the nozzle 1 from the temperature changes 27, 28 using extended Green function method. Based on thermal stress changes 32, 35, pressure change 7a in the piping provided by a pressure sensor 7, and stress against the pressure in the piping calculated by an inner pressure stress processor 31, a fatigue damage processor 36 calculates fatigue damage of the piping 1, derives variation in stress and fatigue damage degree, and shows the results on a display 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電プラント等で
適用される疲労モニタリング装置に関する。
The present invention relates to a fatigue monitoring device applied to a power plant or the like.

【0002】[0002]

【従来の技術】従来より発電プラント等に適用されてい
る疲労モニタリングシステムの回路構成を図3に示す。
同図で、評価点となる配管及びその管台部の外表面には
それぞれ温度センサ3,2が取付けられと共に、該配管
内の評価点位置には圧力センサ7が取付けられる。これ
ら各温度センサ3,2、及び圧力センサ7からなる外部
装置で得られる各温度変化3a,2a、及び圧力変化7
aは疲労モニタリング演算部8に入力される。
2. Description of the Related Art FIG. 3 shows a circuit configuration of a fatigue monitoring system conventionally applied to power plants and the like.
In the figure, temperature sensors 3 and 2 are respectively attached to the pipes serving as evaluation points and the outer surfaces of the nozzles, and pressure sensors 7 are mounted at the evaluation point positions in the pipes. Each temperature change 3a, 2a and pressure change 7 obtained by an external device composed of these temperature sensors 3, 2 and pressure sensor 7
a is input to the fatigue monitoring calculation unit 8.

【0003】一方、当該配管の内壁面に軸対称的な温度
変化が1℃発生した際11,15の当該部近傍での温度
変化をFEM解析解析部12,16で求め、これらから
内表面温度−外表面温度と外表面温度の時間変化率との
関係14,17を予め求めておく。
On the other hand, when an axially symmetrical temperature change of 1 ° C. occurs on the inner wall surface of the pipe, the temperature changes in the vicinity of the relevant portions 11 and 15 are obtained by the FEM analysis / analysis units 12 and 16 and the inner surface temperature -Relations 14 and 17 between the outer surface temperature and the time rate of change of the outer surface temperature are determined in advance.

【0004】この際、評価断面に温度分布を生じる場合
は、断面上の各点での内表面と外表面の温度差は軸対称
体での先の関係が成立つとして、近似的に内表面の温度
分布の時間変化を求めておく。
In this case, when a temperature distribution occurs in the evaluation cross section, the temperature difference between the inner surface and the outer surface at each point on the cross section is approximately the same as that of the axisymmetric body. The time change of the temperature distribution is obtained in advance.

【0005】しかるに、評価断面内表面温度の時間変化
が求められた後、この温度分布をそれぞれの時間上にお
いて線形成分と非線形成分に分解する。配管部は、線形
成分の温度分布に対し、内壁温度の単位直線温度分布9
のビームモデルFEM解析部10による応力の比例倍す
る。また、評価断面上の着目点での局所熱応力は、内表
面での温度変化を入力条件としてグリーン関数法により
求める。非線形成分の温度分布に対しては、規格化され
た温度分布に対応する応力のデータベースから応力値を
推定する。
[0005] However, after the time change of the surface temperature in the evaluation section is obtained, this temperature distribution is decomposed into a linear component and a non-linear component on each time. The piping section has a unit linear temperature distribution 9 of the inner wall temperature with respect to the linear component temperature distribution.
Is proportional to the stress by the beam model FEM analysis unit 10. The local thermal stress at the point of interest on the evaluation cross section is obtained by the Green's function method using the temperature change on the inner surface as an input condition. For the temperature distribution of the non-linear component, a stress value is estimated from a stress database corresponding to the normalized temperature distribution.

【0006】一方、管台部については、配管の応力推定
とほぼ同様であり、線形成分の温度分布に対しては配管
からの等価熱曲げ応力による管台部反力22を入力デー
タとし、別途、単位反力加重が負荷とされた管台部FE
Mモデル18に対するFEM解析部19からの単位反力
加重に対する応力20を比例倍して求める。
On the other hand, the nozzle section is substantially the same as the estimation of the stress of the pipe. For the temperature distribution of the linear component, the nozzle section reaction force 22 due to the equivalent thermal bending stress from the pipe is used as input data. , Nozzle head FE loaded with unit reaction force load
The stress 20 with respect to the unit reaction force load from the FEM analysis unit 19 for the M model 18 is obtained by proportionally multiplying.

