JPS59128429A - Life monitoring method for pressure resisting parts - Google Patents

Life monitoring method for pressure resisting parts

Info

Publication number
JPS59128429A
JPS59128429A JP442683A JP442683A JPS59128429A JP S59128429 A JPS59128429 A JP S59128429A JP 442683 A JP442683 A JP 442683A JP 442683 A JP442683 A JP 442683A JP S59128429 A JPS59128429 A JP S59128429A
Authority
JP
Japan
Prior art keywords
pressure
stress
damage rate
temperature
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP442683A
Other languages
Japanese (ja)
Inventor
Katsuya Setoguchi
瀬戸口 克哉
Toshihiko Imamoto
今本 敏彦
Tadashi Gengo
義 玄後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP442683A priority Critical patent/JPS59128429A/en
Publication of JPS59128429A publication Critical patent/JPS59128429A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0057Generation of the force using stresses due to heating, e.g. conductive heating, radiative heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To perform highly accurate monitoring of life of parts through online basis, by measuring the temperatures and the internal liquid pressures of pressure resisting parts, and determining consumption life due to creep and fatigue based on change with time in stress caused by the temperature and pressure. CONSTITUTION:The temperatures and the internal pressures at a plurality of observing points of a pressure resisting part 11 are measured by a temperature and pressure detector 12. The stress of the part 11 caused by the temperature and the pressure is computed by an inner and outer temperature difference operator 13 and a stress operator 14. The time change curve of the stress is computed by a stress range operator 15, and a fatigue damage rate is computed by a fatigue damage rate operator 17. Meanwhile, a creep damage rate is computed by a stress actiono perator 16, which computes action time, and a creep damage rate operator 18. Based on the fatigue and the creep, a life consumption rate operator 19 computes and determines a life consumption rate highly accurately. Thus, the life is monitored online highly accurately.

Description

【発明の詳細な説明】 この発明はボイラ缶水循環ポンゾケーシング、ドラム、
過熱器管寄せT継手、Y継手等の制圧部品の寿命監視法
に関する。
[Detailed Description of the Invention] This invention relates to a boiler can water circulation ponzo casing, a drum,
This article relates to a lifespan monitoring method for pressure control parts such as superheater header T-joints and Y-joints.

従来、耐圧部品の寿命消費を算出するには、厚肉耐圧部
品内の内部流体の予想される温度、圧力及び流量の時間
変化をもとにして、耐圧部品に生じる温度及び応力を机
上解析によって推定し、その解析結果をもとにして寿命
消費を推定する方法が用いられる。
Conventionally, in order to calculate the life consumption of pressure-resistant parts, the temperature and stress generated in the pressure-resistant parts are calculated through a desktop analysis based on the expected temporal changes in the temperature, pressure, and flow rate of the internal fluid in the thick-walled pressure-resistant parts. A method is used to estimate the lifetime consumption based on the analysis results.

しかし、寿命消費推定に必要な厚肉耐圧部品内の内部流
体の温度、圧力及び流量の時間変化の予想は、一般に安
全側に考えて実稼動よりも厳しい条件のものとなる事が
多い。また、疲労寿命消費に大きく影響する熱過渡時の
耐圧部品内の内部流体の温度、圧力及び流量の予想が難
しい事があシ、結果として耐圧部品の温度応答推定精度
が厳しすぎる事がある。以上の理由により、耐圧部品に
生じる応力の推定精度があまシ厳しすぎて結果として耐
圧部品の推定耐用寿命が短かくなる不具合があった。
However, the prediction of temporal changes in the temperature, pressure, and flow rate of the internal fluid in thick-walled pressure-resistant parts, which is necessary for estimating life consumption, is generally performed under conditions that are more severe than those in actual operation, in order to be on the safe side. Furthermore, it is sometimes difficult to predict the temperature, pressure, and flow rate of the internal fluid within the pressure-resistant component during thermal transients, which greatly affect fatigue life consumption, and as a result, the accuracy of estimating the temperature response of the pressure-resistant component may be too strict. For the above reasons, the accuracy of estimating the stress generated in the pressure-resistant parts is too strict, resulting in a problem that the estimated service life of the pressure-resistant parts is shortened.

この発明は上記の点に鑑みてなされたもので、その目的
は実稼動中の耐圧部品の温度及び内部流体圧力を実測し
、温度及び圧力による応力の実際の時間的変化を求めて
クリープと疲労による寿命消費の実際を把握することが
できる耐圧部品の寿命監視法を提供す、ることにある。
This invention was made in view of the above points, and its purpose is to actually measure the temperature and internal fluid pressure of pressure-resistant parts during actual operation, and to determine the actual temporal changes in stress due to temperature and pressure, thereby reducing creep and fatigue. The object of the present invention is to provide a method for monitoring the life of pressure-resistant parts that can grasp the actual life consumption of pressure-resistant parts.

以下、図面を参照してこの発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はこの発明に係る耐圧部品の寿命監視法を示す/
ロック図である。図において、11は過熱器管寄せT継
手等の耐圧部品である。上記耐圧部品の温度(T)及び
その内部流体の圧力(P)は温度圧力検出装置12によ
り検出される。そして、上記温度圧力検出装置12の出
力は内外面温度差演算器13に入力され、上記耐圧部品
1ノの板厚方向の内外面温度差(ΔT)が算出される。
FIG. 1 shows a method for monitoring the lifespan of pressure-resistant components according to the present invention.
It is a lock diagram. In the figure, numeral 11 indicates pressure-resistant parts such as a superheater header T-joint. The temperature (T) of the pressure-resistant component and the pressure (P) of its internal fluid are detected by a temperature and pressure detection device 12. Then, the output of the temperature and pressure detection device 12 is input to the inner/outer surface temperature difference calculator 13, and the inner/outer surface temperature difference (ΔT) in the plate thickness direction of the pressure-resistant component 1 is calculated.

また14は応力演算器で応力が算出される。さらに、1
5は応力範囲演算器で、第7図に示した応力の時間変化
曲線をもとに応力範囲(Δσ)が算出される。また16
は応力作用演算器で第8図に示した応力の作用時間Δt
が求められる。さらに、17は疲労損傷率演算器で、第
9図に示すような応力範囲Δσと疲労繰返し回数Nとの
関係曲線よシ応力範囲Δσ(1)に対する疲労繰返し回
数N(i)を求め、更に疲労損傷率1/N(i)が算出
される。また、18はクリープ損傷率演算器で、内圧応
力σ(j)の応力作用O 時間Δt(j)と、応力作用時間tr(j)との比Δt
(j)//1r(j)であるクリープ損傷率が求められ
る。さらに、19は寿命消費率演算器で、上記疲労損傷
率演算器17で算出された疲労損傷率l/N(i)と上
記クリープ損傷率演算器18で算出されたクリープ損傷
率′t(j)/1r(j窃累積加算を行い、その累積値
の大きさによって耐圧部品の大きさの寿命が監視される
Further, 14 is a stress calculator which calculates stress. Furthermore, 1
5 is a stress range calculator, which calculates the stress range (Δσ) based on the stress time change curve shown in FIG. 16 again
is the stress action time Δt shown in Figure 8 in the stress action calculator.
is required. Furthermore, 17 is a fatigue damage rate calculator which calculates the number of fatigue repetitions N(i) for the stress range Δσ(1) from the relationship curve between the stress range Δσ and the number of fatigue repetitions N as shown in FIG. The fatigue damage rate 1/N(i) is calculated. In addition, 18 is a creep damage rate calculator which calculates the ratio Δt of the stress action time O of internal pressure stress σ(j) Δt(j) and the stress action time tr(j).
The creep damage rate is determined as (j)//1r(j). Furthermore, 19 is a life consumption rate calculator which calculates the fatigue damage rate l/N(i) calculated by the fatigue damage rate calculator 17 and the creep damage rate 't(j) calculated by the creep damage rate calculator 18. )/1r(j) The life of the pressure-resistant component is monitored based on the magnitude of the accumulated value.

第2図は耐圧部品11を示す斜視図で、21a。FIG. 2 is a perspective view showing the pressure-resistant component 11, 21a.

21b、21cの3個所の温度計測位置が図示されてい
る。
Three temperature measurement positions 21b and 21c are illustrated.

また、第3図は第2図に示した耐圧部品11の温度計測
位置21a、21b+21cの温度分布を示している。
Further, FIG. 3 shows the temperature distribution at the temperature measurement positions 21a, 21b+21c of the pressure-resistant component 11 shown in FIG.