【0007】そして、これらの熱応力変化と内圧力応力
等を組合わせることで疲労損傷係数及びき裂安定性を疲
労モニタリング演算部8により評価するようにしてい
た。
[0007] By combining these thermal stress changes with the internal pressure stress and the like, the fatigue damage coefficient and the crack stability are evaluated by the fatigue monitoring calculation unit 8.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記図3
に示したようなシステム構成では、評価断面での内表面
温度分布を求めるときに軸対称モデルから求められた内
表面温度−外表面温度と害表面温度変化率との関係を用
いていた。この関係は、一種の工学的アプローチである
ため、やや精度が劣り、しかも断面内に温度分布を生じ
る時でも上記軸対称モデルから求められた上記関係を適
用していたため、結果として評価精度を高めることがで
きない要因となっていた。
However, FIG.
In the system configuration as shown in (1), when calculating the inner surface temperature distribution in the evaluation section, the relationship between the inner surface temperature minus the outer surface temperature obtained from the axially symmetric model and the harmful surface temperature change rate was used. Since this relationship is a kind of engineering approach, the accuracy is slightly inferior, and even when a temperature distribution occurs in the cross section, the above relationship obtained from the axisymmetric model is applied, and as a result, the evaluation accuracy is improved. It was a factor that could not be done.

【0009】本発明は上記のような実情に鑑みてなされ
たもので、その目的とするところは、評価断面で温度分
布の時間変化を生じる場合であっても高い評価精度で疲
労損傷係数及びき裂安定性を評価することができ、した
がって発電プラントの寿命監視に有用な疲労モニタリン
グ装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has as its object to provide a high evaluation accuracy and a high fatigue damage coefficient and a high accuracy even when a temperature change occurs in the evaluation cross section over time. An object of the present invention is to provide a fatigue monitoring device that can evaluate crack stability and is useful for monitoring the life of a power plant.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
評価点近傍に取付けられた温度センサと、上記評価点に
おける内圧を検出する圧力センサと、上記温度センサで
得られた温度データから逆解析手法により上記評価点断
面内表面の温度分布を推定する逆解析演算手段と、この
逆回析演算手段で得た上記評価点断面内表面の温度分布
を用いて2次元グリーン関数計算により上記評価点の熱
応力を算出するグリーン関数演算手段と、このグリーン
関数演算手段で得た上記評価点の熱応力と上記圧力セン
サで得た圧力データに基づく内圧応力変化とによって上
記評価点での疲労損傷評価演算を行なう疲労演算手段と
を具備したことを特徴とする。
According to the first aspect of the present invention,
A temperature sensor attached near the evaluation point, a pressure sensor for detecting the internal pressure at the evaluation point, and an inverse for estimating the temperature distribution on the inner surface of the cross section of the evaluation point by an inverse analysis method from the temperature data obtained by the temperature sensor. Analysis calculation means, green function calculation means for calculating the thermal stress at the evaluation point by two-dimensional Green function calculation using the temperature distribution on the inner surface of the evaluation point cross section obtained by the inverse diffraction calculation means, and the Green function Fatigue calculation means for performing a fatigue damage evaluation calculation at the evaluation point based on the thermal stress at the evaluation point obtained by the calculation means and a change in internal pressure based on the pressure data obtained by the pressure sensor. .

【0011】このような構成とすれば、逆解析手法及び
拡張グリーン関数手法を導入することにより、評価断面
で生じている任意の温度分布の時間変化による熱応力の
時間変化を高い精度でリアルタイムに解析することがで
きるので、結果として高い評価精度で疲労損傷係数及び
き裂安定性を評価することができ、発電プラントの寿命
監視に充分有用なものとすることができる。
[0011] With this configuration, by introducing the inverse analysis method and the extended Green's function method, the temporal change of the thermal stress due to the temporal change of an arbitrary temperature distribution generated in the evaluation section can be accurately and in real time. Since the analysis can be performed, as a result, the fatigue damage coefficient and the crack stability can be evaluated with high evaluation accuracy, which can be sufficiently useful for monitoring the life of the power plant.

【0012】[0012]

【発明の実施の形態】以下図面を参照して本発明の実施
の一形態を説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1はその回路構成を示すもので、上記図
3と同一部分には同一符号を付してその説明を省略する
ものとする。
FIG. 1 shows the circuit configuration, and the same parts as those in FIG. 3 are denoted by the same reference numerals and description thereof will be omitted.