次に、動作を説明する。まず、第2図に示した耐圧部品
11の肉厚方向に設けた適当な温度計測位置21h〜2
1cの温度T及び内部流体の圧力Pを温度圧力検出装置
12によシ時々刻刻検出する。次に、上記温度圧力検出
装置12によシ検出された温度Tをもとにして内外面温
度差演算器13によって第3図に示すように耐圧部品1
)の板厚方向内外面温度差ΔTが算出される。さらに、
応力演算器14により、耐圧部品11の板厚方向の内外
面温度差ΔTと、同温度差ΔTによる応力σ7との関係
及び第5図に示すような内部流体の圧力Pと同圧力Pに
よる疲労損傷率推定用応力σ、及びクリープ損傷率推定
用応力σ との関係を有する応力が算出されO る。ここで、第6図は上記応力演算器14によって算出
された応力の時間的変化を示している。
Next, the operation will be explained. First, appropriate temperature measurement positions 21h to 2 provided in the thickness direction of the pressure-resistant component 11 shown in FIG.
The temperature T of 1c and the pressure P of the internal fluid are detected from time to time by the temperature and pressure detection device 12. Next, based on the temperature T detected by the temperature and pressure detection device 12, the pressure-resistant component 1 is
) is calculated as the temperature difference ΔT between the inner and outer surfaces in the plate thickness direction. moreover,
The stress calculator 14 calculates the relationship between the internal and external temperature difference ΔT in the thickness direction of the pressure-resistant component 11 and the stress σ7 due to the same temperature difference ΔT, and the internal fluid pressure P and fatigue due to the same pressure P as shown in FIG. A stress having a relationship with the stress σ for estimating damage rate and the stress σ for estimating creep damage rate is calculated. Here, FIG. 6 shows temporal changes in stress calculated by the stress calculator 14.

また、第6図において、実線aは耐圧部品11の板厚方
向の内外面温度差ΔTによる応力σ。
Further, in FIG. 6, the solid line a represents the stress σ due to the temperature difference ΔT between the inner and outer surfaces of the pressure-resistant component 11 in the thickness direction.

と内部流体の圧力Pによる応力σ との和を示し、破線
すは内部流体の圧力Pによる応力σpoを示している。
and the stress σ due to the pressure P of the internal fluid, and the broken line indicates the stress σpo due to the pressure P of the internal fluid.

次に、応力範囲演算器15において第6図に示した応力
の時間変化曲線をもとに第7図に示した応力範囲Δσが
算出される。さらに、応力作用時間演算器16において
第6図に示した応力の時間液イ1曲線をもとに第8図に
示した応力の作用時間Δtが算出される。つまシ、第7
図及び第8図は説明のため第6図に示した応力時間変化
曲線を分けて説明したものである。次に、疲労損傷率演
算器17において第9図に示すように応力範囲Δσと疲
労繰返し回数Nとの関係曲線よシ応力範囲Δσ0に対す
る疲労繰返し回数N(i)が算出され、更に疲労損傷率
1ハ(i)が算出される。さらに、クリープ損傷率演算
器18において、第1O図に示すような応力σ とりO リープ破断時間trとの関係曲線よシ内圧応力σ (j
)に対するクリープ破断時間t (j)1求め、po 
                         
       r更に内圧応力σ Qの応力作用時間Δ
t(j)と応O 力作用時間tr(jりの比Δt(j)/1r(j)であ
るクリープ損傷率が算出される。次に、寿命消費率演算
器19において、時々刻々変化する応力をもとに求めた
上記疲労損傷率1/N(i)とクリープ損傷率Δt(j
)/1r(j)の累積加算を行い、その累積値の大きさ
により耐圧部品の寿命が監視される。
Next, the stress range calculator 15 calculates the stress range Δσ shown in FIG. 7 based on the stress time change curve shown in FIG. Further, the stress action time calculator 16 calculates the stress action time Δt shown in FIG. 8 based on the stress time-liquid curve shown in FIG. Tsumashi, 7th
For the purpose of explanation, the stress time change curve shown in FIG. 6 is explained separately in this figure and FIG. 8. Next, the fatigue damage rate calculation unit 17 calculates the number of fatigue repetitions N(i) for the stress range Δσ0 based on the relationship curve between the stress range Δσ and the number of fatigue repetitions N, as shown in FIG. 1ha(i) is calculated. Furthermore, the creep damage rate calculator 18 calculates the internal pressure stress σ (j
), find the creep rupture time t (j)1, po

r Furthermore, internal pressure stress σ Q stress action time Δ
The creep damage rate, which is the ratio Δt(j)/1r(j) of t(j) and stress action time tr(j), is calculated.Next, in the life consumption rate calculator 19, the creep damage rate The above fatigue damage rate 1/N(i) and creep damage rate Δt(j
)/1r(j) is cumulatively added, and the life of the pressure-resistant component is monitored based on the magnitude of the cumulative value.