【0014】しかして、配管外表面温度センサ3及び管
台外表面温度センサ2は図2に示すように評価対象とな
る配管4及び管台1に取付けられ、配管外表面温度セン
サ3で検出された配管外表面温度変化3a及び管台外表
面温度センサ2で検出された管台外表面温度変化2aは
共に疲労モニタリング演算部8′内の逆解析演算部26
に入力される。
The outer pipe surface temperature sensor 3 and the nozzle outer surface temperature sensor 2 are attached to the pipe 4 and the nozzle 1 to be evaluated as shown in FIG. The change 3a of the pipe outer surface temperature and the change 2a of the nozzle outer surface temperature detected by the nozzle outer surface temperature sensor 2 are both performed by the inverse analysis calculating section 26 in the fatigue monitoring calculating section 8 '.
Is input to

【0015】この逆解析演算部26では、逆解析手法を
用いて配管外表面温度変化3aから配管内表面温度変化
27を、管台外表面温度変化2aから管台内表面温度変
化28を算出し、これを拡張グリーン関数演算部30に
与える。
The inverse analysis operation section 26 calculates an internal pipe surface temperature change 27 from the external pipe surface temperature change 3a and an internal nozzle temperature change 28 from the nozzle outer surface temperature change 2a using an inverse analysis technique. Are given to the extended Green function operation unit 30.

【0016】この拡張グリーン関数演算部30にはま
た、3次元FEM解析モデルとして配管部応力のグリー
ン関数37と管台部応力のグリーン関数38とが予め与
えられるもので、これら入力により拡張グリーン関数手
法を用いて配管部と管台部の熱応力変化32,35を算
出し、これらを共に疲労損傷計算部36に与える。
The extended Green function calculator 30 is provided with a Green function 37 for pipe stress and a Green function 38 for nozzle stress as a three-dimensional FEM analysis model in advance. The thermal stress changes 32 and 35 of the pipe section and the nozzle section are calculated using the technique, and these are both given to the fatigue damage calculation section 36.

【0017】一方、管台1については、配管4からの反
力による応力も発生するため、上記逆解析演算部26の
算出した配管内表面温度変化27を線形温度分布計算部
29にも与え、ここで配管部の線形温度分布を算出し
て、算出結果を配管からの反力計算部33に与える。
On the other hand, in the nozzle 1, a stress due to the reaction force from the pipe 4 is also generated. Therefore, the change 27 in the pipe inner surface temperature calculated by the inverse analysis calculation section 26 is also given to the linear temperature distribution calculation section 29. Here, the linear temperature distribution of the pipe section is calculated, and the calculation result is given to the reaction force calculation section 33 from the pipe.

【0018】この反力計算部33にはまた、上記ビーム
モデルFEM解析部10の出力する等価熱曲げ応力によ
る管台部反力22が与えられるもので、これらの入力に
より配管からの反力を算出し、算出した配管からの反力
と上記単位反力加重に対する応力とにより配管反力によ
る管台部応力34を求めて、求めた結果を上記拡張グリ
ーン関数演算部30からの管台部熱応力変化35に加算
して疲労損傷計算部36に与える。
The reaction force calculating section 33 is also provided with a nozzle section reaction force 22 based on the equivalent thermal bending stress output from the beam model FEM analysis section 10. The reaction force from the pipe is input by these inputs. The nozzle stress 34 due to the pipe reaction force is calculated from the calculated reaction force from the pipe and the stress with respect to the unit reaction force load, and the obtained result is calculated as the nozzle heat from the extended Green function calculation unit 30. The result is added to the stress change 35 and given to the fatigue damage calculator 36.

【0019】疲労損傷計算部36では、拡張グリーン関
数演算部30からの配管部熱応力変化32及び管台部熱
応力変化35と、圧力センサ7からの管内圧力変化7a
に基づいて内圧応力計算部31で算出された管内圧力に
対する応力とにより、当該評価対象となる配管の疲労損
傷計算を実施し、応力変化、疲労損傷度変化を算出して
これらを疲労モニタリング演算部8′外部の表示装置2
5で表示出力させるものである。
The fatigue damage calculation section 36 includes a change in the thermal stress 32 in the pipe section and a change 35 in the thermal stress in the nozzle base from the extended Green's function calculation section 30 and a change 7a in the pipe pressure from the pressure sensor 7.
Based on the stress with respect to the pipe pressure calculated by the internal pressure stress calculation unit 31 based on the above, the fatigue damage calculation of the pipe to be evaluated is performed, the stress change and the fatigue damage degree change are calculated, and these are calculated by the fatigue monitoring calculation unit. 8 'external display device 2
5 is used for display output.

【0020】上記のような構成にあって、まず上記逆解
析演算部26による逆解析手法について説明する。熱伝
導の順問題は、流体の温度変化、熱伝達率の変化を入力
条件とし、配管等構造物の内外面の温度分布の熱伝導方
程式を解くことになる。したがって、逆問題では上記順
問題の逆、すなわち今回の評価対象では外表面温度分布
を入力条件として順問題の入力条件、すなわち今回の評
価対象では流体温度分布の時間変化を求めることとな
る。そして、この求めた流体温度分布の時間変化が配管
内表面の温度分布に略等しいものと判断して、配管内表
面温度変化27及び管台内表面温度変化28を算出する
ようにしたものである。
In the configuration described above, first, an inverse analysis method by the inverse analysis operation unit 26 will be described. The forward problem of heat conduction is to solve the heat conduction equation of the temperature distribution on the inner and outer surfaces of a structure such as a pipe by using a change in fluid temperature and a change in heat transfer coefficient as input conditions. Therefore, in the inverse problem, the input condition of the forward problem is determined by using the outer surface temperature distribution as an input condition in the present evaluation object, that is, the temporal change of the fluid temperature distribution in the current evaluation object is obtained. Then, it is determined that the time change of the obtained fluid temperature distribution is substantially equal to the temperature distribution of the pipe inner surface, and the pipe inner surface temperature change 27 and the nozzle base inner surface temperature change 28 are calculated. .

【0021】こうした逆解析手法により、評価点の断面
近傍で計測した外表面断面の温度分布からリアルタイム
で当該部内表面断面の温度分布を推定するものである。
By such an inverse analysis technique, the temperature distribution of the inner surface cross section of the relevant portion is estimated in real time from the temperature distribution of the outer surface cross section measured near the evaluation point cross section.

【0022】拡張グリーン関数手法では、評価断面を周
方向にいくつかに分割した領域のそれぞれが内表面上で
1℃だけ温度変化したときの、評価断面上での着目点で
生じる応力の時間変化をデータベースとして予め持って
おくもので、上記逆解析手法により周方向の複数点での
内表面の温度変化が推定できるので、これを入力データ
として上記データベースを線形加算することにより、熱
応力の時間変化を容易に求められるものである。
In the extended Green's function method, when the temperature of the region obtained by dividing the evaluation section into several parts in the circumferential direction changes by 1 ° C. on the inner surface, the time change of the stress generated at the point of interest on the evaluation section Is stored in advance as a database, and the temperature change of the inner surface at a plurality of points in the circumferential direction can be estimated by the above-described inverse analysis method. Changes are easily sought.

【0023】上記のような手法を採ることにより、上記
図3で説明したような軸対称モデルの仮定を入れること
なく、任意の温度分布の時間変化に対して、熱応力を高
精度で求めることができる。
By adopting the above-described method, the thermal stress can be obtained with high accuracy with respect to a time change of an arbitrary temperature distribution without assuming the axisymmetric model as described with reference to FIG. Can be.

【0024】なお、本発明は上記のように説明した実施
の形態に限定されるものではなく、その要旨を逸脱しな
い範囲内で種々変形して実施することが可能であるもの
とする。
It should be noted that the present invention is not limited to the embodiment described above, and can be variously modified and implemented without departing from the gist thereof.

【0025】[0025]

【発明の効果】請求項1記載の発明によれば、逆解析手
法及び拡張グリーン関数手法を導入することにより、評
価断面で生じている任意の温度分布の時間変化による熱
応力の時間変化を高い精度でリアルタイムに解析するこ
とができるので、結果として高い評価精度で疲労損傷係
数及びき裂安定性を評価することができ、発電プラント
の寿命監視に充分有用なものとすることができる。
According to the first aspect of the present invention, by introducing the inverse analysis method and the extended Green's function method, the time change of the thermal stress caused by the time change of an arbitrary temperature distribution occurring in the evaluation section can be increased. Since the analysis can be performed in real time with high accuracy, the fatigue damage coefficient and the crack stability can be evaluated with high evaluation accuracy as a result, which can be sufficiently useful for monitoring the life of the power plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る回路構成を示すブ
ロック図。
FIG. 1 is a block diagram showing a circuit configuration according to an embodiment of the present invention.

【図2】同実施の形態に係る各センサの設置状態を示す
図。
FIG. 2 is a diagram showing an installation state of each sensor according to the embodiment.