以上詳述したようにこの発明によれば、実稼動中の耐圧
部品の温度Tと内部流体の圧力Pを実測し、実測された
値をもとにクリープ疲労による寿命消費を算出している
ため、よIり精度の高い耐圧部品の寿命消費を把握する
ことができる。
As detailed above, according to the present invention, the temperature T of the pressure-resistant parts and the pressure P of the internal fluid are actually measured during actual operation, and the life consumption due to creep fatigue is calculated based on the measured values. , it is possible to grasp the life consumption of pressure-resistant parts with higher accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る耐圧部品の寿命監視
法を示すブロック図、第2図は耐圧部品を示す斜視図、
第3図は第2図に示した耐圧部品の3個所の温度計測位
置とその温度分布を示す図、第4図は内外面温度差ΔT
と応力σ1との関係を示す図、第5図は内部流体の圧力
Pと疲労損傷率推定用応力σ、及びクリープ損傷率推定
用応力σpoとの関係を示す図、第6図ないし第8図は
それぞれ応力時間変化曲線を示す図、第9図は疲労繰返
し回数(へ)と応力範囲(σ)との関係を示す図、第1
θ図は応力(σ、。)とクリープ破断時間(1)との関
係を示す図である。 11・・・耐圧部品、13・・・内外面温度差演算器、
15・・・応力範囲演算器、16・・・応力作用演算器
、18・・・クリープ損傷率演算器、19・・・寿命消
費率演算器。 出顔人復代理人  弁理士 鈴 江 武 彦第1図 第2図 牙3図 ≧2□− 斥外面昔晃 牙5図 J’3、虐り工j^−イ」;の/辷ノシ牙6図 オフ図     牙8図 Δ6’   、t9図 Lゾj京〕(し回収 峙 藺 手続補正書 。□58.,5.2:j 特許庁長官  若 杉 和 夫  殿 ■、事件の表示 %願昭58−4426号 2、発明の名称 耐圧部品の寿命監視法 3、補正をする者 事件との関係特許出願人 (620)  三菱重工業株式会社 4、後代 理 人 6、補正の対象 明細書 7、補正の内容 (1)  明細書第3頁第9行目にr(T)lとあるを
「T」と訂正する。 (2)  明細書第3頁第10行目にr(P)Jとある
をrPJと訂正する。 (3)明細書第3頁第13行目に「(ΔT)Jとあるを
「ΔT」と訂正する。 (4)  明細書第3頁第17行目に「(Δσ)」とあ
るを「Δσ」と訂正する。 (5)  明細書第3頁第18行目に「用演算器」とあ
るを「用時間演n益」と削正する。 (6)  明細書第4頁第5行目K「応力作用時間」と
あるを「σ U)に対するクリープ破断時間」O と訂正する。 (7)  明細書第4頁第11行目に「大きさの」とい
う文を削除する。 (8)  明細書第7頁第18行目にr(N)jとある
をrNJと訂正する。 (9)  明細書第7頁第18行目に「(σ)」とある
を「σ」と訂正する。 00  明細書第7頁第19行目に「(σ )」とpO あるを「σ 、」と訂正する。 0 (11)  明細書第7頁第20行目に「(tr)」 
 とあるを「tr」  と訂正する。 (121明細書第8頁第1行目ないし第4行目に「1)
・・・耐圧部品、・・・、19・・・寿命消費率演算器
。」とあるを「11・・・耐圧部品、12・・・温度圧
力検出装置、13・・・内外面温度差演算器、14・・
・応力演算器、15・・・応力範囲演算器、16・・・
応力作用演算器、17・・・疲労損傷率演算器、18・
・・クリープ損傷率演算器、19・・・寿命消費率演算
器、2.、Ja−2、I’c・・・温度計側位置」と訂
正する。
FIG. 1 is a block diagram showing a life monitoring method for pressure-resistant components according to an embodiment of the present invention, FIG. 2 is a perspective view showing the pressure-resistant components,
Figure 3 is a diagram showing the three temperature measurement positions of the pressure-resistant component shown in Figure 2 and its temperature distribution, and Figure 4 is a diagram showing the temperature difference ΔT between the inner and outer surfaces.
FIG. 5 is a diagram showing the relationship between internal fluid pressure P, stress σ for estimating fatigue damage rate, and stress σpo for estimating creep damage rate, and FIGS. 6 to 8 are diagrams showing the stress time change curves, Figure 9 is a diagram showing the relationship between the number of fatigue cycles (to) and the stress range (σ), and Figure 1 is a diagram showing the stress time change curve.
The θ diagram is a diagram showing the relationship between stress (σ, .) and creep rupture time (1). 11... Pressure-resistant parts, 13... Inside and outside surface temperature difference calculator,
15... Stress range calculator, 16... Stress action calculator, 18... Creep damage rate calculator, 19... Life consumption rate calculator. Patent attorney Takehiko Suzue, figure 1, figure 2, figure 3 ≧2□- Figure 6 Off Figure Fang 8 Figure Δ6', T9 Figure L zojkyo] (Recovery proceedings □ 58., 5.2:j Mr. Kazuo Wakasugi, Commissioner of the Patent Office, % request for display of the case) No. 58-4426 2, Name of the invention: Life monitoring method for pressure-resistant parts 3, Person making the amendment Related to the case Patent applicant (620) Mitsubishi Heavy Industries, Ltd. 4, Successor agent 6, Specification subject to amendment 7, Contents of the amendment (1) r(T)l on page 3, line 9 of the specification is corrected to "T". (2) r(P)J and r(P)J are corrected on page 3, line 10 of the specification. (3) On page 3, line 13 of the specification, “(ΔT)J” is corrected as “ΔT”. (4) On page 3, line 17 of the specification, “(ΔT)J” is corrected as “ΔT.” (Δσ)" is corrected to "Δσ." (5) On page 3, line 18 of the specification, the text "operating unit" is corrected to "time operating n profit." (6) Details 4th page, line 5, K "stress action time" is corrected to "creep rupture time for σ U)" O. (7) Delete the sentence "of size" on page 4, line 11 of the specification. (8) On page 7, line 18 of the specification, r(N)j is corrected to rNJ. (9) "(σ)" on page 7, line 18 of the specification is corrected to "σ". 00 On page 7, line 19 of the specification, "(σ )" and pO are corrected to "σ,". 0 (11) “(tr)” on page 7, line 20 of the specification
Correct the statement to "tr". (“1” in the 1st to 4th lines of page 8 of the 121 specification)
...Pressure-resistant parts, ..., 19...Life consumption rate calculator. "11...Pressure-resistant parts, 12...Temperature and pressure detection device, 13...Inside and outside surface temperature difference calculator, 14...
- Stress calculator, 15... Stress range calculator, 16...
Stress action calculator, 17... Fatigue damage rate calculator, 18.
... Creep damage rate calculator, 19... Life consumption rate calculator, 2. , Ja-2, I'c... position on the thermometer side.''