【図3】従来の疲労モニタリングシステムの回路構成を
示すブロック図。
FIG. 3 is a block diagram showing a circuit configuration of a conventional fatigue monitoring system.

【符号の説明】[Explanation of symbols]

1…管台 2…管台外表面温度センサ 3…配管外表面温度センサ 4…配管 5…高温水配管部 6…低温水配管部 7…圧力センサ 8,8′…疲労モニタリング演算部 9…内壁温度の単位直線温度分布 10…ビームモデルFEM解析部 11…管台内壁の単位温度変化 12…管台軸対称モデルFEM解析部 13…管台応力のグリーン関数 14,17…温度変化線図 15…配管内壁の単位温度変化 16…配管軸対称モデルFEM解析部 18…管台部FEMモデル 19…管台部FEM解析部 20…単位反力加重に対する応力 21…管台部データベース 22…等価熱曲げ応力による管台部反力 23…配管部データベース 24…熱応力モニタリング装置 25…表示装置 26…逆解析演算部 27…配管内表面温度変化 28…管台内表面温度変化 29…線形温度分布計算部 30…拡張グリーン関数演算部 31…内圧応力計算部 32…配管部熱応力変化 33…配管からの反力計算部 34…配管反力による管台部応力 35…管台部熱応力変化 36…疲労損傷計算部 37…配管部応力のグリーン関数 38…管台部応力のグリーン関数 39…データベース DESCRIPTION OF SYMBOLS 1 ... nozzle 2 ... nozzle outer surface temperature sensor 3 ... piping outer surface temperature sensor 4 ... piping 5 ... high temperature water piping 6 ... low temperature water piping 7 ... pressure sensor 8, 8 '... fatigue monitoring calculation part 9 ... inner wall Unit linear temperature distribution of temperature 10: Beam model FEM analysis unit 11: Unit temperature change of nozzle inside wall 12 ... Axial axis symmetric model FEM analysis unit 13: Green function of nozzle stress 14, 17, Temperature change diagram 15 ... Unit temperature change of pipe inner wall 16: Pipe axisymmetric model FEM analysis unit 18: Stub FEM model 19 ... Stub FEM analysis unit 20: Stress against unit reaction force load 21 ... Stub base database 22: Equivalent thermal bending stress Bottom reaction force 23 ... Piping part database 24 ... Thermal stress monitoring device 25 ... Display device 26 ... Inverse analysis operation part 27 ... Piping inner surface temperature change 28 ... Piece inner surface temperature change 9: Linear temperature distribution calculation unit 30: Extended Green's function calculation unit 31: Internal pressure stress calculation unit 32: Thermal stress change in piping 33: Reaction force calculation unit from piping 34: Stress in the nozzle head due to piping reaction force 35: Head nozzle Part thermal stress change 36 Fatigue damage calculation part 37 Green function of pipe part stress 38 Green function of nozzle part stress 39 Database

フロントページの続き (72)発明者 越智 真弓 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 馬越 俊光 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内Continued on the front page (72) Inventor Mayumi Ochi 1-1-1 Wadazakicho, Hyogo-ku, Kobe City, Hyogo Prefecture Inside Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (72) Inventor Toshimitsu Magoshi Wadazakicho, Hyogo-ku, Hyogo Prefecture No. 1-1, Mitsubishi Heavy Industries, Ltd., Kobe Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 評価点近傍に取付けられた温度センサ
と、 上記評価点における内圧を検出する圧力センサと、 上記温度センサで得られた温度データから逆解析手法に
より上記評価点断面内表面の温度分布を推定する逆解析
演算手段と、 この逆回析演算手段で得た上記評価点断面内表面の温度
分布を用いて2次元グリーン関数計算により上記評価点
の熱応力を算出するグリーン関数演算手段と、 このグリーン関数演算手段で得た上記評価点の熱応力と
上記圧力センサで得た圧力データに基づく内圧応力変化
とによって上記評価点での疲労損傷評価演算を行なう疲
労演算手段とを具備したことを特徴とする疲労モニタリ
ング装置。
A temperature sensor mounted near an evaluation point; a pressure sensor for detecting an internal pressure at the evaluation point; and a temperature of the inner surface of the cross section of the evaluation point by an inverse analysis method based on temperature data obtained by the temperature sensor. Inverse analysis operation means for estimating the distribution, and Green function operation means for calculating the thermal stress at the evaluation point by two-dimensional Green function calculation using the temperature distribution on the inner surface of the cross section of the evaluation point obtained by the inverse diffraction operation means And fatigue calculation means for performing a fatigue damage evaluation calculation at the evaluation point based on the thermal stress at the evaluation point obtained by the Green function calculation means and an internal pressure change based on the pressure data obtained by the pressure sensor. A fatigue monitoring device characterized by the following.
JP25180496A 1996-09-24 1996-09-24 Monitering device for fatigue Pending JPH1096704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25180496A JPH1096704A (en) 1996-09-24 1996-09-24 Monitering device for fatigue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25180496A JPH1096704A (en) 1996-09-24 1996-09-24 Monitering device for fatigue

Publications (1)

Publication Number Publication Date
JPH1096704A true JPH1096704A (en) 1998-04-14

Family

ID=17228180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25180496A Pending JPH1096704A (en) 1996-09-24 1996-09-24 Monitering device for fatigue

Country Status (1)

Country Link
JP (1) JPH1096704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964006A (en) * 2009-07-23 2011-02-02 韩国电力公社 Method and device for calculating temperature dependent Green function by using weight function
JP2011158362A (en) * 2010-02-01 2011-08-18 Kyushu Electric Power Co Inc Thermal fatigue evaluation method
CN106653113A (en) * 2016-10-25 2017-05-10 核动力运行研究所 Device and method for carrying out online monitoring on fatigue life of steam generator
WO2022038840A1 (en) * 2020-08-17 2022-02-24 株式会社日立製作所 Crack progress evaluation device and crack progress evaluation program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101964006A (en) * 2009-07-23 2011-02-02 韩国电力公社 Method and device for calculating temperature dependent Green function by using weight function
JP2011158362A (en) * 2010-02-01 2011-08-18 Kyushu Electric Power Co Inc Thermal fatigue evaluation method
CN106653113A (en) * 2016-10-25 2017-05-10 核动力运行研究所 Device and method for carrying out online monitoring on fatigue life of steam generator
CN106653113B (en) * 2016-10-25 2018-08-21 核动力运行研究所 A kind of online fatigue life monitor of steam generator and method
WO2022038840A1 (en) * 2020-08-17 2022-02-24 株式会社日立製作所 Crack progress evaluation device and crack progress evaluation program

Similar Documents

Publication Publication Date Title
EP0030459B2 (en) System for monitoring steam condenser performance
US6804622B2 (en) Method and apparatus for non-destructive thermal inspection
JPS59206751A (en) Method of monitoring fatigue of structural section
Ji et al. A recursive least-squares algorithm for on-line 1-D inverse heat conduction estimation
CN110909505B (en) Transient temperature field calculation method of nuclear power plant fatigue monitoring and life evaluation system
JPH1096704A (en) Monitering device for fatigue
EP0165675B2 (en) Apparatus for measuring thermal stress of pressure-tight tube
Jones Impulse response model of thermal striping for hollow cylindrical geometries
Yaparova et al. Method for temperature measuring inside a cylindrical body based on surface measurements
Holland et al. Modeling Approach to Estimate EGR Cooler Thermal Fatigue Life
Mera et al. A three-dimensional boundary determination problem in potential corrosion damage
US7909506B2 (en) Virtual temperature measuring point
Maciąg et al. The usage of the Trefftz method to determine the Biot number
JPH0624645Y2 (en) Boiler thermal stress monitor
Kapitonov THE CYBER-PHYSICAL SYSTEM FOR COULOSTATIC EXPERIMENT. THE CORROSION MONITORING UNIT
JPS59211196A (en) Response abnormality diagnosing equipment for detector
JPS59128429A (en) Life monitoring method for pressure resisting parts
JPH0815115A (en) Thermal stress monitor
Diligenskaya Method of Parametric Optimization in Problems of Identification of Boundary Conditions of Convective Heat Transfer in Processes of Non-Stationary Heat Conduction
JP2589197Y2 (en) Fatigue monitoring device
Tanaka et al. An inverse estimation of multi-dimensional load distributions in thermoelasticity problems via dual reciprocity BEM
Ishiguro et al. Analysis of Two-Dimensional Steady-State Heat Conduction in Anisotropic Solids by Boundary Element Method Using Analog Equation Method and Green's Theorem
Barulina et al. Mathematical simulation of nonstationary thermal processes, the thermoelastic mode of deformation, and durability of a temperature probe under temperature shock
JP2002334120A (en) Method and device for calculating heat response
JP2012073038A (en) Method for estimating surface temperature of exhaust system component

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106