Claims (1)

【特許請求の範囲】[Claims] 耐圧部品に設けた代表的計測点の温度、内部流体圧力及
び内部流体流量を計測する手段と、この手段により計測
された温度及び圧力を用いて耐圧部品の応力を推定する
手段と、この手段により推定された上記耐圧部品の応力
の時間的変化を追跡する手段と、内圧による応力とその
作用時間に対応するクリープ損傷率を算出する手段と、
温度と内圧による応力の変化範囲に対応する疲労損傷率
を算出する手段とを具備し、上記クリープ損傷率と上記
疲労損傷率との和である寿命消費の累積をオンラインで
計数するようにしたことを特徴とする耐圧部品の寿命監
視法。
means for measuring temperature, internal fluid pressure, and internal fluid flow rate at representative measurement points provided on a pressure-resistant component; means for estimating stress in the pressure-resistant component using the temperature and pressure measured by the means; means for tracking the estimated temporal change in stress of the pressure-resistant component; means for calculating a creep damage rate corresponding to the stress due to internal pressure and its action time;
A means for calculating a fatigue damage rate corresponding to a range of changes in stress due to temperature and internal pressure is provided, and the cumulative life consumption, which is the sum of the creep damage rate and the fatigue damage rate, is counted online. A method for monitoring the lifespan of pressure-resistant parts.
JP442683A 1983-01-14 1983-01-14 Life monitoring method for pressure resisting parts Pending JPS59128429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP442683A JPS59128429A (en) 1983-01-14 1983-01-14 Life monitoring method for pressure resisting parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP442683A JPS59128429A (en) 1983-01-14 1983-01-14 Life monitoring method for pressure resisting parts

Publications (1)

Publication Number Publication Date
JPS59128429A true JPS59128429A (en) 1984-07-24

Family

ID=11583923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP442683A Pending JPS59128429A (en) 1983-01-14 1983-01-14 Life monitoring method for pressure resisting parts

Country Status (1)

Country Link
JP (1) JPS59128429A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198807U (en) * 1985-05-25 1986-12-12
JPS63167299U (en) * 1987-04-21 1988-10-31
JPH01281304A (en) * 1988-05-09 1989-11-13 Hitachi Ltd Method and device for controlling warming-up operation of moisture content separating heater
CN104749211A (en) * 2013-12-27 2015-07-01 川崎重工业株式会社 Heat transfer tube life estimating system
CN105651606A (en) * 2016-01-26 2016-06-08 苏州热工研究院有限公司 Method for assessing structural integrity of high-temperature and high-pressure welded member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157138A (en) * 1981-03-25 1982-09-28 Hitachi Ltd Foretelling method and device for device life
JPS57166541A (en) * 1981-04-08 1982-10-14 Hitachi Ltd Method and device estimating life of fluid receptacle at high temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157138A (en) * 1981-03-25 1982-09-28 Hitachi Ltd Foretelling method and device for device life
JPS57166541A (en) * 1981-04-08 1982-10-14 Hitachi Ltd Method and device estimating life of fluid receptacle at high temperature

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198807U (en) * 1985-05-25 1986-12-12
JPS63167299U (en) * 1987-04-21 1988-10-31
JPH01281304A (en) * 1988-05-09 1989-11-13 Hitachi Ltd Method and device for controlling warming-up operation of moisture content separating heater
CN104749211A (en) * 2013-12-27 2015-07-01 川崎重工业株式会社 Heat transfer tube life estimating system
CN105651606A (en) * 2016-01-26 2016-06-08 苏州热工研究院有限公司 Method for assessing structural integrity of high-temperature and high-pressure welded member

Similar Documents

Publication Publication Date Title
EP0030459B2 (en) System for monitoring steam condenser performance
EP4071655A1 (en) Straight pipeline inner wall surface temperature measurement and transient identification method and computer terminal
JP2011075373A (en) Method and device for diagnosis of equipment
JPS59128429A (en) Life monitoring method for pressure resisting parts
EP0165675B2 (en) Apparatus for measuring thermal stress of pressure-tight tube
JP3188812B2 (en) Equipment diagnosis system
JP4955159B2 (en) Flow rate measuring method and apparatus
JP2004028818A (en) Method for monitoring corrosive environment and its apparatus
JP2002221303A (en) Method of measuring furnace interior side temperature of membrane panel
JPH03140841A (en) Method for monitoring life of high temperature structural part
JPH07140033A (en) Leakage detection method for pipe line
JP2691243B2 (en) Process abnormality monitoring method and apparatus thereof
JPS6171345A (en) Life monitoring method of pressure resisting part
JPS57166541A (en) Method and device estimating life of fluid receptacle at high temperature
EP4273514A1 (en) System and method for determining at least one calculated process parameter of a fluid in a pipe
Zhang et al. Early detection of the wear of coriolis flowmeters through in situ stiffness diagnosis
JPH0624645Y2 (en) Boiler thermal stress monitor
GB2328753A (en) A method of measuring fluid flow and fluid flow stability
JPS6089602A (en) Method of monitoring life of pressure-resisting part
EP4273524A1 (en) System and method for non-invasive determining of a fluid temperature
Hurda et al. Uncertainty analysis of thermal quantities measurement in a centrifugal compressor
JPH0752152B2 (en) Weld damage detection method
JPH0127378B2 (en)
JPH09324900A (en) Method and apparatus for monitoring thermal fatigue damage in piping or the like
JP2007003381A (en) Calibration support device for detector, technique thereof, and program